
1

Paper BI-13-2014

SAS® Commands PIPE and CALL EXECUTE;
Dynamically Advancing from Strangers to Your Newest BFF (Best Friends Forever)

Kent Ronda Team Phelps, The SASketeers, Des Moines, Iowa

Kirk Paul Lafler, Software Intelligence Corporation, Spring Valley, California

ABSTRACT

Communication is the basic foundation of all relationships, including our relationship with SAS and the

Server/PC/Mainframe (S/P/M). There are times when we need to communicate with the S/P/M through the

UNIX, Windows, or z/OS Operating System (OS). To communicate with the S/P/M we will ideally design our

SAS programs to request, receive, and utilize data to automatically create and execute Dynamic Code.

Our presentation highlights the powerful partnership which occurs when the PIPE and CALL EXECUTE

commands are combined with Dynamic Code and creatively used together within SAS Enterprise Guide® Base

SAS® Program Nodes. You will have the opportunity to learn how 1,259 time-consuming Manual Steps are

amazingly replaced with only 3 time-saving Dynamic Automated Steps. We invite you to attend our session

where we detail the UNIX syntax for the PIPE and CALL EXECUTE commands and the Dynamic Code.

We look forward to introducing you to your newest BFF (Best Friends Forever) in SAS.

(Please see the Appendices to review starting point information regarding the syntax for Windows and z/OS,

an alternative for the PIPE command, and the code that created the data sets for our project example.)

INTRODUCTION

SAS is highly regarded around the world, and rightly so, as a powerful, intuitive, and flexible programming

language. SAS stands for Statistical Analysis Software or, as we like to say, Smarter And Smarter. However, the

SAS programming language, as amazing as it is, is not an island unto itself.

The tagline for SAS is The Power To Know®, and your ‘power to know’ greatly expands with your ability to

communicate with the Server/PC/Mainframe (referred to as server going forward). The Power To Know

enables The Power To Create which leads to The Power To Execute. However, this power will quickly go

down the drain if you do not know how to effectively communicate with the server through the OS.

2

Here are 3 questions to ask yourself when designing your SAS program:

 How do I efficiently request data from the server while protecting the integrity of the data?

 How do I automate my program to eliminate time-consuming and error prone manual processing and thus

gain back valuable time for more enjoyable SAS endeavors?

 How do I pursue and accomplish this grand and noble feat?

Good News – we are going to show you how to design Base SAS Program Nodes which:

 Use Static Code to create a communication pipeline to request and receive data from the server.

 Static Code is executable code which never changes and always runs exactly the same way.

 Utilize the data from the server to automatically create Dynamic Code.

 Dynamic Code is executable code automatically created within a SAS data set, based upon parameters

which can change, and therefore may or may not run exactly the same way.

 Execute the Dynamic Code automatically with no manual processing or intervention.

The SAS Project in this presentation demonstrates:

The Power To Know through the PIPE command

The Power To Create Static Code which automatically creates Dynamic Code

The Power To Execute Dynamic Code automatically using the CALL EXECUTE command

We invite you to journey with us

as we share how the PIPE and CALL EXECUTE commands

were discovered and soon became

Best Friends Forever.

How PIPE and CALL EXECUTE Became Best Friends

 A Tale of SAS Wis-h-dom

As stated before, the SAS programming language is powerful, intuitive, and flexible. SAS has a built-in wisdom

which we can tap into when we wish for a better way to design our programs. Thus, we have coined the

phrase SAS Wis-h-dom to describe the blending of SAS Wisdom with a SAS Wish.

Discovering the power of combining the PIPE and CALL EXECUTE commands was, as Bob Ross, the well-

known painter on PBS, so often said, “A happy accident.” When Bob was unable to paint something he had

planned in a painting and had to paint something different, he referred to the detour as a Happy Accident.

Likewise, when we start to search for one particular programming solution, which we may or may not find, we

will often accidentally discover other creative ways to accomplish our Project Requirements.

3

Several discoveries occurred on a recent SAS Quest which we are eager to share with you through our project

example. This project was prompted by a business need to greatly increase the efficiency of the research and

analysis of vital variables from 11 years of weekly snapshot SAS data sets. The goal was to condense 572

weekly data sets to 11 yearly data sets. Read on to learn about the Project Requirements, the SAS Wis-h-dom

that transpired along the way, and the Happy Accidents which occurred on the journey.

Project Requirements:

 Extract vital variables from 52 weekly snapshot data sets per year for 11 years (2003-13) and combine

them with a Load_Date variable (created from the Friday date value derived from the Filenames of the data

sets) to create 572 new data sets.

 Append the 52 new data sets per year to create 11 yearly data sets.

 Export the 11 appended yearly data sets back to the folder on the server where the weekly snapshot data

sets are stored.

Since SAS Enterprise Guide was being used to design this project the first decision to make was, “To GUI or not

to GUI?” In other words, should the program be designed using Graphical User Interface (GUI) and/or Base

SAS Program Nodes?

Here are the questions considered in the programming decision “To GUI or not to GUI?”:

 What will it take to manually add 52 weekly data sets to the project?

 What will it take to manually create 52 queries to select vital variables from 52 data sets?

 What will it take to manually enter the derived value of the Load_Date variable in 52 queries?

 What will it take to manually append the 52 new data sets created by the 52 queries?

 What will it take to manually export the appended yearly data set back to the server?

 Once the program is designed, what will it take to manually swap 52 inputs and manually update the

Load_Date variable in 52 queries – 10 more times – while running the program for the 11 year timeframe?

Are you getting tired yet?

It was determined that the 209 manual steps needed to design the program, and the 105 manual steps

needed to update the program each year, could be done with GUI. However, it also became apparent that the

1,259 manual steps required to run the program for the 11 year timeframe would be too manually intensive

and prone to errors. As a result of this challenging realization, SAS Intuition said, “There must be a smarter,

easier, and faster way to do this in SAS!” Thus, the following SAS Wish email was imagined:

By the way, are you in tune with your SAS Intuition? Be sure to listen closely when the quiet, reassuring voice

within you says with conviction, “There must be a better way to do this in SAS!” We encourage you to honor

your SAS Intuition and let it motivate you to find new ways to maximize your programming.

“And now for the rest of the story…”,
as Paul Harvey so often said on the radio.

Hi SAS Wisdom,

Please help us to find a way to automate this program
and eliminate manual processing and intervention –

except of course for choosing the year.
We look forward to hearing from you soon,

Thank You

4

The SAS Quest

Starting

is the first step

towards success.

John C. Maxwell

Sometimes at the beginning of a project it can seem overwhelming to figure out how to accomplish the

requirements. Keep in mind that all we really need to do is take the first step – and the rest will soon follow.

 Maxwell's/Phelps’/Lafler’s Law

Nothing is as hard as it looks;

everything is more rewarding than you expect;

and if anything can go right

it will

and at the best possible moment.

Our first step was to revise the previous programming questions:

 What will it take to automatically create 52 DATA steps to read 52 data sets?

 What will it take to automatically extract vital variables in 52 DATA steps?

 What will it take to automatically enter the derived value of the Load_Date variable in 52 DATA steps?

 What will it take to automatically append the 52 new data sets created by the 52 DATA steps?

 What will it take to automatically export the appended yearly data set back to the server?

 Once the program is designed, what will it take to automatically swap 52 inputs and automatically

update the Load_Date variable in 52 DATA steps – 10 more times – while running the program for the 11

year timeframe?

When the decision was made to automate this program a quest was undertaken to accomplish this grand and

noble feat . The next step was to find a way to design a Dynamic INFILE Statement to read 52 weekly data

sets from a folder on the server automatically and sequentially – rather than manually one at a time. A Google

search quickly led to an article titled Using FILEVAR= To Read Multiple External Files in a DATA Step.

Here is a brief overview of this article:

 The article explained different ways to use Dynamic INFILE Statements to automatically and sequentially

read the content of multiple files.

 Unfortunately, the examples seemed to indicate that they cannot also derive the value of a variable from

the Filenames of the files being read, and therefore could not fulfill one of the project requirements.

 Happy Accident Alert – A section titled Reading All The Files From A Directory Using A Pipe:

 The PIPE command can be used in a Dynamic INFILE Statement to create a communication pipeline

between a SAS program and the server through the OS to request and receive a Directory Listing of the

Filenames from a folder.

 The Directory Listing can then be utilized to read the content of the files while also deriving the value

of a variable from the filenames of the files being read.

5

Learning this information led to 3 programs being designed:

 Program 1 – Design Static Code (including the PIPE command in a Dynamic INFILE Statement) to request,

receive, and utilize one Directory Listing (per year for 11 years of the Filenames of the 52 weekly snapshot

data sets) to automatically create Dynamic Code which will automatically Extract vital variables (from the

data sets) and combine them with a Load_Date variable (created from the Friday date value derived from

the Filenames of the data sets) to create 52 new data sets per year for 11 years.

 Program 2 – Design Static Code to utilize the Directory Listing to automatically create Dynamic Code

which will automatically Append the 52 new data sets per year to create 11 yearly data sets.

 Program 3 – Design Static Code to utilize the Directory Listing to automatically create Dynamic Code

which will automatically Export the 11 appended yearly data sets back to the folder on the server where

the weekly snapshot data sets are stored.

Once the 3 programs are run, the automatically created Dynamic Code can be run manually by copying and

pasting the Dynamic Code into another Program Node. These 3 programs fulfill most of the project

requirements… but remember, our SAS Wish was to COMPLETELY automate this project.

SAS Illumination

Sometimes success is seeing

what we already have

in a new light.

Dan Miller

After we determined how to design Static Code to request, receive, and utilize a Directory Listing to

automatically create Dynamic Code, a very important question arose – Is there also a way to automatically

execute the Dynamic Code? SAS Intuition spoke again, “There must be a way to call and execute a variable in

a SAS data set containing a SAS DATA step.”

To our surprise, through another hopeful Google search, we discovered a White Paper titled CALL EXECUTE: A

Powerful Data Management Tool which revealed that an actual CALL EXECUTE command already existed!

Here is a brief overview of this White Paper:

 CALL EXECUTE (variable); resolves and executes the value of a variable.

 The variable can be a character variable in a data set containing SAS statements such as a DATA step.

 Happy Accident Alert – CALL EXECUTE is all we need to execute the Dynamic Code automatically!

As we
continue on
our journey,
we will shed
more light

on this
continuing

SAS
Quest.

6

This knowledge led to SAS Illumination – The PIPE command will enable our program to instantly create a

communication pipeline to the server through the OS. We will use this pipeline to send OS commands to

request, receive, and utilize a Directory Listing to automatically create Dynamic Code which we will then

execute automatically with the CALL EXECUTE command.

Combining the PIPE command with Dynamic Code and the CALL EXECUTE command enables the 3 SAS

programs to automatically Extract, Append, and Export without any manual processing or intervention –

except for choosing the year!

As you can see from this SAS Quest, it pays to listen to your SAS Intuition. Two simple Google searches led to

two resources which illuminated how to completely fulfill the project requirements. The results of this quest

enabled this project to become a very successful reality. Always remember the treasure trove of SAS

information waiting on the web to help you maximize the quality and efficiency of your programming.

 On the next leg of our journey

 we will walk you through a

 step-by-step demonstration of

 The Power To Know, Create, and Execute.

Here are the 3 programs displayed as SAS Enterprise Guide Base SAS Program Nodes:

Yea!!!

 Strike up the band,
 Toss the confetti,

 Release the balloons!

Applause… Applause… Applause…

Bring out the treats for everyone!

7

Disclaimer: Please refer to your specific Operating System (e.g. UNIX, Windows, or z/OS) Manual,

Installation Configuration, and/or in-house Technical Support for further guidance in how to create the

SAS code presented in this paper. Our project example details the UNIX syntax for the PIPE and CALL

EXECUTE commands and the Dynamic Code. Please see Appendix A for starting point information

regarding the syntax for Windows and z/OS.

The following examples highlight how to use the PIPE command to request and receive one Directory Listing

of the Filenames of the 52 weekly data sets for the year 2013 from a folder on the server.

How to request and receive a Directory Listing through the PIPE command:

 This code creates a data set containing a Directory Listing of data sets following the

file2013*.sas7bdat pattern from the /data/MWSUG/PIPE_CALL_EXECUTE folder on the server.

 Before walking through each line of code, we will first look at the data sets contained in this folder.

 Please see Appendix B for an alternative to the PIPE command.

Here is a listing of the 7 weekly data sets being processed in our example:

 Notice how each of these data sets follow the same pattern of fileYYYYMMDD.sas7bdat.

 This Filename pattern will be essential in successfully creating Dynamic Code to Extract the data sets.

 Please see Appendix C for the code that creates these data sets.

 FILENAME Inpipe PIPE 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

 DATA path_list_files;

 LENGTH fpath $100;

 INFILE Inpipe TRUNCOVER;

 INPUT fpath $100.;

 ...

 RUN;

THE POWER TO KNOW
Through the PIPE Command

8

Here is the file20130104 data set:

 This data set contains each Special Person, Special Number, and Special Code for the employees of

the Smiley Company .

 Now it is time to explore the PIPE command and learn how it can help us to Extract these data sets.

Creating a FILENAME statement containing the PIPE command:

 The FILENAME statement assigns Inpipe as a file reference (fileref) to the communication pipeline

created by the PIPE command.

 The PIPE command sends an OS command – ls – to the server to request a List Contents:

 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat'

 The result is a Directory Listing received back through the pipeline by the Inpipe fileref.

 In summary, FILENAME assigns Inpipe to point to the Directory Listing via the PIPE command.

Creating a DATA step which will read and store the Directory Listing:

 The DATA statement creates an output data set called path_list_files.

 The LENGTH statement assigns a length of 100 characters to a variable called fpath.

 In summary, the path_list_files data set is created to contain the 100 character fpath variable.

 FILENAME Inpipe PIPE 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

 DATA path_list_files;

 LENGTH fpath $100;

9

Preparing the Inpipe Fileref for use:

 The INFILE statement assigns Inpipe (Directory Listing) to be read with the upcoming INPUT

statement.

 The TRUNCOVER option tells SAS the input data may or may not be the same length.

 In summary, INFILE assigns Inpipe (Directory Listing) to be read with an INPUT of variable length.

The INPUT of data begins:

 The INPUT statement reads the INFILE Inpipe (Directory Listing) one record at a time.

 The fpath variable stores up to 100 characters read from each record.

 In summary, INPUT reads the INFILE Inpipe (Directory Listing) one record at a time and stores up

to 100 characters in the fpath variable.

Here is how these statements look when combined with a RUN statement:

Here is the output data set created using the preceding statements:

 Next we will explore how the fpath variable is used to create Dynamic Code.

INFILE Inpipe TRUNCOVER;

INPUT fpath $100.;

 FILENAME Inpipe PIPE 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

 DATA path_list_files;

 LENGTH fpath $100;

 INFILE Inpipe TRUNCOVER;

 INPUT fpath $100.;

 RUN;

10

The following examples highlight how to create Static Code which automatically creates Dynamic Code to

automatically Extract vital variables from 52 weekly data sets and combine them with a Load_Date variable

(created from the Friday date value derived from the Filenames of the data sets) to create 52 new data sets.

How to Extract vital variables from 52 weekly data sets:

 The previous section focused on the gray highlighted code. We will now focus on the rest of the code.

DATA path_list_files;

 LENGTH fpath $100 fpath_line $1000;

 FORMAT Load_Date date9.;

 INFILE Inpipe TRUNCOVER;

 INPUT fpath $100.;

 Load_Date_Text = SUBSTR(fpath,35,8);

 Load_Date = MDY(INPUT(SUBSTR(Load_Date_Text,5,2),2.),

 INPUT(SUBSTR(Load_Date_Text,7,2),2.),

 INPUT(SUBSTR(Load_Date_Text,1,4),4.));

 fpath_line = CATS('DATA file_final_',Load_Date_Text,"; SET '",fpath,

 "'; FORMAT Load_Date date9.; Load_Date =",PUT(Load_Date,date9.),

 "'d; KEEP Special_Person Special_Number Load_Date; RUN;");

RUN;

The remainder of the DATA step will use the following new variables:

 The LENGTH statement assigns a length of 1000 characters to the new fpath_line variable which will

contain the Dynamic Code of a complete DATA step to create the new data sets.

 The FORMAT statement assigns a format of date9 (ddmonyyyy) to the new Load_Date variable.

LENGTH fpath_line $1000;

FORMAT Load_Date date9.;

THE POWER TO CREATE
Static Code Which Automatically Creates Dynamic Code

11

The new Load_Date variable is derived from the name of the data set:

 The fpath variable contains the path and Filename of each data set in the following format:

/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat (fpath contents – 1st observation)

123456789012345678901234567890123456789012345678901 (character spacing)

 The SUBSTR function sets Load_Date_Text to ‘20130104’ – begins with character 35 of fpath for 8

characters.

 The SUBSTR function obtains the month ‘01’, day ‘04’, and year ‘2013’ from Load_Date_Text:

 Load_Date = MDY(INPUT(SUBSTR('20130104',5,2),2.),

 INPUT(SUBSTR('20130104',7,2),2.),

 INPUT(SUBSTR('20130104',1,4),4.));

 The INPUT function converts the character values of month, day, and year to numeric values:

 Load_Date = MDY(INPUT('01',2.),INPUT('04',2.),INPUT('2013',4.));

 The MDY function converts the numeric values of month, day, and year to a SAS date:

 Load_Date = MDY(1,4,2013);

 Since Load_Date was formatted as date9 by the earlier FORMAT statement, this resolves to:

 Load_Date = '04JAN2013'd;

 Load_Date_Text = SUBSTR(fpath,35,8);

 Load_Date = MDY(INPUT(SUBSTR(Load_Date_Text,5,2),2.),

 INPUT(SUBSTR(Load_Date_Text,7,2),2.),

 INPUT(SUBSTR(Load_Date_Text,1,4),4.));

12

Once Load_Date is assigned, Load_Date_Text, fpath, and Load_Date

are used to create the 1st set of Dynamic Code:

 The PUT function is used to convert the Load_Date from a numeric SAS date to a character

representation.

 The Load_Date_Text, fpath, and Load_Date variables resolve to:

fpath_line = CATS('DATA file_final_',20130104,

 "; SET '","/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat,

 "'; FORMAT Load_Date date9.; Load_Date =",'04JAN2013'd;",

 ' KEEP Special_Person Special_Number Load_Date; RUN;');

 The CATS function concatenates what is separated by commas while removing leading and trailing

spaces:

 fpath_line = "DATA file_final_20130104;

 SET '/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '04JAN2013'd;

 KEEP Special_Person Special_Number Load_Date;

 RUN;";

 You may be asking yourself, “Why do the FORMAT statement and the Load_Date assignment appear

here since they were already included in the code discussed earlier?”

 Good question – remember, this Dynamic Code will run apart from the Static Code, so the Dynamic

Code needs to be self-contained with all of the statements and syntax necessary to run on its own.

 The KEEP statement enables you to create the output data set with only the vital variables listed:

 fpath_line = CATS('DATA file_final_',Load_Date_Text,"; SET '",fpath,

 "'; FORMAT Load_Date date9.; Load_Date =",PUT(Load_Date,date9.),

 "'d; KEEP Special_Person Special_Number Load_Date; RUN;");

13

The first part of THE POWER TO CREATE section has walked us through the process of creating Dynamic

Code to automatically Extract vital variables from 52 weekly data sets and combine them with a Load_Date

variable (created from the Friday date value derived from the Filenames of the data sets) to create 52 new

data sets. The Extract Dynamic Code is contained in the fpath_line variable.

Once the Dynamic Code is created, then the observation is written:

 The RUN statement writes an observation and sends the program to the top to read the next fpath.

 Here is a partial view of the first 2 observations in the path_list_files data set:

DATA path_list_files;

 LENGTH fpath $100 fpath_date $100 fpath_line $1000;

 FORMAT Load_Date date9.;

 INFILE Inpipe TRUNCOVER;

 INPUT fpath $100.;

 Load_Date_Text = SUBSTR(fpath,35,8);

 Load_Date = MDY(INPUT(SUBSTR(Load_Date_Text,5,2),2.),

 INPUT(SUBSTR(Load_Date_Text,7,2),2.),

 INPUT(SUBSTR(Load_Date_Text,1,4),4.));

 fpath_line = CATS('DATA file_final_',Load_Date_Text,"; SET '",fpath,

 "'; FORMAT Load_Date date9.; Load_Date =",PUT(Load_Date,date9.),

 "'d; KEEP Special_Person Special_Number Load_Date; RUN;");

RUN;

Here are the 3 programs displayed as Base SAS Program Nodes:

Here is 1 observation of the Dynamic Code created by the 3 programs:

To

Be

Illuminated

SAS Dataset: PATH_FILE_LIST

Variable: fpath_line

DATA file_final_20130104;

 SET '/data/MWSUG/

 PIPE_CALL_EXECUTE/

 file20130104.sas7bdat';

 FORMAT Load_Date date9.

 Birth_Date date9.;

 Load_Date = '04JAN2013'd;

 KEEP Special_Person

 Special_Number

 Load_Date;

RUN;

To

Be

Illuminated

14

The following examples highlight how to create Static Code which automatically creates Dynamic Code to

automatically Append the 52 new data sets to create a yearly data set.

How to Append the 52 new data sets to create a yearly data set:

 DATA prepare_historical_append;

 SET path_list_files END=LAST_OBS;

 LENGTH history_append_line $2000;

 KEEP history_append_line;

 RETAIN history_append_line;

 IF _N_ = 1

 THEN history_append_line = CATS('DATA file_final_',

 SUBSTR(Load_Date_Text,1,4),'; SET ');

 history_append_line = SUBSTR(history_append_line,1,

 LENGTH(history_append_line))||

 CAT(' file_final_',Load_Date_Text,' ');

 IF LAST_OBS THEN

 DO;

 history_append_line = SUBSTR(history_append_line,1,

 LENGTH(history_append_line))||'; RUN;';

 OUTPUT;

 END;

 RUN;

Creating a DATA step that creates Dynamic Code to Append the data sets:

 The DATA statement creates an output data set called prepare_historical_append.

 The SET statement sets path_list_files as the input data set for this DATA step.

 The END=LAST_OBS option sets LAST_OBS to True as the last observation in path_list_files is read.

 The LENGTH statement assigns a length of 2000 characters to the history_append_line variable.

 The KEEP statement creates the output data set with only the history_append_line variable.

 The RETAIN statement retains the value of history_append_line throughout the DATA step.

 DATA prepare_historical_append;

 SET path_list_files END=LAST_OBS;

 LENGTH history_append_line $2000;

 KEEP history_append_line;

 RETAIN history_append_line;

15

The history_append_line variable is derived from the Load_Date_Text

variable when processing the first observation:

 The IF-THEN statement only executes while processing the first input observation (_N_ = 1).

 The Load_Date_Text variable resolves to:

history_append_line = CATS('DATA file_final_',SUBSTR('20130104',1,4),'; SET ');

 The SUBSTR function resolves to ‘2013’:

 history_append_line = CATS('DATA file_final_','2013','; SET ');

 The CATS function resolves to:

history_append_line = 'DATA file_final_2013; SET';

 Notice how history_append_line looks like the beginning of a DATA step.

 IF _N_ = 1

 THEN history_append_line = CATS('DATA file_final_',

 SUBSTR(Load_Date_Text,1,4),'; SET ');

The history_append_line variable is then derived from

itself and Load_Date_Text again for all observations:

 The history_append_line and Load_Date_Text variables resolve to:

 history_append_line = SUBSTR('DATA file_final_2013; SET',1,

 LENGTH('DATA file_final_2013; SET'))||

 CAT(' file_final_','20130104',' ');

 The LENGTH and CAT (concatenates but keeps spaces) functions resolve to:

 history_append_line = SUBSTR('DATA file_final_2013; SET',1,25)||

 ' file_final_20130104 ';

 The SUBSTR function resolves to the way history_append_line looked at the end of the previous

assignment statement:

history_append_line = 'DATA file_final_2013; SET'||' file_final_20130104 ';

 The || concatenates whatever is on both sides of it while keeping the formatting intact:

history_append_line = 'DATA file_final_2013; SET file_final_20130104 ';

 history_append_line = SUBSTR(history_append_line,1,

 LENGTH(history_append_line))||

 CAT(' file_final_',Load_Date_Text,' ');

16

The history_append_line variable is then derived from itself

and Load_Date_Text a final time for the last observation:

 Once the last observation is read, the history_append_line always resolves to the way it looked at

the end of the previous assignment statement and then concatenates with '; RUN;':

 history_append_line = 'DATA file_final_2013; SET file_final_20130104

 ...

 file_final_20130215; RUN;';

 The OUTPUT statement is executed within IF-THEN DO-END because only one observation is

needed in the output data set containing the completed history_append_line.

 Here is how the only observation appears in the prepare_historical_append data set:

 IF LAST_OBS THEN

 DO;

 history_append_line = SUBSTR(history_append_line,1,

 LENGTH(history_append_line))||'; RUN;';

 OUTPUT;

 END;

The history_append_line variable continues to be derived

from itself and Load_Date_Text for all observations:

 The history_append_line always resolves to the way it looked at the end of the previous assignment

statement and then concatenates with the name of the next file:

 history_append_line = 'DATA file_final_2013; SET file_final_20130104

 file_final_20130111

 ... ';

 This will continue until the last Filename is added:

 history_append_line = 'DATA file_final_2013; SET file_final_20130104

 ...

 file_final_20130215';

 history_append_line = SUBSTR(history_append_line,1,

 LENGTH(history_append_line))||

 CAT(' file_final_',Load_Date_Text,' ');

17

The second part of THE POWER TO CREATE section has walked us through the process of creating Dynamic

Code to automatically Append the 52 new data sets to create a yearly data set. The Append Dynamic Code

is contained in the history_append_line variable.

Here are the 3 programs displayed as Base SAS Program Nodes:

Here is 1 observation of the Dynamic Code created by the 3 programs:

SAS Dataset:

prepare_historical_append

Variable: history_append_line

DATA file_final_2013;

 SET file_final_20130104

 file_final_20130111

 file_final_20130118

 file_final_20130125

 file_final_20130201

 file_final_20130208

 file_final_20130215;

RUN;

SAS Dataset: PATH_FILE_LIST

Variable: fpath_line

DATA file_final_20130104;

 SET '/data/MWSUG/

 PIPE_CALL_EXECUTE/

 file20130104.sas7bdat';

 FORMAT Load_Date date9.

 Birth_Date date9.;

 Load_Date = '04JAN2013'd;

 KEEP Special_Person

 Special_Number

 Load_Date;

RUN;

To

Be

Illuminated

18

The following examples highlight how to create Static Code which automatically creates Dynamic Code to

automatically Export the yearly data set.

How to Export the appended yearly data set back to the server:

 DATA LIST_OF_SAS_DATASETS_TO_EXPORT;

 SET path_list_files;

 KEEP export_line;

 IF _N_ = 1;

 export_line = CATS("DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_",

 SUBSTR(Load_Date_Text,1,4));

 export_line = SUBSTR(export_line,1,LENGTH(export_line))||

 CATS("'; SET file_final_");

 export_line = SUBSTR(export_line,1,LENGTH(export_line))||

 CATS(SUBSTR(Load_Date_Text,1,4),'; RUN;');

 RUN;

Creating a DATA step that creates Dynamic Code to Export a data set:

 The DATA statement creates an output data set called LIST_OF_SAS_DATASETS_TO_EXPORT.

 The SET statement sets path_list_files as the input data set for this DATA step.

 The KEEP statement creates the output data set with only the export_line variable.

 The IF _N_ = 1 statement executes the rest of the DATA step while only processing the first input

observation (_N_ = 1).

 DATA LIST_OF_SAS_DATASETS_TO_EXPORT;

 SET path_list_files;

 KEEP export_line;

 IF _N_ = 1;

19

Load_Date_Text is used to create Dynamic Code:

 The first export_line with the Load_Date_Text variable resolves to:

 export_line = CATS("DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_",

 SUBSTR('20130104',1,4));

 The SUBSTR function resolves to ‘2013’:

export_line = CATS("DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_",'2013');

 The CATS function resolves to:

export_line = 'DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 The second export_line resolves to the way it looked at the end of the previous assignment

statement and then concatenates with the result of the CATS function:

 export_line = "DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013"||

 CATS("'; SET file_final_");

 The CATS function resolves to and the result concatenates to:

export_line="DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013'; SET file_final_";

 The third export_line resolves to the way it looked at the end of the previous assignment statement

and then concatenates with the result of the CATS function:

 export_line = "DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 SET file_final_"||CATS(SUBSTR('20130104',1,4),'; RUN;');

 The SUBSTR resolves to ‘2013’:

 export_line = "DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 SET file_final_"||CATS('2013','; RUN;');

 The CATS function resolves to '2013; RUN;':

 export_line = "DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 SET file_final_"||'2013; RUN;';

 The final export_line resolves to:

 export_line = "DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 SET file_final_2013;

 RUN;";

 Here is how the only observation appears in the LIST_OF_SAS_DATASETS_TO_EXPORT data set:

 export_line = CATS("DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_",

 SUBSTR(Load_Date_Text,1,4));

 export_line = SUBSTR(export_line,1,LENGTH(export_line))||

 CATS("'; SET file_final_");

 export_line = SUBSTR(export_line,1,LENGTH(export_line))||

 CATS(SUBSTR(Load_Date_Text,1,4),'; RUN;');

 RUN;

20

The third part of THE POWER TO CREATE section has walked us through the process of creating Dynamic

Code to automatically Export a yearly data set back to the folder on the server where the weekly snapshot

data sets are stored. The Export Dynamic Code is contained in the export_line variable.

Here are the 3 programs displayed as Base SAS Program Nodes:

Here is 1 observation of the Dynamic Code created by the 3 programs:

SAS Dataset:

prepare_historical_append

Variable: history_append_line

DATA file_final_2013;

 SET file_final_20130104

 file_final_20130111

 file_final_20130118

 file_final_20130125

 file_final_20130201

 file_final_20130208

 file_final_20130215;

RUN;

SAS Dataset: PATH_FILE_LIST

Variable: fpath_line

DATA file_final_20130104;

 SET '/data/MWSUG/

 PIPE_CALL_EXECUTE/

 file20130104.sas7bdat';

 FORMAT Load_Date date9.

 Birth_Date date9.;

 Load_Date = '04JAN2013'd;

 KEEP Special_Person

 Special_Number

 Load_Date;

RUN;

SAS Dataset:

LIST_OF_SAS_DATASETS_

TO_EXPORT

Variable: export_line

DATA '/data/MWSUG/

 PIPE_CALL_EXECUTE/

 file_all_2013';

 SET file_final_2013;

RUN;

21

After the Dynamic Code has been created the CALL EXECUTE command is used to execute the 3 sets of

Dynamic Code automatically to Extract, Append, and Export the appended yearly data set.

Executing the Extract Dynamic Code using the CALL EXECUTE command:

 DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(fpath_line);

 RUN;

THE POWER TO EXECUTE
Dynamic Code Automatically Using The CALL EXECUTE Command

Creating a DATA step that executes Dynamic Code to Extract data sets:

 The DATA statement does not create an output data set because the _NULL_ option is used.

 The SET statement sets path_list_files as the input data set for this DATA step.

 Here is a partial view of the first 2 observations in the path_list_files data set:

 DATA _NULL_;

 SET path_list_files;

22

Once the Dynamic Code has been executed to automatically Extract vital variables from the 52 weekly data

sets and combine them with a Load_Date variable, the next step is to execute the Append Dynamic Code.

Executing the Append Dynamic Code using the CALL EXECUTE command:

 DATA _NULL_;

 SET prepare_historical_append;

 CALL EXECUTE(history_append_line);

 RUN;

The CALL EXECUTE command executes the fpath_line variable:

 The CALL EXECUTE command executes the contents of the fpath_line variable in the path_list_files

data set. Here is the first observation of fpath_line in the path_list_files data set:

 DATA file_final_20130104;

 SET '/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat';

 FORMAT Load_Date date9. Birth_Date date9.;

 Load_Date = '04JAN2013'd;

 KEEP Special_Person Special_Number Load_Date;

 RUN;

 Here is the result of executing the first observation of fpath_line in the path_list_files data set:

 The RUN statement causes the second observation of fpath_line in the path_list_files data set to be

read:

 DATA file_final_20130111;

 SET '/data/MWSUG/PIPE_CALL_EXECUTE/file20130111.sas7bdat';

 FORMAT Load_Date date9. Birth_Date date9.;

 Load_Date = '11JAN2013'd;

 KEEP Special_Person Special_Number Load_Date;

 RUN;

 Here is the result of executing the second observation of fpath_line in the path_list_files data set:

 The execution of fpath_line continues for each observation in the path_list_files data set.

 CALL EXECUTE(fpath_line);

 RUN;

23

Now that the Dynamic Code has been executed to automatically Append the 52 new data sets, the final step is

to execute the Export Dynamic Code.

Executing the Export Dynamic Code using the CALL EXECUTE command:

 DATA _NULL_;

 SET LIST_OF_SAS_DATASETS_TO_EXPORT;

 CALL EXECUTE(export_line);

 RUN;

Creating a DATA step that executes Dynamic Code to Append data sets:

 The DATA statement does not create an output data set because the _NULL_ option is used.

 The SET statement sets prepare_historical_append as the input data set for this DATA step.

 Here is the only observation in the prepare_historical_append data set:

 DATA _NULL_;

 SET prepare_historical_append;

The CALL EXECUTE command executes the history_append_line variable:

 The CALL EXECUTE command executes the contents of the history_append_line variable in the

prepare_historical_append data set. Here is the only observation of history_append_line:

 DATA file_final_2013;

 SET file_final_20130104

 file_final_20130111

 file_final_20130118

 file_final_20130125

 file_final_20130201

 file_final_20130208

 file_final_20130215;

 RUN;

 Here is the result of executing history_append_line in the prepare_historical_append data set:

 CALL EXECUTE(history_append_line);

 RUN;

24

Now that we have completed the process for 1 year, we need to repeat the process for the remaining 10 years

for this project. How is this accomplished? We simply update the year in the PIPE command portion of the

FILENAME statement in the Extract Program Node, rerun all 3 Program Nodes, and then repeat this process

until each of the remaining years is complete.

 Done and Done

Creating a DATA step that executes Dynamic Code to Export data sets:

 The DATA statement does not create an output data set because the _NULL_ option is used.

 The SET statement sets LIST_OF_SAS_DATASETS_TO_EXPORT as the input data set for this DATA

step.

 Here is the only observation in the LIST_OF_SAS_DATASETS_TO_EXPORT data set:

 DATA _NULL_;

 SET LIST_OF_SAS_DATASETS_TO_EXPORT;

The CALL EXECUTE command executes the fpath_line variable:

 The CALL EXECUTE command executes the contents of the export_line variable in the

LIST_OF_SAS_DATASETS_TO_EXPORT data set. Here is the only observation of export_line:

 DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_2013';

 SET file_final_2013;

 RUN;

 Here is the result of executing export_line in the LIST_OF_SAS_DATASETS_TO_EXPORT data set:

 CALL EXECUTE(export_line);

 RUN;

Creating the Yearly data sets for each Year:

 Update the Year in the Extract Program Node and then rerun all three Program Nodes for each year.

FILENAME Inpipe PIPE 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

25

CONCLUSION

The Power To Know through the PIPE command enables The Power To Create Static Code which

automatically creates Dynamic Code and leads to The Power To Execute the Dynamic Code automatically

using the CALL EXECUTE command. (Try saying that statement really fast for fun .) Our presentation has

shown you how 1,259 time-consuming Manual Steps are amazingly replaced with only 3 time-saving

Dynamic Automated Steps.

On your future SAS Quests, listen closely to your SAS Intuition and pursue blending the built-in wisdom of

SAS with your SAS wishes. As you experience SAS Wis-h-dom, your research will lead you to your own

Happy Accident discoveries which will increase the quality of your program designs. As you leave here with

your newest BFF in SAS, begin thinking about how you can benefit from this powerful SAS partnership.

It’s not what the SAS world holds for you, it’s what YOU bring to it. You are like the language itself – you

are intuitive and flexible in designing your programs. As a SAS Professional, you are inquisitive, research

oriented, and solution driven. Your optimistic and tenacious desire to design a quality program fuels your

thoroughness and attention to detail. When you are in your SAS Zone, you are relentless in your pursuit to

overcome obstacles and maximize your programming.

Don’t be a reservoir, be a river. John C. Maxwell

SAS Programming is Mind Art – a creative realm where each of you is an Artist. Continue to develop and

build on your many skills and talents. Keep looking for different ways to share your God-given abilities and

ideas. Don’t be a reservoir of SAS knowledge, be a river flowing outward to help and empower other people.

Always remember, your contributions make a positive impact in the world. Plan on coming back to the

MWSUG conference next year to shed some light on the exciting things you are learning. All of us are on the

SAS journey with you and we look forward to your teaching sessions in the future.

As we conclude our presentation, we want to introduce you to our SAS Mascot, Smiley. Smiley represents the

SAS Joy which each of us experience when we find better ways to accomplish mighty and worthy deeds using

SAS. The four of us hope that the time we have shared together has expanded and enriched your SAS

knowledge. You may or may not use the PIPE and CALL EXECUTE commands on a daily basis, but when the

need arises – Oh, how powerful and valuable your relationship will be with your newest BFF in SAS!

Thank You For Honoring Us With Your Participation

 Happy SAS Trails To You… Until We Meet Again

MEET THE

It’s not what the world holds for you,
it’s what YOU bring to it!

Anne of Green Gables

Your life is like a campfire at night –
You never know how many people will see it
and be comforted and guided by your light.

Claire Draper

26

MEET THE AUTHORS

Writing is a permanent legacy.

John C. Maxwell

Kent Phelps (Senior Data Governance Analyst) has worked in IT and Data Governance since 1990, has

programmed in SAS since 2007, is a SAS Certified Professional specializing in combining and automating the

best of SAS Enterprise Guide with Base SAS, has Co-Created/Led Intro To SAS EG classes, and presents SAS

News You Can Use. Kent has a B.S. in Electrical Engineering, has studied Transformational Leadership,

Dynamic Teamwork, and Personal Growth since 1994, and is certified as a John Maxwell Team coach and a 48

Days To The Work You Love coach. His hope is to encourage you to fulfill your life and leadership potential

and to equip you in building an enduring legacy of inspiration, excellence, and honor.

Ronda Phelps (Writer, Teacher, and Coach) formerly worked in the Banking and Insurance industries for 19

years, has studied Transformational Leadership, Dynamic Teamwork, and Personal Growth since 1994, and is

certified as a John Maxwell Team coach and a 48 Days To The Work You Love coach. She believes YOU are a gift

that the world is waiting to receive! Her hope is to encourage you to pursue your unique destiny and to equip

you in navigating your journey with intentionality, fulfilling purpose, and enduring hope.

Kirk Paul Lafler (Founder/Senior Consultant, Software Intelligence Corporation) has programmed in SAS

since 1979, is a SAS Certified Professional, provides IT Consulting Services, trains and mentors SAS users

worldwide, and is a SAScommunity.org Emeritus Advisory Board member. Kirk has authored 6 books

including Google Search Complete! (Odyssey Press 2014), has written over 500 papers and articles, has been

invited to speak and/or train at over 400 SAS international, regional, special-interest, local and in-house user

group conferences and meetings, and has received 23 BEST Contributed Paper, Hands-On Workshop (HOW),

and Poster Awards. His popular SAS Tips column Kirk’s Korner of Quick and Simple Tips and his funfilled

SASword Puzzles appear on various SAS websites and in several SAS User Group newsletters.

We invite you to share your valued comments with us:

Kent Ronda Team Phelps

Writers, Teachers, and Coaches

E-mail: SASketeers@q.com

Kirk Paul Lafler

Senior Consultant, Application Developer, Trainer, Mentor, and Author

Software Intelligence Corporation

E-mail: KirkLafler@cs.com

LinkedIn: http://www.linkedin.com/in/KirkPaulLafler

Twitter: @sasNerd

 We Look Forward To Connecting With You In The Future

mailto:SASketeers@q.com
mailto:KirkLafler@cs.com
http://www.linkedin.com/in/KirkPaulLafler

27

Disclaimer: Please refer to your specific Operating System (e.g. UNIX, Windows, or z/OS) Manual,

Installation Configuration, and/or in-house Technical Support for further guidance in how to create the

SAS code presented in this paper.

Our project example details the UNIX syntax for the PIPE and CALL EXECUTE commands and the Dynamic

Code. This Appendix is a starting point regarding the syntax for Windows and z/OS.

APPENDIX A
PIPE and CALL EXECUTE and Dynamic Code Syntax for Windows and z/OS

Creating the FILENAME statement on page 7:

 The Windows version of the FILENAME statement uses the dir OS command to create the Directory

Listing while also referencing the specific drive letter and the record length of the PIPE result:

FILENAME Inpipe PIPE 'dir "c:\data\MWSUG\PIPE_CALL_EXECUTE\file2013*.sas7bdat" /S'

 lrecl=100;

 The z/OS version of the FILENAME statement can take different forms depending on the z/OS

version and installation configuration. Here are 2 reference links as a starting point:

 Allocating External Files to a Pipe through BatchPIPEs from SAS® 9.3 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n0fxdtzgeax

a51n1080fzebl81qx.htm

 Accessing UNIX System Services Files from SAS® 9.3 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n001udyg5

mzcb1n1bhts48m1bal1.htm

FILENAME Inpipe PIPE 'ls /data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

Creating the first Dynamic Code export_line on page 18:

 The Windows version of the export_line statement uses the specific drive letter:

export_line = CATS("DATA 'c:\data\MWSUG\PIPE_CALL_EXECUTE\file_all_",

 The z/OS version of the export_line can take different forms depending on the z/OS version and

installation configuration. Here are 2 reference links as a starting point:

 Data Set Options under z/OS from SAS® 9.3 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#p1t2wsrhr9

x099n1h967cql2j3fm.htm

 SAS® 9.3 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.ht

m

 export_line = CATS("DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file_all_",

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n0fxdtzgeaxa51n1080fzebl81qx.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n0fxdtzgeaxa51n1080fzebl81qx.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n001udyg5mzcb1n1bhts48m1bal1.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#n001udyg5mzcb1n1bhts48m1bal1.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#p1t2wsrhr9x099n1h967cql2j3fm.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#p1t2wsrhr9x099n1h967cql2j3fm.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm

28

Executing the first CALL EXECUTE command on page 21:

 The Windows version of the CALL EXECUTE command is identical in syntax to the UNIX version.

 The z/OS version of the CALL EXECUTE command can take different forms depending on the z/OS

version and installation configuration even though the CALL EXECUTE command is considered to be

a portable function in SAS. Here are 2 reference links as a starting point:

 CALL EXECUTE Routine from SAS® 9.3 Functions and CALL Routines: Reference:

http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1blnvl

vciwgs9n0zcilud6d6ei9.htm

 SAS® 9.3 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.ht

m

 DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(fpath_line);

 RUN;

http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1blnvlvciwgs9n0zcilud6d6ei9.htm
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#p1blnvlvciwgs9n0zcilud6d6ei9.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm

29

The Power To Know section demonstrated how to use the PIPE command to request and receive one

Directory Listing of the Filenames of the 52 weekly data sets for each year from a folder on the server. The

following example demonstrates how to achieve the same results using an alternative for the PIPE command.

APPENDIX B

Alternative for the PIPE Command for Our Project Example

How to request and receive a Directory Listing without the PIPE command:

 Previous sections focused on the gray highlighted code. We will now focus on the rest of the code.

FILENAME Nopipe '/data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_path_and_data_set fpath $100 fpath_line $1000;

 FORMAT Load_Date date9.;

 DO UNTIL (DONE);

 INFILE Nopipe TRUNCOVER FILENAME=SAS_path_and_data_set END=DONE;

 INPUT;

 IF fpath NE SAS_path_and_data_set THEN

 DO;

 fpath = SAS_path_and_data_set;

 Load_Date_Text = SUBSTR(fpath,65,8);

 Load_Date = MDY(INPUT(SUBSTR(Load_Date_Text,5,2),2.),

 INPUT(SUBSTR(Load_Date_Text,7,2),2.),

 INPUT(SUBSTR(Load_Date_Text,1,4),4.));

 fpath_line = CATS('DATA file_final_',Load_Date_Text,"; SET '",fpath,

 "'; FORMAT Load_Date date9.; Load_Date = '",PUT(Load_Date,date9.),

 "'d; KEEP Special_Person Special_Number Load_Date; RUN;");

 OUTPUT;

 END;

 END;

RUN;

Creating a FILENAME statement without the PIPE command:

 The FILENAME statement assigns Nopipe as a file reference (fileref) to the folder and file pattern.

FILENAME Nopipe '/data/MWSUG/PIPE_CALL_EXECUTE/file2013*.sas7bdat';

Creating a variable which will store and track the Directory Listing:

 The LENGTH statement assigns a length of 100 characters to a variable that will be used to store and

track changes to the data set path and name called SAS_path_and_data_set.

LENGTH SAS_path_and_data_set fpath $100 fpath_line $1000;

30

Combining the PIPE alternative with the gray highlighted code (shown on page 29) enables the same

Directory Listing and Dynamic Code to be created as we did using the PIPE command. As a result, no

additional changes are required for Program Nodes 2 and 3.

Creating a DO UNTIL loop to process each Filename in the Directory Listing:

 The DO UNTIL (DONE) statement executes the loop through the END statement until DONE is true.

 The INFILE statement assigns Nopipe (fileref) to the folder and file pattern to be read with the

upcoming INPUT statement.

 The TRUNCOVER option tells SAS the input data may or may not be the same length.

 The END=DONE sets DONE to true when the last record in the last file fitting the file pattern is read.

 The FILENAME=SAS_path_and_data_set statement assigns SAS_path_and_data_set to the path and

name of the file being read.

 The INPUT statement reads the INFILE Nopipe (fileref) one record at a time.

 The END statement sends control to the top of the DO UNTIL loop so the next record can be read.

 DO UNTIL (DONE);

 INFILE Nopipe TRUNCOVER FILENAME=SAS_path_and_data_set END=DONE;

 INPUT;

 ...

 END;

Creating an IF-THEN DO-END statement to detect new Filenames being read:

 The IF fpath NE SAS_path_and_data_set THEN statement executes the contents of the DO-END

when a new file is read.

 The fpath = SAS_path_and_data_set statement assigns fpath to SAS_path_and_data_set which

contains the path and name of the file being read.

 The fpath variable is reassigned to each new Filename as the Filename changes.

 The fpath variable is then used to build the Dynamic Code as described in previous sections.

 The OUTPUT statement is executed within the IF-THEN DO-END statement to ensure that we only

create Dynamic Code and write an observation when fpath changes.

 IF fpath NE SAS_path_and_data_set THEN

 DO;

 fpath = SAS_path_and_data_set;

 ...

 OUTPUT;

 END;

31

APPENDIX C

The Code that Created the Data Sets for Our Project Example

DATA '/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130111.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130118.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130125.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130201.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130208.sas7bdat'

 '/data/MWSUG/PIPE_CALL_EXECUTE/file20130215.sas7bdat';

 LENGTH Special_Person $20. Special_Number 8. Special_Code $1.;

 INFILE DATALINES DELIMITER=',';

 INPUT Special_Person $ Special_Number Special_Code $;

 SELECT;

 WHEN(_N_ LE 5) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130104.sas7bdat';

 WHEN(_N_ LE 10) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130111.sas7bdat';

 WHEN(_N_ LE 15) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130118.sas7bdat';

 WHEN(_N_ LE 20) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130125.sas7bdat';

 WHEN(_N_ LE 25) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130201.sas7bdat';

 WHEN(_N_ LE 30) OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130208.sas7bdat';

 OTHERWISE OUTPUT '/data/MWSUG/PIPE_CALL_EXECUTE/file20130215.sas7bdat';

 END;

 DATALINES;

Smiley,10127911,A

Smiley's Son,10173341,K

Smiley's Twin,10376606,B

Smiley's Wife,10927911,A

Smiley's Son,11471884,E

Smiley,10027911,C

Smiley,10877911,H

Smiley's Son,11071884,A

Smiley's Twin,11173691,C

Smiley's Daughter,11375498,J

Smiley,10027911,H

Smiley,10877911,B

Smiley's Son,11071884,F

Smiley's Twin,11173691,H

Smiley's Daughter,11375498,D

Smiley's Son,10173341,G

Smiley,10177911,C

Smiley's Twin,10376606,I

Smiley,10977246,H

Smiley's Son,11471884,A

Smiley's Son,10471884,A

Smiley's Twin,10573616,C

Smiley,10727911,H

Smiley's Son,11571884,F

Smiley's Twin,11773691,H

Smiley,10177911,F

Smiley's Son,10471884,J

Smiley's Twin,10573616,A

Smiley's Son,11571884,D

Smiley's Twin,11773691,F

Smiley,10177911,I

Smiley's Son,10471884,B

Smiley's Twin,10573616,D

Smiley's Son,11571884,G

Smiley's Twin,11773691,I

;

RUN;

32

ACKNOWLEDGMENTS

We want to thank Dave Foster, the 25th Annual MWSUG 2014 BI/CI Section Chair, and Bruce Lund, the Asst.

BI/CI Section Chair, for graciously accepting our abstract and paper. In addition, we want to express our

appreciation to the Co-Chairs, Cindy Lee (Academic Chair) and Craig Wildeman (Operations Chair), the

Executive Committee and Conference Leaders, and SAS Institute for their diligent efforts in organizing this

illuminating and energizing conference.

We also offer our deep gratitude to each of you who empower us through your teaching endeavors. Your

heart to continuously share what you are learning, blended with your servant leadership and supportive

guidance, is a constant light of encouragement to us. You inspire us to keep sharing what we are learning and

our hope is to be a light of encouragement to you as well – All for One & One for All.

REFERENCES

Agarwal, Megha (2012), The Power of “The FILENAME” Statement, Gilead Sciences, Foster City, CA, USA.

http://www.lexjansen.com/wuss/2012/63.pdf

Gan, Lu (2012), Using SAS® to Locate and Rename External Files, Pharmaceutical Product Development, L.L.C.,

Austin, TX, USA.

http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf

Hamilton, Jack (2012), Obtaining a List of Files in a Directory Using SAS® Functions.

http://www.wuss.org/proceedings12/55.pdf

Lafler, Kirk Paul and Charles Edwin Shipp (2012), Google® Search Tips and Techniques for SAS® and JMP®

Users, Proceedings of the 23rd Annual MidWest SAS Users Group (MWSUG) 2012 Conference, Software

Intelligence Corporation, Spring Valley, CA, USA, and Consider Consulting, Inc., San Pedro, CA, USA.

http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf

Lafler, Kirk Paul (2012), You Could Be a SAS® Nerd If . . ., Proceedings of the 23rd Annual MidWest SAS Users

Group (MWSUG) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S103.pdf

Langston, Rick (2013), Submitting SAS® Code On The Side; SAS Institute Inc., Cary, NC.

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf

Michel, Denis (2005), CALL EXECUTE: A Powerful Data Management Tool, Proceedings of the 30th Annual

SAS® Users Group International (SUGI) 2005 Conference, Johnson & Johnson Pharmaceutical Research and

Development, L.L.C. http://www2.sas.com/proceedings/sugi30/027-30.pdf

Phelps, Kent Ronda Team Phelps and Kirk Paul Lafler (2014), The Joinless Join; Expand the Power of

SAS® Enterprise Guide® in a New Way, Proceedings of the 25th Annual MidWest SAS Users Group (MWSUG)

2014 Conference, The SASketeers, Des Moines, IA, USA, and Software Intelligence Corporation, Spring Valley,

CA, USA.

Phelps, Kent Ronda Team Phelps and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of

SAS® Enterprise Guide® in a New Way, Presented at Iowa SAS Users Group (IASUG), The SASketeers, Des

Moines, IA, USA, and Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.lexjansen.com/wuss/2012/63.pdf
http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf
http://www.wuss.org/proceedings12/55.pdf
http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf
http://www.mwsug.org/proceedings/2012/S1/MWSUG-2012-S103.pdf
http://support.sas.com/resources/papers/proceedings13/032-2013.pdf
http://www2.sas.com/proceedings/sugi30/027-30.pdf

33

Phelps, Kent Ronda Team Phelps and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of

SAS® Enterprise Guide® in a New Way, Proceedings of the 24th Annual MidWest SAS Users Group (MWSUG)

2013 Conference, The SASketeers, Des Moines, IA, USA, and Software Intelligence Corporation, Spring Valley,

CA, USA. http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf

Phelps, Kent Ronda Team Phelps and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL

EXECUTE; Dynamically Advancing From Strangers to Best Friends, Presented at Iowa SAS Users Group (IASUG),

The SASketeers, Des Moines, IA, USA, and Software Intelligence Corporation, Spring Valley, CA, USA.

Phelps, Kent Ronda Team Phelps and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL

EXECUTE; Dynamically Advancing From Strangers to Best Friends, Proceedings of the 24th Annual MidWest SAS

Users Group (MWSUG) 2013 Conference, The SASketeers, Des Moines, IA, USA, and Software Intelligence

Corporation, Spring Valley, CA, USA.
http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf

SAS Institute Inc. (2012), SAS® 9.3 Companion for z/OS, Second Edition; Cary, NC; SAS Institute Inc.

http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm

SAS Institute Inc. (2011), SAS® 9.3 Functions and CALL Routines: Reference; Cary, NC; SAS Institute Inc.

http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#titlepage.htm

Spector, Phil, An Introduction to the SAS System; Statistical Computing Facility; University of California,

Berkeley. http://www.stat.berkeley.edu/~spector/

Support.SAS.com (2008), Using External Files and Devices: Reading from and Writing to UNIX Commands

(PIPE). http://support.sas.com/documentation/cdl/en/hostunx/61879/HTML/default/viewer.htm#pipe.htm

Support.SAS.com (2007), Using FILEVAR= to Read Multiple External Files in a DATA Step.

http://support.sas.com/techsup/technote/ts581.pdf

Varney, Brian (2008), You Check out These Pipes: Using Microsoft Windows Commands from SAS®, SAS

Institute Inc. 2008. Proceedings of the SAS® Global Forum 2008 Conference, Cary, NC; SAS Institute Inc.

http://www2.sas.com/proceedings/forum2008/092-2008.pdf

Watson, Richann (2013), Let SAS® Do Your DIRty Work, Experis, Batavia, OH.

http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

TRADEMARK CITATIONS

SAS and all other SAS Institute, Inc., product or service names are registered trademarks or trademarks of SAS

Institute, Inc., in the USA and other countries. The symbol, ®, indicates USA registration. Other brand and

product names are registered trademarks or trademarks of their respective companies.

http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf
http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf
http://support.sas.com/documentation/cdl/en/hosto390/65144/HTML/default/viewer.htm#titlepage.htm
http://support.sas.com/documentation/cdl/en/lefunctionsref/63354/HTML/default/viewer.htm#titlepage.htm
http://www.stat.berkeley.edu/~spector/
http://support.sas.com/documentation/cdl/en/hostunx/61879/HTML/default/viewer.htm#pipe.htm
http://support.sas.com/techsup/technote/ts581.pdf
http://www2.sas.com/proceedings/forum2008/092-2008.pdf
http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

34

DISCLAIMER

We have endeavored to provide accurate and helpful information in this SAS White Paper. The information is

provided in ‘Good Faith’ and ‘As Is’ without any kind of warranty, either expressed or implied. Recipients

acknowledge and agree that we and/or our companies are not, and never will be, liable for any problems

and/or damages whatsoever which may arise from the recipient’s use of the information in this paper. Please

refer to your specific Operating System (e.g. UNIX, Windows, or z/OS) Manual, Installation Configuration,

and/or in-house Technical Support for further guidance in how to create the SAS code presented in this paper.

