
1

Paper DV10-2014

Pin the SAS
®
 Tail on the Excel Donkey:

Automatically Sizing & Positioning SAS Graphics for Excel

Ted Conway, Chicago, IL

ABSTRACT

Okay, you've read all the books, manuals, and papers and can produce SAS/GRAPH and ODS Graphics with the
best of them. But how do you handle the 'Final Mile' problem – getting your SAS-generated images sized just right
and positioned just so in Excel? This paper presents a method of doing so that employs SAS Integration
Technologies and Excel VBA to produce SAS graphics and automatically embed them in Excel worksheets. This
technique may be of interest to all skill levels. It uses Base SAS, SAS/GRAPH, SAS ODS Graphics, the SAS Macro
Facility, SAS Integration Technologies, Microsoft Excel, and Visual Basic for Applications (VBA) on the PC platform.

INTRODUCTION

For better or worse, Excel workbooks are a staple of corporate communication. So,
like it or not, you’ll most likely find yourself having to present your SAS results in
Microsoft Office documents from time to time. Fortunately, there are many options
available to you for getting SAS output into Excel – from simple brute force cut-and-
pasting to packaged solutions like the SAS Add-In for Microsoft Office.

In this paper, we’ll explore a technique that uses a combination of SAS code and
Excel VBA to fill-in-the-holes of your Excel spreadsheets by automatically creating
properly-sized SAS charts and graphs and inserting them into their proper places in
the gridded Excel layout.

So, let’s play Pin the SAS Tail on the Excel Donkey!

WHAT’S THE BIG IDEA?

 PROCESSING OVERVIEW

We start with a worksheet and specify SAS code in cells tagged with “special” Excel comments, i.e., starting with

“*SAS;”. When a toolbar button is clicked, VBA code in submit2sas.xlam, an Excel 2010 add-in workbook , is run
to pass the code in the tagged cells and comments to SAS via IOM for execution. SAS creates images (.png
format), which VBA inserts into the proper position, leaving us with an updated worksheet containing the requested
images . If the process is rerun, any old images in the worksheet are first deleted by the VBA code.

In the following pages, we’ll take a look at an example of how SAS and Excel VBA code can be used to automate the
process of producing SAS graphics and embedding them in Excel worksheets (full VBA code is presented).

Excel Cells (single or merged) with SAS-Generated Images Excel Cells (single or merged) with SAS Graphics Code in Cells

IOM

Excel 2010 Add-In
(submit2sas.xlam)

Step 1. Cells tagged
with Excel comments
(starting with *SAS;)
contain SAS code that
generates an image.

Step 2. VBA uses the
cell characteristics
(width/height) and
cell/comment contents
to create SAS code.

Step 3. When toolbar
button is clicked, IOM
calls SAS and code is
run, creating cell-sized
chart images.

Step 4. VBA inserts
the SAS-generated
images into their
proper places in the
Excel worksheet.

VBA VBA

SAS

2

LET’S ZOOM IN FOR A CLOSER LOOK!

BEFORE: GRID LAYOUT WITH SAS CODE

AFTER: SAS-GENERATED CHARTS

3

SO, HOW’D YOU DO THAT? EXCEL VBA CODE (SUBMIT2SAS.XLAM)

'==> Create charts by calling SAS

Public obWSM As New SASWorkspaceManager.WorkspaceManager ' IOM-related objects, variables

Public obws As New SAS.Workspace, errmsg As String, onetime As Boolean

Sub DrawCharts()

 ' Establish SAS IOM connection?

If onetime = False Then

 Set obws = obWSM.Workspaces.CreateWorkspaceByServer("Local", VisibilityProcess, Nothing, "", "", errmsg)

 onetime = True

 End If

DeleteCharts ' Get rid of any existing charts

'==> Call SAS with cell width/height & code from each tagged comment/cell, position SAS-generated image

For Each cmt In ActiveSheet.Comments ' Get SAS code from comments/cells

 If UCase(Left(cmt.Text, 5)) = "*SAS;" Then

 obws.LanguageService.Submit "%let XLwidth=" & cmt.Parent.MergeArea.Width & _

 "; %let XLheight=" & cmt.Parent.MergeArea.Height & "; " & _

 cmt.Parent.Value & cmt.Text & "; run;"

 Debug.Print obws.LanguageService.FlushLog(1000000) ' Send SAS log to debugging window

 ActiveSheet.Shapes.AddPicture "c:\temp\saschart.png", False, True, _

 cmt.Parent.Left, cmt.Parent.Top, _

 cmt.Parent.MergeArea.Width, cmt.Parent.MergeArea.Height

 End If

Next cmt

End Sub

'==> Delete any existing charts

Sub DeleteCharts()

For Each s In ActiveSheet.Shapes

 If s.Type = 13 Then s.Delete

Next

End Sub

'--> Close SAS IOM Workspace Connection

Private Sub Workbook_BeforeClose(Cancel As Boolean)

On Error Resume Next

obws.Close

End Sub

Note: See http://support.sas.com/rnd/itech/doc/dist-obj/winclnt/winvbpro.html for SAS IOM reference requirements. SUBMIT2SAS.XLAM – VBA

VBA PROCESSING NOTES

As you can see from the above, thanks to the SAS IOM interface, there’s not much VBA code required to get Excel
and SAS to communicate with each other.

In a nutshell, here’s what happens when the toolbar button linked to the DrawCharts macro is pressed:

1. A local SAS Workspace (on the PC) is created, if one doesn’t already exist, to run SAS code

2. Any existing charts on the worksheet are deleted by the DeleteCharts macro (which is also linked to the
toolbar button)

3. For each Excel Comment on the worksheet that tags SAS code to be run (i.e., Comments starting with *SAS;):

 SAS code is generated that creates two macro variables containing the width (XLwidth) and height

(XLheight) of the Cell that’s tied to the Comment

 The generated SAS code, as well as the code in the Cell and Comment, is submitted to SAS via IOM

 SAS generates an image file with a standard file name (c:\temp\saschart.png)

 The contents of the SAS Log are sent to Excel’s Immediate Window for debugging purposes

 Excel inserts the SAS-generated image into the worksheet Cell

When the Excel Add-In is closed, the local SAS Workspace is also closed.

http://support.sas.com/rnd/itech/doc/dist-obj/winclnt/winvbpro.html

4

CONCLUSION

With just a few dozen lines of VBA code, it’s possible to cobble together a serviceable, general-purpose, interactive
SAS chart generator that’ll allow you to enhance your Excel worksheets with embedded SAS graphics without much
effort at all. The formatting flexibility afforded by Excel even enables the creation of stand-alone dashboards of sorts.
And since you have the full power of the SAS language at your disposal, you can easily transform data into a
suitable format for charting.

Some error handling enhancements would be in order for deployment to a wider audience, but SAS-savvy users
could make do with the available SAS log output.

Other possible enhancements that come to mind include tapping Excel’s enhanced image features (e.g.,
transparency, picture effects), providing a server-based version for SAS Enterprise Guide users, employing Microsoft
Office shapes as SAS code containers to allow this technique to be used with PowerPoint/Word macros, and
perhaps even extending the concepts to other programming languages that may be used from time-to-time
alongside SAS.

CREDITS/REFERENCES

 SAS. SAS Product Documentation.
http://support.sas.com/documentation/index.html

 Contextures. Excel Comments VBA.
http://www.contextures.on.ca/xlcomments03.html

 Delwiche, Lora D. and Slaughter, Susan J. SAS Graphing Made Easy with ODS Graphics Procedures.
http://support.sas.com/resources/papers/proceedings14/1267-2014.pdf

 Conway, Ted. %SPARKY: A SAS® Macro for Creating Excel Sparklines.
http://support.sas.com/resources/papers/proceedings12/084-2012.pdf

CONTACT INFORMATION

Ted Conway resides in Chicago, Illinois. Spam filters notwithstanding, he can be reached at tedconway@aol.com.

TRADEMARKS

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

---Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation/index.html
http://www.contextures.on.ca/xlcomments03.html
http://support.sas.com/resources/papers/proceedings14/1267-2014.pdf
http://support.sas.com/resources/papers/proceedings12/084-2012.pdf
mailto:tedconway@aol.com

5

APPENDIX – SAS CODE USED TO GENERATE CHARTS

EXAMPLE 1

ods listing gpath='c:\temp' ;

ods graphics on / reset=index imagename='saschart' width=&XLwidth.pt height=&XLheight.pt;

proc sgplot data=sashelp.prdsale;

vbar country / response=actual;

xaxis display=(nolabel);

EXAMPLE 2

ods listing gpath='c:\temp' ;

ods graphics on / reset=index imagename='saschart' width=&XLwidth.pt height=&XLheight.pt;

proc sql;

create table t as select month, sum(actual) as Actual

from sashelp.prdsale group by 1;

proc sgplot data=t;

series x=month y=Actual;

xaxis display=(nolabel);

EXAMPLE 3

ods listing gpath='c:\temp' ;

ods graphics on / reset=index imagename='saschart' width=&XLwidth.pt height=&XLheight.pt;

proc sgplot data=sashelp.prdsale;

hbar month / response=actual barwidth=.5;

yaxis display=(nolabel);

format month yymmd.;

EXAMPLE 4

ods listing gpath='c:\temp' ;

ods graphics on / reset=index imagename='saschart' width=&XLwidth.pt height=&XLheight.pt;

proc sgplot data=sashelp.prdsale;

scatter x=month y=actual;

xaxis display=(nolabel);

