
1

Paper S1-12-2013

Data Presentation 101: An Analyst’s Perspective

Deanna Chyn, University of Michigan, Ann Arbor, MI
Anca Tilea, University of Michigan, Ann Arbor, MI

ABSTRACT

You are done with the tedious task of data cleaning, and now the fun begins. Your analysis has produced
several results, which you must present in a useful manner to a statistician (if you are lucky) or a non-
statistician (as is usually the case). SAS® provides a multitude of resources to do this very thing: the
HISTOGRAM statement in PROC UNIVARIATE and/or PROC SGPLOT, PROC REPORT, Output Delivery
System (ODS) statements for various PROCs, and so on. This paper will describe a few of these methods
that we, as data analysts, have found to be most helpful when presenting results. This paper is intended
for the novice SAS® user with basic to intermediate skills and who is using SAS® 9 or above.

INTRODUCTION

You have cleaned and analyzed your data, and now you need to present results. Although SAS®
produces output (i.e., the .LST file), it is not always the ideal means of displaying your results. The
question is, how do you transform the .LST file into a formatted table without doing too much manual
work? SAS® does more than simply cleaning and analyzing data; SAS® can tailor output to your needs.

GETTING STARTED

1. ODS TRACE ON/OFF

The ODS TRACE ON/OFF command, used with any SAS® PROC, creates a list in the Log
window (i.e., the .LOG file) of all available SAS® data tables that the procedure is able to
generate.

For example, running the code below:

 ODS TRACE ON;

PROC REG DATA = SASHELP.CLASS;

 MODEL WEIGHT = AGE;

RUN;

ODS TRACE OFF;

 will produce the following .LOG file:

Output Added:

Name: NObs

Label: Number of Observations

Template: Stat.Reg.NObs

Path: Reg.MODEL1.Fit.Weight.NObs

2

Output Added:

Name: ANOVA

Label: Analysis of Variance

Template: Stat.REG.ANOVA

Path: Reg.MODEL1.Fit.Weight.ANOVA

Output Added:

Name: FitStatistics

Label: Fit Statistics

Template: Stat.REG.FitStatistics

Path: Reg.MODEL1.Fit.Weight.FitStatistics

Output Added:

Name: ParameterEstimates

Label: Parameter Estimates

Template: Stat.REG.ParameterEstimates

Path: Reg.MODEL1.Fit.Weight.ParameterEstimates

What does this tell you? It gives you the names of all possible SAS® data sets that PROC
REG can create by using the ODS statement. For example, if you want to create a SAS® data
set named “MY_EST” that contains the estimates from your model, add the following
statement (in bold) to your procedure:

PROC REG DATA = SASHELP.CLASS;

MODEL WEIGHT = AGE HEIGHT;

ODS OUTPUT PARAMETERESTIMATES = MY_EST;

RUN;QUIT;

You now have a SAS® data set in the WORK library that can be manipulated as needed. All
SAS® procedures have the capability of generating such data tables; just add the ODS
TRACE ON/OFF options to see what these are. Keep in mind that when using the ODS
statement with a PROC, you cannot use the NOPRINT option in the procedure statement;
this will suppress the ODS data set from being created.

2. ODS TAGSETS.EXCELXP

Now you have a nice, clean data set from your analysis—all labels are in place, and all values
are beautifully formatted. You are ready to export this data set to Excel, which you do via
PROC EXPORT (or the EXPORT Wizard). But when you open the file, something is amiss.
What are all these 1s and 0s doing here? You made the formats in SAS®; you can see them in
your SAS® data set. Excel, it seems, is not ready to accept your formats.

Let us introduce you to the magnificent (and our favorite) ODS TAGSETS.EXCELXP.

3

Let’s say you want to present the parameter estimates from a simple linear regression, and
you format the p-value as significant or not. You used a PROC FORMAT to make significant
values display as “SIGNIFICANT” instead of their numeric value.

PROC FORMAT;

 VALUE P_VAL LOW-0.05 = "SIGNIFICANT"

 0.05 - HIGH = "NOT SIGN."

 ;

QUIT;

Now, instead of using PROC EXPORT (or the EXPORT Wizard), you should use ODS
TAGSETS.EXCELXP to retain the desired formats on the output file:

ODS TAGSETS.EXCELXP FILE = "[YOUR_PATH]\MY_FORMATTED_FILE.XLS"

STYLE = MINIMAL;

 PROC PRINT DATA = MY_EST;

 VAR Variable Estimate StdErr Probt;

 FORMAT PROBT P_VAL.;

 RUN;

ODS TAGSETS.EXCELXP CLOSE;

As you can see in the table below, the format associated with the p-value is now displayed.

This simple option is very flexible and can be used with any procedure that generates output
(e.g., PROC PRINT, PROC MEANS with an OUTPUT OUT= statement, PROC REPORT). There
are also many options available to tailor the Excel file to your liking, which are specified in
an OPTIONS statement in the ODS TAGSETS.EXCELXP statement: freezing the top row,
setting the column widths, naming the individual spreadsheets, etc.

3. PROC TRANSPOSE WITH ID STATEMENT
When you need to transpose data using PROC TRANSPOSE, the basic syntax does not
necessarily produce the most readable output. When transposing the data from long…

Input: Long

Obs Variable Estimate StdErr Probt

1 Intercept -141.22376 33.38309 SIGNIFICANT

2 Age 1.27839 3.1101 NOT SIGN.

3 Height 3.59703 0.90546 SIGNIFICANT

4

…to wide, adding a simple statement called “ID” comes in handy.

PROC SORT DATA = SASHELP.CLASS OUT = CLASS_SORTED;

BY NAME;

PROC TRANSPOSE DATA = CLASS_SORTED OUT = WIDE_DATA;

 VAR AGE;

RUN;

Output: Wide, without the ID statement

As you can see, the variable name COLn is not very helpful when you want to associate the
age with a particular person in the data set. So you add the ID statement:

PROC TRANSPOSE DATA = CLASS_SORTED OUT = WIDE_DATA;

 ID NAME;

 VAR AGE;

RUN;

Output: Wide, with ID statement

The resulting output is now in a more readable format.

4. OUTPUT OUT= STATEMENT FOR PROC MEANS

As an analyst, one of your most common tasks is running a PROC MEANS on continuous
variables. You look in the Output window (or the .LST file) to examine the results; everything
is aligned and easily readable:

 The MEANS Procedure

 Variable N Mean Std Dev Minimum Maximum

 ƒƒ

 Age 19 13.3157895 1.4926722 11.0000000 16.0000000

 Height 19 62.3368421 5.1270752 51.3000000 72.0000000

 Weight 19 100.0263158 22.7739335 50.5000000 150.0000000

 ƒƒ

You now need to present these results, so you want to create a data set that looks like the
Output window content, then export that data set as an Excel file (for example). To do this,
you need the OUTPUT OUT= statement in the PROC MEANS, which will create a SAS data set
containing the summary statistics.

PROC MEANS DATA = SASHELP.CLASS;

 VAR AGE HEIGHT WEIGHT;

OUTPUT OUT = MY_MEANS;

RUN;

5

But wait! The data set MY_MEANS looks nothing like the content from the Output window.
Don’t fret – just transpose:

PROC TRANSPOSE DATA = MY_MEANS OUT = MY_STATS;

ID _STAT_;

 VAR AGE HEIGHT WEIGHT;

RUN;

5. ANNOTATE LEGEND FOR BOXPLOT

Boxplots are a commonly requested graphical display of basic statistics. If you haven’t
already, you will be asked to produce boxplots many times over the course of your career as
an analyst. One of the most common SAS® procedures used to create a boxplot is PROC
BOXPLOT; however, it does not include an option for displaying a legend. The below code
demonstrates how you can annotate a legend to your boxplot, using the ANNO option in the
PROC BOXPLOT statement. (Note that if you are using SAS® 9.3 or higher, the KEYLEGEND
statement is available in PROC SGPLOT; the more advanced SAS® user may also want to use
PROC TEMPLATE, including a DISCRETELEGEND statement, in conjunction with a PROC
SGRENDER.)

GOPTIONS RESET = ALL;

DATA FOR_PLOT;

 SET SASHELP.CLASS;

 IF SEX = "M" THEN COLOR = "H158aaaa";

 ELSE IF SEX = "F" THEN COLOR = "H23888aa";

RUN;

DATA ANNO;

 LENGTH FUNCTION COLOR $ 8 TEXT $ 25 STYLE $ 25;

 XSYS='3'; YSYS='3';

 /* DRAW THE FIRST SQUARE */

 COLOR="H23888aa";

 FUNCTION='MOVE'; X=85; Y=87; OUTPUT;

 FUNCTION='BAR'; X=87; Y=85; STYLE='SOLID'; OUTPUT;

 /* LABEL THE FIRST SQUARE */

 FUNCTION='LABEL'; X=88; Y=86; POSITION='6';

6

 STYLE="'ALBANY AMT/BOLD'"; SIZE=1; TEXT='FEMALE'; OUTPUT;

 /* DRAW THE SECOND SQUARE */

 COLOR= "H158aaaa";STYLE='SOLID';
 FUNCTION='MOVE'; X=85; Y=80; OUTPUT;

FUNCTION='BAR'; X=87; Y=78; STYLE='SOLID'; OUTPUT;

 /* LABEL THE FIRST SQUARE */

FUNCTION='LABEL'; X=88; Y=79; POSITION='6';

STYLE="'ALBANY AMT/BOLD'"; ; SIZE=1; TEXT='MALE'; OUTPUT;

RUN;

PROC SORT DATA = FOR_PLOT;BY SEX;RUN;

PROC FORMAT;

 VALUE $ GENDER "M" = "MALE" "F" = "FEMALE";

QUIT;

FILENAME PLOT "&PATH.\Output\BOXPLOT_ANNO.PNG";

GOPTIONS RESET = ALL DEVICE = PNG GSFNAME = PLOT GSFMODE = REPLACE;

PROC BOXPLOT DATA = FOR_PLOT ANNO = ANNO;

 PLOT AGE*SEX/BOXSTYLE = SCHEMATIC BOXWIDTH = 12 CBOXFILL = (COLOR);

 FORMAT SEX $GENDER.;

 TITLE "Age Distribution, by Sex";

RUN;QUIT;

6. PROC SQL ON DICTIONARY.COLUMNS

There are times when you are given a data set that is labeled beautifully but whose variable
names are very long and/or are not intuitive. For example, the variable for a patient’s age is
labeled “Age” although the actual variable name is person_age_to_date. Wouldn’t it be
better, perhaps for display purposes, for the variable to be named age? Of course it would.

To rename variables with their associated labels, you can make use of some basic
information—such as variable name, type, label and format—that is stored not in the data
set itself, but rather in a handy table called DICTIONARY.COLUMNS. This is a secondary data

7

set that SAS® creates for each data set you work with. We tap into this information via PROC
SQL. In the example below, you use the SAS® data set SAS®HELP.SHOES to rename its
variables (stored in the column NAME) with their associated labels (stored in the column
LABEL). You are creating a macro variable (called &NEW_LABEL) that takes the form NAME =
LABEL, for all the values in the NAME column.

PROC SQL;

 SELECT CATT(NAME, "=", COMPRESS(LABEL))

 INTO: NEW_LABEL SEPARATED BY " "

 FROM DICTIONARY.COLUMNS

 WHERE LIBNAME = "SASHELP" & MEMNAME = "SHOES" & LABEL NE "";

QUIT;

%PUT &NEW_LABEL;
Stores=NumberofStores Sales=TotalSales Inventory=TotalInventory

Returns=TotalReturns

You have the information stored in the macro variable; now, you need to use it. The data
step below renames the variables in the data set to their corresponding labels:

DATA WANT;

 SET SASHELP.SHOES;

 RENAME &NEW_LABEL.;

RUN;

7. %NRSTR FUNCTION

Let’s say you’re asked to put a label on a report or a graphic that contains text of the form,
“%Males” or “Beautiful&Smart”. You notice that these labels contain special characters but
do not contain spaces—this is a problem for SAS®, which interprets these values as macro
calls (or macro variables) and produces an ERROR message in the LOG file. To avoid this
situation, you must use the macro function %NRSTR, which will ignore the special characters
by treating them as regular text. Please note the use of single quotes; double quotes will
work as intended but will create a WARNING message in the LOG file.

ODS GRAPHICS ON;

%LET text1 = %NRSTR(%things);

%LET text2 = %NRSTR(some label &beautiful words);

PROC SGPLOT DATA = SASHELP.CLASS;

 SCATTER X = height Y = weight;

 XAXIS LABEL = '&text1.';

 YAXIS LABEL= '&text2.';

RUN;

CONCLUSION

To minimize the amount of time an analyst spends on formatting and reformatting (and reformatting…)
her results, we suggest using a few of these tricks to expedite the process. Using basic PROC SQL or ODS
statements may make all the difference in time spent cleaning up and clarifying analytic output.

8

CONTACT INFORMATION
Deanna Chyn
University of Michigan, School of Public Health, Department of Biostatistics
1415 Washington Heights, Ste 3645A (SPH I)
Ann Arbor MI 48109
chyndl@med.umich.edu

SAS® and all other SAS® Institute Inc. product or service names are registered trademarks or trademarks
of SAS® Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

