
1

Paper FS-07-2013

Advanced Multithreading Techniques for Performance Improvement of SAS® Processes

Viraj R Kumbhakarna, JPMorgan Chase & Co., Columbus, OH

ABSTRACT

In this paper, we discuss a host of new functionality within SAS
®
 software version 9 related to parallel processing.

Parallel processing refers to processing that is handled by multiple CPUs simultaneously. This technology takes
advantage of hardware that has multiple CPUs, called Symmetric Multiprocessing (SMP) computers, and provides
performance gains for two types of processes:

 threaded I/O

 threaded application processing

In this paper, we explore the use of newer, faster, practically applicable parallel processing techniques supported by
SAS

®
 software for version 9.2 and later versions that can be used for processing a large volume of data in parallel on

AIX UNIX as well as windows SAS
®
 software

environments. We further dwell on identifying ways to break the data to

process in parallel, determining the number of threads to process in parallel, using SAS MPCONNECT for
multithreading and analyzing support for spawning and managing multiple threads.

In this paper, we also propose techniques to execute processes in parallel on AIX UNIX platform. We also explore the
use of Piping which is an extension of the MP connect functionality to address pipeline parallelism. We also discuss
different techniques used to analyze the data, to analyze the current server configuration and use it to determine the
optimal number of threads to be submitted in parallel. In conclusion we compare and contrast benefits, cost overhead
and return over investment (ROI) of implementing parallel processing for a statistical and analytical process in the
form of a case study to process huge data volume (in the author’s experience, over 5 million observations) and argue
benefits of parallel processing in terms of improved performance, reduced processing times and reduced I/O.

INTRODUCTION

Processing times for complex applications processing huge volume of data are often very long, often lasting for
several days at a time. Parallel processing can be used in order to improve processing speed and reduce processing
time. SAS offers piping in MP connect in order to process serially independent steps in parallel. In this paper we will
focus on generic process improvement techniques that can be applied to any existing process developed using SAS

®

software executing on Symmetric Multiprocessing (SMP) computers.

In this paper we consider the methodologies to analyze existing processes to identify the opportunity for parallel
processing. We discuss how to break out the process into various sub-processes and how to work on the sub-
processes which require more time to execute. We further discuss various techniques that can be applied to analyze
the data and break larger data sets into smaller pieces to allow for faster processing. We also discuss parallelization
techniques to execute the smaller data sets in parallel and later combine them together. We further see how a job
can be broken out into multiple instances based on the source data to perform same task better and faster.

PARALLEL PROCESSING METHODOLOGY

In this section, we will discuss different types of parallel processing methodologies; indentify hardware and software
requirements for being able to implement parallel processing and make using of multithreading and analyze how the
existing SAS process can best be modified to undergo parallel processing.

Parallel processing refers to processing a single process with the use of multiple CPUs simultaneously to obtain
maximum throughput. SAS supports following two methods of parallel processing:

• threaded I/O

• threaded application processing

2

THREADED I/O

Threaded I/O is preferred for applications which are I/O bound. This situation occurs when the application’s data
processing capability is higher that the application’s input output processing capability. When most of the application’s
time is spent in waiting for reading or writing data and not waiting for CPU (or processing resources) then the
application is termed as I/O bound.

SAS provides supports for threaded I/O with the use of the Scalable Performance Data (SPD) engine. SPD engine is
a proprietary SAS engine that supports processing of data by boosting the performance of the applications which are
I/O bound by breaking out the datasets into smaller partitions and processing the data in parallel. Partitioned datasets
can reside on multiple disk drives on the servers but are treated as a single dataset by the SPD engine.

In order to obtain maximum throughput for multiprocessing using threaded I/O it is required to have at least one
controller per CPU and at least two disks. Although, in order to obtain better performance, having multiple disk drives
for every CPU in a multiple CPU environment in an SMP will result in faster results.

During the course of analysis it was found that the process on which case study is performed was CPU intensive and
therefore in this paper we will limit the discussion to threaded application processing only and does not consider any
examples for the threaded I/O. If you are interested in exploring threaded I/O, please see SAS Scalable Performance
Data Engine: Reference for full details about this engine's capabilities.

THREADED APPLICATION PROCESSING

Threaded application processing is generally performed on applications that are CPU bound. This situation occurs
when the application’s data processing capability is lower that the application’s input output processing capability. In
such cases, most time is spent on waiting of the Central Processing Unit (CPU) to be made available to the process.

Generally when a process is submitted in SAS, single threaded processing occurs and 1 CPU is utilized per process
when one process is running at a time. When multiple processes are executed at the same time on 1 CPU then time
slicing occurs and wait times are increased due to thrashing, as multiple processes are contending for the use of one
CPU. On an SMP multiprocessing system use of multithreading can be used to overcome this issue. Multithreading
means having to modify the process to allow having to process multiple threads in parallel across multiple CPUs.

Some types of processes may not be suited for threaded application processing. One such example is a process that
requires having to sort a dataset. If the dataset to be sorted is divided into multiple smaller datasets and then each of
the smaller datasets are sorted in separate threads, when it is required to combine the sorted output individual
datasets together, the need will arise to again sort the final combined output dataset. Multithreading best works on
applications processing serially independent processes, for example applications which use statistical models for
forecasting loan losses in banking. Such applications process every observation within the dataset separately and
generally have the need to expand the data to create time series.

For SAS 9, certain procedures such as SORT and MEANS have been modified so that they can thread the
processing through multiple CPUs, if they are available. In addition, threaded processing is being integrated into a
variety of other SAS

®
 software features in order to improve performance. For example, when you create an index, if

sorting is required, SAS attempts to sort the data using the thread-enabled sort

ARCHITECTURE

In this section, we will discuss the hardware, software, data and process requirements in order to successfully
implement threaded processing for applications developed using SAS

®
 software. During this analysis we will consider

a case study on a practical real life process developed using SAS
®
 software, which was modified for multiprocessing.

This is accomplished with the use of MP connect technology by spawning multiple SAS session to run multiple proc
steps in parallel and pipe their output into another SAS session running another proc. This pipeline can be extended
to include any number of steps and can even extend between different physical machines.

SYMMETRIC MUTIPROCESSING (SMP) ARCHITECTURE

Symmetric multiprocessing (SMP) architecture by definition is system having multiple processors connected to a
shared memory, having shared I/O devices which are controlled with a single operating system. SMP architecture
generally has multiple Central Processing Units (CPUs) and an operating system which can manage individual jobs
running on the server.

http://support.sas.com/documentation/cdl/en/engspde/62981/HTML/default/titlepage.htm
http://support.sas.com/documentation/cdl/en/engspde/62981/HTML/default/titlepage.htm

3

SMP computers having multiple CPUs are most beneficial for threaded application processing. Using threaded
application processes, an application developed using SAS

®
 software can be broken into multiple threads, each of

which is processed simultaneously on multiple CPUs in parallel. A thread is defined as a single instance of an
independent flow of control through a program or within a process. Threading allows dividing serially independent
processes into multiple sub-processes which can take advantage of a multiprocessor system.

The case study mentioned in this paper for implementing parallel processing was performed on an UNIX AIX server
environment having 40 shared CPUs.

SYMMETRIC MUTIPROCESSING (SMP) PROGRAMMING

Single processing programming and multi-processor programming are slightly different in the many ways. During
uniprocessor programming a programmer will program his process to execute even the serially independent steps
sequentially, where as in a multiprocessing environment, a programmer will program his process to execute the
serially independent steps in parallel. It is possible that programs executing on an SMP environment will increase a
performance increase even when they are written for a single processor environment since the hardware interrupts
that usually suspend the execution of the program while the kernel handle’s the threads can execute on an idle
processor instead.

The effect of multiprocessor programming can be estimated as follows, the processing time of the process will reduce
by the number of multiprocessors uses for processing. The improvement factor is nearly the same as the number of
additional processors added for processing. Generally most of the popular commercial operating systems have
support for multiprocessing SMP applications built in, such that multiple processors are utilized for performing SMP
processes.

For SAS procedures that are thread-enabled, new SAS system options are introduced with SAS 9:

CPUCOUNT

Specifies how many CPUs can be used.

THREAD|NOTHREADS

Controls whether to use threads.

SYMMETRIC MULTIPROCESSING (SMP) PERFORMANCE

As compared to systems running single process, an SMP environment will be able to process many jobs in parallel
thereby having a considerably better performance than a single processor system which processes only a single job
at a time. Symmetric multiprocessing systems performance depends on the number of CPUs that are available for
processing, number of user’s accessing the same CPUs, type of processes processing threaded IO processing.

In an SMP system, sharing fewer CPUs, among many users, who are executing highly CPU intensive tasks, will
surely provide lesser throughput as compared to a server sharing more CPUs, among fewer users who are
performing less CPU intensive tasks. If multiple user’s are executing highly CPU intensive processes for multiple
threads then this results in contention for resources and lesser resources are available for users to process the data
resulting in a lower throughput. In some experiments, we were able to see that jobs took over 3 times longer to
process when multiple processes were processed in parallel larger than the number of available CPUs.

KNOWING THE HARDWARE ARCHITECTURE

The central processing unit (CPU) is the portion of a computer hardware that does the bulk of the processing of the
computer programs, performs the analytical, logical and I/O operations of the system. A typical AIX UNIX server has
multiple processors thereby allowing processing of multiple queries concurrently. Certain procedures in SAS

®

software version 9.2 have been modified to take advantage of multiple CPUs by threading the procedure processing.
The Base SAS engine also uses threading to create indexes. The CPUCOUNT= option provides the information that
is needed to make decisions about the allocation of threads.

As per the SAS
®
 software version 9.2 installation recommendations for UNIX, to verify that you are you using a 64‐bit

Power processor, enter the following command:

$ lsconf |egrep 'Processor Type|CPU Type'

The response will be in the following format:

Processor Type: xxx

CPU Type: xxx

4

If the Processor Type field contains a reference to a Power CPU (for example, PowerPC_POWER4), the CPU Type
must be 64‐bit in order to use a Power CPU

SAS
®
 software runs on AIX using either the 32 or 64‐bit kernel; however, the 64‐bit kernel is recommended so that

system may be able to take advantage of the full functionality of SAS
®
 software. It is suggested to use the 32‐bit

kernel only if using third‐party software requires it. To determine what kernel type the AIX system is running on,

perform the following command:

/usr/sbin/lsconf -k

If the kernel type is 32‐bit, the output will be "Kernel Type: 32‐bit". Similarly, if the kernel type is 64‐bit, the output will

be "Kernel Type: 64‐bit".

The UNIX command lscfg displays configuration, diagnostic and vital product data (VPD) information about the
system including CPU information. Processing speed of the CPU in hertz (Hz) on AIX 5.1 and subsequent releases
can be found out from the following code:

lsattr -E -l proc0 | grep "Processor Speed"
 Alternatively pmcycles command can be used to list the processor speed.

During the scope of this paper, the research and case study for modifying existing process to process in parallel has
been carried out on a UNIX AIX

®
 SMP server having the SAS

®
 software version 9.2 package installed on it having the

following configuration:

System Model: IBM,XXXX-XXX

Machine Serial Number: XXXXXXX

Processor Type: PowerPC_POWER7

Processor Implementation Mode: POWER 7

Processor Version: PV_7_Compat

Number Of Processors: 40

Processor Clock Speed: XXXX MHz

CPU Type: 64-bit

Kernel Type: 64-bit

Memory Size: XXXXXX MB

Good Memory Size: XXXXXX MB

Platform Firmware level: XXXXX_XXX

Firmware Version: IBM,XXXXX_XXX

Console Login: enable

Auto Restart: true

Full Core: true

MP CONNECT

The MP CONNECT feature within the SAS/CONNECT
®
 software was introduced in SAS 8 to provide scalability and

parallel processing capabilities. MP CONNECT enables users to overcome the limitations of a single threaded SAS 8
system and to multiply the scalability of a threaded SAS 9 system by allowing users to spawn multiple SAS sessions
to run in parallel, each performing a portion of a larger application. One of the strongest features of MP CONNECT is
its ability to not only to scale up to take advantage of SMP hardware but to also scale out and take advantage of an
unlimited number of workstations across a network.

In SAS 9, the MP CONNECT feature of SAS/CONNECT
®
 software has been enhanced with a new piping capability

which allows overlapped execution of SAS data steps and/or certain SAS procedures. With this new support of
pipeline parallelism, it is possible to feed the output of one SAS data step or procedure as input into the next SAS
data step or procedure for overlapped execution. The net result is a reduction in the elapsed time necessary to
complete the entire application.

5

The benefits of MP CONNECT include:

 distribute multiple independent units of work

 "divide and conquer" - repeatedly distribute small pieces of a problem to multiple processors until the whole
problem is solved

 overlap SAS procedure and/or data step execution

 scale up and scale out

MP CONNECT provides a convenient syntax for spawning n SAS sessions to simultaneously execute n tasks as
independent processes and coordinate the execution and results of all n tasks into the original SAS session. The n
SAS sessions or processes can all execute on the same SMP machine with each session or process running on a
separate processor. However, if the user doesn't have the horsepower of an SMP machine, MP CONNECT has the
flexibility to spawn multiple SAS sessions to run on any number of remote machines across a network. The remote
machines can have either single or multiprocessor capabilities. Single processor remote workstations are not only
much less expensive than large SMP machines, but they each come equipped with their own CPU, disk drive(s), and
I/O channel and can be unlimited in number!

MP CONNECT enables users to perform multiprocessing with SAS by establishing a connection between multiple
SAS sessions and enabling each of the sessions to asynchronously execute tasks in parallel. Users can also merge
the results of the asynchronous tasks into local execution stream at the appropriate time. In addition, establishing
connections to processes on the same local computer has been greatly simplified. This enables the user to exploit
SMP hardware as well as network resources to perform parallel processing and easily coordinate all the results into
the client SAS session.

Users can use MP CONNECT to start any number of SAS processes that they want to perform in parallel. SAS
processes that are started on a single multiprocessor computer are independent, unique processes just as they are if
they are initiated on a remote host. For example, under Windows and UNIX, each SAS session is a separate process
that has its own unique SAS WORK library. Each process also assumes the user context of the parent or of the user
that invoked the original SAS session, and has all the rights and privileges that are associated with that parent. The
client's SASHELP, SASMSG, SASAUTOS, and CONFIG allocations are passed to the new session as SAS option
values.

MP CONNECT is implemented by executing an RSUBMIT statement and the CONNECTWAIT=NO option. This
method causes SAS/CONNECT

®
 software to submit a task to a server session for processing and return control

immediately to the client session so that user’s can start other tasks in the client session or in other server sessions.

PIPING

Piping is an extension of the MP CONNECT functionality whose purpose is to address pipeline parallelism. Piping
enables you to overlap the execution of SAS data steps and/or certain SAS procedures. This is accomplished by
spawning one SAS session to run one data step or proc and pipes its output through a TCP/IP socket as input into
another SAS session running another data step or proc. This pipeline can be extended to include any number of
steps and can even extend between different physical machines. The benefits of piping include:

 overlapped execution of proc and/or data step

 eliminate intermediate write to disk

 improved performance

 reduced disk space requirements

PROCESS ANALYSIS

In order to get maximum throughput with the use of SAS MP Connect software, the user must analyze the SAS
process to how best can it be modified to undergo multithreading using SAS MP Connect feature. For performing any
kind of process improvement, it is suggested to analyze and examine the current process very well. In order to be
able to analyze the process thoroughly an approach to break the process into DATA steps and PROC steps was
found useful. The FULLSTIMER option within SAS software can be used while executing the SAS codes to check the
execution time for each individual step from the SAS log. FULLSTIMER option in SAS provides step by step statistics
for every step in a program. This option can help pinpoint performance problems down due to a specific step.

For the sake of discussion, let us broadly categorize user applications or processes to be optimized using SAS MP
connect software’s capabilities into following two types:

6

a. Parallel SAS process

b. Parallel threads within a SAS process

PARALLEL SAS PROCESS

A SAS process consists of many pieces, including execution units, data structures, and resources. A process
corresponds to an operating environment process. A process has a largely private address space. It is scheduled by
the operating environment, and its resources are managed by the operating environment at the lowest level. Multiple
SAS processes use multiple processors on an SMP computer, but they can also be run on multiple remote single or
multiprocessor computers on a network. When running multiple SAS processes on an SMP computer, SAS does not
schedule a specific process to a specific processor; scheduling is controlled by the operating environment. MP
CONNECT provides the ability to run multiple SAS processes.

Consider a hypothetical example of multiple processes as shown below:

Parallel

process

3

Parallel

Process

4

Parallel

process

2

Parallel

Process

1

SAS LOAD

SAS
JOB B1

SAS JOB A1

SAS JOB A2

SAS JOB A3

SAS JOB A4

SAS MERGE
PROCESS

Transform

SAS

PROCESS

A

SAS

PROCESS

B

O
U
T
P
U
T

D
A
T
A
S
E
T

A
1

Load

Extract

DB2

Database

DB1

Extract
SAS datasets

SDS1

Extract

SAS datasets

SDS1

O
U
T
P
U
T

D
A
T
A
S
E
T

B
1

Load

SAS JOB
B2

SAS JOB
B3

SAS
LOAD

O
U
T
P
U
T

D
A
T
A
S
E
T

A
2

Figure 1. Multiple SAS processes executing in parallel

Consider a hypothetical example of multiple processes as shown above. It consists of two SAS processes. SAS
process A and SAS process B. Both the SAS processes follow all of Extract-Transform-Load operations from to end
to end but are completely independent of each other. Neither the data sources nor the transformations within the SAS
processes A and B are dependent on each other. Performing process analysis on such completely independent
processes it can be found that these processes are completely independent of each other and they can be submitted
using RSUBMIT within the same SAS session.

MP CONNECT can be used to start multiple SAS sessions to execute independent units of work in parallel. The client
session can synchronize the execution of the parallel tasks for subsequent processing. For this example, two SAS
sessions would be started, and each session would perform one of the SAS processes.

PARALLEL THREADS WITHIN A SAS PROCESS

A process consists of one or more threads. A thread is also scheduled by the operating environment, but the running
process might influence the behavior of threads by using synchronization techniques. All threads in a process share
an address space and must cooperatively share the resources of the process. Multiple threads use multiple
processors on an SMP computer but cannot be executed across computers. When running multiple threads within a
SAS process, SAS does not schedule a specific thread to a specific processor; scheduling is controlled by the
operating environment

7

Also identifying serially independent steps within a process can be helpful to determine whether a process can be
scaled. If there are any such steps, it is recommended to modify the SAS program by creating separate programs for
each step and executing them in parallel. This will reduce the wait time of the independent processes thereby
allowing execution of independent steps in parallel. Consider a hypothetical example of a process which has 5 steps
in total.

Step 1: Performs complex analytical calculations to create dataset DataA

Step 2: Sorts the dataset DataA

Step 3: Performs another set of complex analytical calculations to create dataset DataB,

Step 4: Sorts the datasets DataB and

Step 5: Merges both the datasets DataA and DataB to create DataC.

/* PROGRAM TO ANALYSE TIME OF EXECUTION OF EACH PROCESS */

OPTIONS FULLSTIMER; /* FULLSTIMER option provides statistics in log*/

DATA dataA;

 <complex analytical calculations>;

RUN;

PROC SORT; by PrimaryKey; RUN;

DATA dataB;

 <complex analytical calculations>;

RUN;

PROC SORT; by PrimaryKey; RUN;

DATA dataC;

 Merge dataA

 dataB;

 By PrimaryKey;

RUN;

Currently the total ttime of execution for the above SAS program is equal to the sum of time required for executing
each individual step. Total time (Ta) = t1 + t2 + t3 +t4 +t5

Figure 2. Process executing serially

Consider an approach when the two independent steps for creating and sorting dataset DataA and creating and
sorting dataset DataB set are broken out into two separate threads. These threads would be executed in parallel and
the output would be combined in a third program. Therefore, the total time required to execute the jobs in parallel
would now be reduced to the time taken by the longest job executing in parallel in addition to any serial jobs
thereafter. Therefore the time of execution of the above SAS program would now be reduced to Total Time (tb) =
t1+t2+t5.

8

Figure 3. Process executing in parallel

CASE STUDY: PARALLEL PROCESSING

In the following section, we will consider a practical example of a process that was first executed serially and then
apply parallel processing and multithreading techniques using the MP CONNECT feature of SAS/CONNECT

®

software to execute the same in parallel. Please note that the following case study was carried out on a UNIX AIX
SMP server having 40 shared CPUs. A hypothetical process has been designed only to showcase step by step
method to apply the parallel processing techniques and perform a practical benchmarking exercise to show the
Return over Investment (ROI) of implementing multithreading technique using the MP CONNECT feature of
SAS/CONNECT

®
 software for this particular example.

TEST DATA CREATION

Using the test data creation process we will create sample test datasets which is used for enumerating the case study
for parallel processing. Sample datasets will be created for 3 different cases having increasing number for variables
and same number of observations to analyze effect on longer datasets respectively. In order to create the test
datasets for the process the following macro was used.

libname ip "/<input>/<directory>/<path>";

options nomprint nomlogic nosymbolgen;

%macro createdata(vars=,obs=);

 %if &obs < 1 %then %let &obs=1;

 %if &vars < 1 %then %let &vars=1;

 data ip.random_data_&vars._&obs.;

 length ID $10. ;

 do i=1 to &obs.;

 ID = "ID"||put(i,z8.);

 %do j=1 %to &vars.;

 var_&j.=ranuni(1);

 %end;

 output;

 end;

 drop i ;

 run;

%mend createdata;

%createdata(vars=2,obs=500000)

%createdata(vars=5,obs=500000)

%createdata(vars=10,obs=500000)

%createdata(vars=20,obs=500000)

The createdata macro above is a generic macro that was used to create all the input datasets used for testing. Two
parameters are passed as macro variables to the macro, which specify the number of variables and the number of
observations respectively to be contained in the generated datasets to be used as inputs. The macro makes use of
the ranuni SAS

®
 software function which is used to generate as many random variables specified in the vars

parameter. An ID variable is created to uniquely identify every observation.

9

Figure 4. Input datasets random_data_2_500000, random_data_5_500000 and
random_data_10_500000 respectively

Using the createdata above macro three different input datasets will be created in the input directory path specified in
the libname statement. Each of these three datasets random_data_2_500000, random_data_5_500000 and
random_data_10_500000 contain 2 variables and 500000 observations, 5 variables and 500000 observations and 10
variables and 500000 respectively. These datasets will be used as input datasets for testing the execution of the
serial process and the parallel process respectively.

DATA PROCESSING

For the sake of enumeration the following statistical process was developed which was highly mathematical,
calculation intensive and analytical in nature. We make use of a sample code above to generate random numbers
and the proc univariate procedure within SAS

®
 software to devise the process and perform a number of statistical

calculations on the generated random dataset. Thereafter, we will execute the proc univariate procedure for every
numeric variables in the input dataset one by one and process the data serially and create one output dataset for
every variable in the input dataset containing one observation displaying the distributive statistics, quantile statistics,
robust statistics and hypothesis testing statistics from the proc univariate SAS

®
 software procedure. The time of

execution of this process is recorded as the benchmark time to execute when the process is executed serially.

Thereafter, the MP CONNECT feature of the SAS
®
 software was used and the process was modified such that the

data was processed by spanning multiple threads in parallel by processing multiple variables simultaneously. One
output dataset was created for every variable in the input dataset in multiple threads and the benchmark times were
noted for executing the process in parallel. The study was concluded by comparing and contrasting the resource
utilization and the performance times for executing each of the two methods.

Following statistical calculations were performed for every variable within the input dataset:

Statistics Variable Description

Descriptive Statistics N number of nonmissing values, var_<N>

Descriptive Statistics MEAN the mean, var_<N>

Descriptive Statistics STD the standard deviation, var_<N>

Descriptive Statistics SKEWNESS skewness, var_<N>

Descriptive Statistics USS the uncorrected sum of squares, var_<N>

Descriptive Statistics CV the coefficient of variation, var_<N>

Descriptive Statistics SUMWGT sum of the weights, var_<N>

Descriptive Statistics SUM the sum, var_<N>

10

Descriptive Statistics VAR the variance, var_<N>

Descriptive Statistics KURTOSIS kurtosis, var_<N>

Descriptive Statistics CSS the corrected sum of squares, var_<N>

Descriptive Statistics STDMEAN the standard error of the mean, var_<N>

Descriptive Statistics NMISS number of missing values, var_<N>

Descriptive Statistics NOBS number of observations, var_<N>

Descriptive Statistics MAX the largest value, var_<N>

Descriptive Statistics MIN the smallest value, var_<N>

Descriptive Statistics RANGE the range, var_<N>

Descriptive Statistics MODE the most frequent value, var_<N>

Hypothesis Testing Statistics MSIGN the sign statistic, var_<N>

Hypothesis Testing Statistics SIGNRANK the signed rank statistic, var_<N>

Hypothesis Testing Statistics PROBT p-value of the t statistic, var_<N>

Hypothesis Testing Statistics PROBM p-value of the sign statistic, var_<N>

Hypothesis Testing Statistics PROBS p-value of signed rank stat, var_<N>

Hypothesis Testing Statistics NORMALTEST the normality test statistic, var_<N>

Hypothesis Testing Statistics PROBN p-value of normality test stat, var_<N>

Quantile Statistics P99 the 99th percentile, var_<N>

Quantile Statistics P95 the 95th percentile, var_<N>

Quantile Statistics P90 the 90th percentile, var_<N>

Quantile Statistics Q3 the upper quartile, var_<N>

Quantile Statistics MEDIAN the median, var_<N>

Quantile Statistics Q1 the lower quartile, var_<N>

Quantile Statistics P10 the 10th percentile, var_<N>

Quantile Statistics P5 the 5th percentile, var_<N>

Quantile Statistics P1 the 1st percentile, var_<N>

Quantile Statistics QRANGE the interquartile range, var_<N>

Robust Statistics GINI Gini's mean difference, var_<N>

Robust Statistics MAD MAD, var_<N>

Robust Statistics SN Sn, var_<N>

Robust Statistics QN Qn, var_<N>

Robust Statistics STD_QRANGE standard deviation from QRANGE, var_<N>

Robust Statistics STD_GINI standard deviation from GINI, var_<N>

Robust Statistics STD_MAD standard deviation from MAD, var_<N>

Robust Statistics STD_SN standard deviation from SN, var_<N>

Robust Statistics STD_QN standard deviation from QN, var_<N>

Figure 5. Statistics calculated using proc univariate SAS procedure

SERIAL PROCESSING

The hypothetical process devised above was executed serially first for obtaining the statistical results using the proc
univariate procedure for every numeric variable in the input dataset one by one and the data was processed serially
to create one output dataset for every variable in the input dataset containing one observation displaying the
distributive statistics, quantile statistics, robust statistics and hypothesis testing statistics from the proc univariate SAS
software procedure.

11

Input Dataset

Dataset 1
(var 1)

Dataset 2
(var 2)

Dataset 3
(var 3)

Dataset N
(var N)

Output
dataset 1

Output
dataset 2

Output
dataset 3

Proc
Univariate

Proc
Univariate

Proc
Univariate

Output
dataset 3

Proc
Univariate

T1 T2 T3 Tn

Figure 6. Process executing serially

As the data was processed serially one after other for every single variable in the input dataset, the total time required
for processing was equal to the total time required for processing every single variables. For e.g. for processing the
random_data_2_500000 input dataset containing 2 variables and 500000 observations, the total time required was
equal to the time required for processing var_1 in addition to time required for processing var_2. Therefore total time
T(T) = T1 + T2. Please see following extract from the log file which confirms the same. FULLSTIMER option was
utilized to obtain the time required for every step in the process developed using SAS

®
software.

Process performance Total Var_1 Var_2

real time 1:03:26 0:34:09 0:29:16

user cpu time 0:38:12 0:19:02 0:19:10

system cpu time 0.08 seconds 0.04 seconds 0.03 seconds

memory 61027.18k 58212.43k 56332.93k

OS Memory 65092.00k 65092.00k 65092.00k

Timestamp 8/11/2013 12:36 8/11/2013 12:06 8/11/2013 12:36

Page Faults 0 0 0

Page Reclaims 57011 25128 23592

Page Swaps 0 0 0

Voluntary Context Switches 289 89 54

Involuntary Context Switches 146851 87071 59639

Block Input Operations 0 0 0

Block Output Operations 0 0 0

Figure 7. Process performance for process executing serially

Following code was written to read in the input dataset and execute the proc univariate on every variable in the input
dataset to create one output dataset per variable containing the calculated statistics.

libname ip "/<input>/<directory>/<path>";

libname op "/<output>/<directory>/<path>";

options fullstimer;

/*UNIVARIATE */

%macro univariate(inlib=ip,indsn=,oplib=op,opdsn=,var=);

12

 %do i=1 %to &var;

 proc univariate data=&inlib..&indsn. noprint;

 var var_&i;

 output out=&oplib..&opdsn._&i.

 /* Descriptive Statistics */

 css=css cv=cv kurtosis=kurtosis max=max mean=mean

 min=min mode=mode n=n nmiss=nmiss nobs=nobs range=range

 skewness=skewness std=std stdmean=stdmean sum=sum

 sumwgt=sumwgt uss=uss var=var

 /* quantile statistics */

 p1=p1 p5=p5 p10=p10 q1=q1 median=median q3=q3

 p90=p90 p95=p95 p99=p99 qrange=qrange

 /* robust statistics */

 gini=gini mad=mad qn=qn sn=sn std_gini=std_gini

 std_mad=std_mad std_qn=std_qn std_qrange=std_qrange

 std_sn=std_sn

 /* hypothesis testing statistics */

 msign=msign normaltest=normaltest signrank=signrank

 probm=probm probn=probn probs=probs probt=probt

 ;

 run;

 %end;

%mend univariate;

%univariate(inlib=ip,indsn=random_data_2_500000,

oplib=op,opdsn=sp_uni_2v_500000o,var=2);

%univariate(inlib=ip,indsn=random_data_5_500000,

oplib=op,opdsn=sp_uni_5v_500000o,var=5);

%univariate(inlib=ip,indsn=random_data_10_500000,

oplib=op,opdsn=sp_uni_10v_500000o,var=10);

The ‘ip’ and ‘op’ libname statements will point to the input and output dataset directories respectively and the do loop
will execute the process for the number of variables specified by the var parameter. The do loop will execute the
process once for every variable specified by the vars parameter and create one output dataset per variable
containing the statistics specified in the proc univariate procedure. The output datasets will create in the output
directory specified by the op libname statement. For the case in question, two output datasets are created
sp_uni_2v_500000o_1.sas7bdat and sp_uni_2v_500000o_2.sas7bdat. The layout of the output dataset is as shown
below:

Figure 8. Sample output dataset (sp_uni_2v_500000o_1.sas7bdat) during serial processing

PARALLEL PROCESSING

The hypothetical process devised above was modified using the MP CONNECT feature of the SAS
®
 software to be

executed in parallel for obtaining the statistical results using the proc univariate procedure for every numeric variable
in the input dataset in multiple threads and the data was processed in parallel to create one output dataset for every
variable in the input dataset containing one observation displaying the distributive statistics, quantile statistics, robust
statistics and hypothesis testing statistics from the proc univariate SAS

®
 software procedure.

13

Input Dataset

Dataset 1
(var 1)

Dataset 2
(var 2)

Dataset 3
(var 3)

Dataset N
(var N)

Output
dataset 1

Output
dataset 2

Output
dataset 3

Output
dataset N

Proc
Univariate

Proc
Univariate

Proc
Univariate

Proc
Univariate

TnT1 T2 T3

Figure 9. Process executing in parallel

As the data was processed in parallel threads for every variable in the input dataset, the total time required for
processing was equal to the maximum time required for processing the variable which took the longest time. For e.g.
for processing the random_data_2_500000 input dataset containing 2 variables and 500000 observations, the total
time required was equal to the maximum time required for either processing var_1 or processing var_2. Therefore
total time T(T) = MAX(T1 ,T2). Please see following extract from the log file which confirms the same. FULLSTIMER
option was utilized to obtain the time required for every step in the SAS process.

Process performance Total Var_1 Var_2

real time 0:31:40 0:31:39 0:31:38

user cpu time 0.03 seconds 0:19:10 0:18:07

system cpu time 0.04 seconds 0.05 seconds 0.06 seconds

memory 4577.37k 61305.59k 61305.59k

OS Memory 5672.00k 65348.00k 65348.00k

Timestamp 8/11/2013 13:07 8/11/2013 13:07 8/11/2013 13:07

Page Faults 0 0 0

Page Reclaims 9529 35559 36269

Page Swaps 0 0 0

Voluntary Context Switches 1759 854 774

Involuntary Context Switches 175 50433 107646

Block Input Operations 0 0 0

Block Output Operations 0 0 0

Figure 10. Process performance for process executing in parallel

Following code was written to read in the input dataset and execute the proc univariate on every variable in the input
dataset in parallel using the MP CONNECT feature of the SAS software in multiple threads to create one output
dataset per variable containing the calculated statistics.

libname ip "/<input>/<directory>/<path>";

libname op "/<output>/<directory>/<path>";

%macro parallel_process(ilib=,idsn=,olib=op,odsn=);

 options fullstimer autosignon=yes sascmd="sas92 -nonews -threads";

 %global num_vars thread ;

 %let num_vars=%sysfunc(attrn(%sysfunc(open(&ilib..&idsn.,i)),nvars));

 %do thread = 1 %to (&num_vars-1);

14

 signon task&thread. wait=yes;

 %syslput thread = &thread;

 %syslput ilib = &ilib;

 %syslput idsn = &idsn;

 %syslput olib = &olib;

 %syslput odsn = &odsn;

 rsubmit process=task&thread. wait=no sysrputsync=yes;

 libname ip "/<input>/<directory>/<path>";

 libname op "/<output>/<directory>/<path>";

 options fullstimer autosignon=yes sascmd="sas92 -nonews -threads";

 %macro univ_parallel;

 proc univariate data=&ilib..&idsn. noprint;

 var var_&thread.;

 output out=&olib..&odsn._&thread.

 /* Descriptive Statistics */

 CSS=CSS CV=CV KURTOSIS=KURTOSIS MAX=MAX MEAN=MEAN

 MIN=MIN MODE=MODE N=N NMISS=NMISS NOBS=NOBS RANGE=RANGE

 SKEWNESS=SKEWNESS STD=STD STDMEAN=STDMEAN SUM=SUM

 SUMWGT=SUMWGT USS=USS VAR=VAR

 /* Quantile Statistics */

 P1=P1 P5=P5 P10=P10 Q1=Q1 MEDIAN=MEDIAN Q3=Q3

 P90=P90 P95=P95 P99=P99 QRANGE=QRANGE

 /* Robust Statistics */

 GINI=GINI MAD=MAD QN=QN SN=SN STD_GINI=STD_GINI

STD_MAD=STD_MAD STD_QN=STD_QN STD_QRANGE=STD_QRANGE STD_SN=STD_SN

 /* Hypothesis Testing Statistics */

 MSIGN=MSIGN NORMALTEST=NORMALTEST SIGNRANK=SIGNRANK

 PROBM=PROBM PROBN=PROBN PROBS=PROBS PROBT=PROBT

 ;

 run;

 %mend univ_parallel;

 %univ_parallel;

 endrsubmit;

 %end;

 waitfor _all_ %do thread = 1 %to (&num_vars-1);

 task&thread

 %end;

 ;

 %do thread = 1 %to (&num_vars-1);

 rget task&thread;

 %end;

 %do thread = 1 %to (&num_vars-1);

 signoff task&thread;

 %end;

%mend parallel_process;

%parallel_process(ilib=ip,idsn=random_data_2_500000,

 olib=op,odsn=pp_uni_2v_500000o);

%parallel_process(ilib=ip,idsn=random_data_5_500000,

 olib=op,odsn=pp_uni_5v_500000o);

%parallel_process(ilib=ip,idsn=random_data_10_500000,

 olib=op,odsn=pp_uni_10v_500000o);

The above code will be used to spawn as one less thread threads than the number of variables in the input dataset
using MP CONNECT feature of the SAS

®
 software to allow execution of proc univariate procedure for every variable

except the ID variable in the input dataset. The ip and op libname statements point to the input and output directories
respectively. The number of variables in the input dataset are counted and assigned to a macro variable num_vars
using the file open function in the input mode to open the input SAS dataset and count the number of variables in the
input dataset using the attrn SAS

®
 software function.

The RSUBMIT statement specifies that the task is to run in a separate SAS
®
 software session. The name of the task

is specified by the task&thread_no (the name must have no more than 8 characters).WAIT=NO option is specified

15

such that the task processed asynchronously. The ENDRSUBMIT statement is added to end every task.
SYSRPUTSYNC System Option sets %SYSRPUT macro variables in the client session when the %SYSRPUT
statements are executed rather than when a synchronization point is encountered. The %SYSLPUT statement is a
macro statement that is submitted in the client session to assign a value that is available in the client session to a
macro variable that can be accessed from the server session. SAS must finish processing both tasks before
announcing the jobs is complete. To ensure this, WAITFOR statement is added after the loop to ensure completion of
all the threads.

Separate sessions are spawned in the do loops one for each variable in the input dataset. Since each task starts a
separate SAS session, each task has its own WORK library. The data sets being created need to be processed in the
“local” or parent SAS session. For the above case, two output datasets are created pp_uni_2v_500000o_1.sas7bdat
and pp_uni_2v_500000o_2.sas7bdat simultaneously when the process is executed in parallel threads. The layout of
the output dataset is as shown below:

Figure 11. Sample output dataset (pp_uni_2v_500000o_1.sas7bdat) during parallel processing

CONCLUSION

In conclusion it can be observed that the processing time for serially independent processes can be theoretically
reduced by up to the number of CPUs available for processing using MP CONNECT feature of the SAS

®
 software.

The sample process was extrapolated to 2, 5,10 and 20 threads to execute in parallel an in each case it was
observed that the processing time was reduced by ½, 1/5

th
,1/10

th
 and 1/20

th
 of the time required to execute the

process serially. It was also observed that when the number of thread exceeded the number of available CPUs, the
processing time reduced drastically due to thrashing that ensued after parallel threads were completing for resources.

Input dataset

Parallel
Threads

Serial processing Parallel processing % Improvement

Vars. Obs.
Real
Time
(SP)

CPU
Time
(SP)

Real
Time(PP)

CPU
Time(PP)

Real
Time

CPU
Time

2 500000 2 1:03:26 0:38:12 0:31:40 0:00:03 50.08% 99.87%

5 500000 5 2:37:07 1:36:36 0:30:46 0:00:04 80.42% 99.93%

10 500000 10 5:05:35 3:13:29 0:29:20 0:00:04 90.40% 99.97%

20 500000 20 10:21:03 6:30:45 0:30:33 0:00:12 95.08% 99.95%

Figure 12. Comparison of processing time for parallel processing

From the above table it can be observed that on a 40 CPU UNIX AIX SMP server when the process was executed
serially and in parallel for datasets having same number of observations (# 500000) and varying number of variables,
it was observed that the processing time for the process was reduced by as many number of threads that were
executed in parallel for the given case study. Percentage improvement up to 95% was observed for some cases.

Figure 13. Comparison of processing time for parallel processing

0:00:00

2:24:00

4:48:00

7:12:00

9:36:00

12:00:00

1 2 3 4

Real Time (SP)

CPU Time (SP)

Real Time(PP)

CPU Time(PP)

16

Identifying areas of improvement gives the developer a precise idea of steps that are required to be worked upon and
be modified to be executed in parallel. It is recommended to identify steps with high User CPU times and work on
them, by using alternative methods to reduce overall time of the process. The developer can then focus on only
analyzing and applying alternative strategies to further improve processing times of only such processes.

Parallelization technique yield better results when applied to best processes which have serially independent steps
being executed one after the other. Careful planning and implementation would be required to indentify such steps
and implement a solution around this to execute the same in parallel

Multithreading yields higher returns in situations where CPU time and the real time of a process are not far apart. It
has been observed that for a system-intensive process, the CPU time and the Real time are not far apart, the ratio of
CPU time and real time would be 1. Multi-threading is effective only for such system-intensive processes. In a
production environment, current CPU available, current available memory, other heavy duty applications executing on
the server, are some of the factors that govern the processing time of a multi-threaded process. It is suggested to
execute the process multiple times during peak and off-peak hours to determine the average execution time of the
process. Also, the number of threads in which the jobs should be broken out is an important factor which can be
determined by executing the jobs multiple times and determining for among all the runs, one run for which run the
difference between real time and CPU time was least during execution of the process.

REFERENCES

“SAS/CONNECT
®
 9.4 User's Guide” in SAS Online Doc, Version 9. Cary, NC: SAS Institute. Copyright © 2013, SAS

Institute Inc., Cary, NC, USA,
http://support.sas.com/documentation/cdl/en/connref/64802/PDF/default/connref.pdf (September 25, 2011).

Shamlin, David. 2004. "Threads Unraveled: A Parallel Processing Primer". The Twenty- Ninth Annual SAS Users
Group International Conference Proceedings, Montréal, Canada,
 http://www2.sas.com/proceedings/sugi29/217-29.pdf (May 12, 2004).

Buchecker, Michelle M. 2005. "Parallel Processing Hands-On Workshop". The Twenty-Ninth Annual SAS Users
Group International Conference Proceedings, Montréal, Canada,
http://www2.sas.com/proceedings/sugi29/124-29.pdf (May 12, 2004).

Kumbhakarna, Viraj. 2011. "A practical approach to parallel processing using SAS". The 2011 MidWest SAS Users
Group Annual Regional Conference Proceedings, Kansas City, Kansas,
http://www.mwsug.org/proceedings/2011/posters/MWSUG-2011-PO06.pdf (September 25, 2011).

SAS Institute Inc. 2002. SAS OnlineDoc 9. Cary, NC: SAS Institute Inc.

ACKNOWLEDGMENTS

I would like to profusely thank Sam Zheng for being a wonderful guide and mentor during my work at JPMorgan
Chase & Co. I would like to thank Luke Castellanos for encouraging me to write and publish a paper. I would also
thank my employers JPMorgan Chase & Co. for providing me with an opportunity for attending the conference.

I would also like to mention the following authors: Shamlin, David and Buchecker, Michelle M who have granted me
their kind permissions to reference their research in my paper. Finally, I would also like to thank my manager Zheng,
Sam for his invaluable review comments and tremendous patience with my work.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Viraj R Kumbhakarna
Enterprise: JPMorgan Chase & Co.
Address: 8317 Falling Water Ln.
City, State ZIP: Columbus, OH, 43240
E-mail: vkumbhakarna@gmail.com

http://support.sas.com/documentation/cdl/en/connref/64802/PDF/default/connref.pdf
http://www2.sas.com/proceedings/sugi29/217-29.pdf
http://www2.sas.com/proceedings/sugi29/124-29.pdf
http://www.mwsug.org/proceedings/2011/posters/MWSUG-2011-PO06.pdf

17

DISCLAIMER

The contents of the paper herein are solely the author’s thoughts and opinions, which do not represent those of
JPMorgan Chase & Co. JPMorgan Chase & Co. does not endorse, recommend, or promote any of the computing
architectures, platforms, software, programming techniques or styles referenced in this paper.

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

The output/code/data analysis for this paper was generated using SAS software. Copyright, SAS Institute Inc. SAS
and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute
Inc., Cary, NC, USA.

Copyright 2013, SAS Institute Inc., Cary, NC, USA. All Rights Reserved. Reproduced with permission of SAS
Institute Inc., Cary, NC

IBM
®
 and AIX

®
 are trademarks of International Business Machines Corporation, registered in many jurisdictions

worldwide.

