Paper RF-003

WHERE, Oh, WHERE Art Thou? A Cautionary Tale for Using WHERE Statements
and WHERE= Options

Britney D. Gilbert, Juniper Tree Consulting, Porter, Oklahoma

ABSTRACT

Using WHERE statements in your SAS programming can make processing data more efficient. However, the
programmer needs to have a full understanding and be aware of how SAS processes multiple WHERE statements or
combinations of WHERE statements and WHERE= dataset options in DATA steps and PROCEDURES. This paper
explores examples of the combinations of WHERE statements and WHERE= dataset options in both DATA steps and
PROCEDURES and the resulting logs and output.

INTRODUCTION

Whether we need to process large datasets or

Display 1. Sample Dataset

SITEN SITE SN | B Al FASFL

produce repeat tables, listings, or figures, the l 2 e = e e
WHERE statement and/or WHERE= dataset ma Thae x
option is one of the fundamental tools a 013 Orer ey o !
programmer has in their toolbox. As such, it is o Eugs i ’ '
important to understand how they work L = i
independently and in combination in both DATA e L . !
steps and PROCEDURES. gy T 4 ¥

LT 2 Mee %
To review, WHERE statements increase o e b
efficiency by only processing records that meet s e &
the conditions specified in the WHERE clause. R e A
When using multiple input datasets, a WHERE= ey 2 o ffi
dataset option can be used to select records for i e 5
processing for that specific input dataset. But, ST Hiw i:
what happens when we use a WHERE g i
statement and WHERE-= in combination or if we 0 s

003 Dther

program multiple WHERE statements in a
DATA step or PROCEDURE?

To demonstrate the behaviors of WHERE statements and WHERE= dataset option, a sample dataset and SAS® 9.3
was used. In this sample ADSL dataset, there are 100 subjects from three sites (001,002,003) in three regions (US,
Europe, Other). Sex and age variables are included and an age grouping (AGEGR1) and a population flag (FASFL)
has been derived.

WHERE STATEMENTS AND OPTIONS IN A DATA STEP

Using a WHERE reduces the number of records read

into the DATA step as opposed to IF statements Display 2. WHERE Statement Log Note

s Lng (untitled)

where all records are read first and then filtered by : =
the conditions of the statement. However, unlike IF Eig TR
statements, multiple WHERE statements cannot be UOTE: UHERE clause has been sionented.
Used In a Slngle DATA Step Un|ESS you use a WHERE NOTE: There were 99 observations read from the data set MY_LIB.ADSL.
ALSO or a WHERE SAME AND statement. Hg;g EEE:SZEEEE;“EDE;SU?T:l:;llzlprgiagg :Iil:zrivatmns and 9 variables.
The WHERE ALSO and WHERE SAME ALSO e 306 2conds
statement will execute without a proceeding WHERE 20
statement, but the log will indicate that the "WHERE [z " ™" "% © nle noicey.
clause has been augmented.” This is exemplified in JOTE: WHERE clause has been augnented.
Display 2. Has the WHERE clause been augmented? f#* ™
One condition was specified and one condition was [T J.EEEE FABRL Iy fpservations vead fron the data cet NTLID-ADSL.

NOTE : lata set WORK.AUG_NOTEZ has 99 observations and 9 variables.
processed NOTE : fzglIZEI:LIIﬁS SORT used (DTl;;a;eE:ﬁSESS time):

cpu time 0.00 seconds

If a log check program is used for review, then the

programmer needs to be cautious when only looking
for key phrases without a full log review of the subsequent log NOTES and record counts to verify expected results.

WHERE, Oh, WHERE Art Thou? A Cautionary Tale for Using WHERE Statements and WHERE= Options, continued

USING MULTIPLE WHERE STATEMENTS IN A DATA STEP

As previously mentioned, multiple WHERE statements
cannot be used in a DATA step in the same manner as
IF statements. When SAS® encounters a second

Display 3. Multiple WHERE Statements in a Data Step

a Log - (Untitled)

el e e B
WHERE statement in a DATA step, the firstis replaced g8 unere ggggg_uw
by the Second UTE WHERE clause has been replaced.
. e Run;
. . I0TE: There were 99 obseruatmns read from the data set MY_LIB.ADSL.
In Display 3, the programming examples want to ore: UHERE PASFL-"Y

: The data set HORK.EXAMPLE1A has 99 uhse:;vatmns and 9 variables.

subset our sample ADSL dataset for the Full Analysis oTE: EZ.!‘.‘;T:;"'“E“ veed éTEE“LEEEﬁEZ“ vine
Set (FASFL ="Y”) and Male Subjects (SEXN = 1). " ’

B9 Data ExanplelB;

At first, the program uses a DATA step with two i Eﬁégg%ﬁ ::EEL e
WHERE statements: Where SEXN = 1 and Where OTE: WHERS clause has been slomented.

B3 Run;

FASFL = “Y”". Reviewing the log NOTES, we see that 0TE: There were 51 observations read from the data set MY_LIB.ADSL.

the WHERE statement has been replaced and the B iy s e et S S
resulting dataset EXAMPLE1A is only subsetted by real tine 098 seconds
FASFL =*Y" and has 99 observations. Thisis notour | S
expected result. ps See W Lis.fbeL;

. R LR e M FOSTL ot e
Next, the program uses a DATA step with a WHERE 53 Run;
statement followed by a WHERE ALSO statement: E:E ”EEEEE ;:;g;ni: d;‘ézggfﬁgfgcfﬁﬂ :mh““’- d:tﬂ set :‘gL'H ﬂ"::
WHERE SEXN =1 and WHERE ALSO FASFL = "Y". OTE: DATA Statonent used (Total process Cinads
With this program, the resulting dataset EXAMPLE1B cpu tine 0.00 seconds

has 51 records and the log confirms that the records
with both FASFL = “Y” and SEXN = 1 are read and
processed. This is our expected result!

Finally to confirm the behavior of a WHERE SAME AND statement, a similar program is constructed using a WHERE
statement followed by a WHERE SAME AND statement. The resulting dataset EXAMPLE1C has the expected 51
observations and the subsetting is confirmed in the log.

USING A WHERE STATEMENTS AND A WHERE= OPTION IN A DATA STEP

Using the combination of a WHERE statement and a WHERE= dataset option in a DATA step, is not a successful
programming strategy. When a WHERE statement and WHERE= dataset option apply to the same dataset, SAS®
uses the DATA step option and ignores the WHERE statement.

In Display 4, the programming example attempts to subset the ADSL for the Full Analysis Set (FASFL = “Y”) and
Male Subjects (SEXN = 1) using a WHERE= option, WHERE = (FASFL = “Y"), and a WHERE statement, WHERE
SEXN = 1. In these cases, only the WHERE= option will be processed and the resulting dataset EXAMPLE?2 has 99
observations. Again, this is not our expected result.

Reviewing the log NOTES, confirm that records with FASFL = “Y” were processed and not FASFL = “Y” AND SEXN
= 1. Further, a WARNING appears in the log indicating that the WHERE statement cannot be applied.

Display 4. WHERE= Option and WHERE Statement in a Data Step

ETEE O]

57 R
58 Data Example?2; J
59 Set MY_LIB.ADSL (MHERE - (FASFL = “v*));

60 Where SEXN = 1;

WARHING: The WHERE statement cannot be applied to the data set on the last SET/MERGE/UPDATE/MODIFY statement.
Either the data set failed to open or it already specifies a WHERE data set option.

61 Run;

MNOTE: There were 99 nhseruatmns read from the data set MY_LIB.ADSL.
WHERE FASFL="Y'
NOTE: The data set WORK.EXAMPLEZ has 99 observations and 9 variables.
NOTE: DATA statement used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

WHERE, Oh, WHERE Art Thou? A Cautionary Tale for Using WHERE Statements and WHERE= Options, continued

WHERE STATEMENTS AND OPTIONS IN A PROCEDURE

Because IF statements are only valid in DATA steps,
WHERE statements and WHERE= dataset options are
used to subset observations in SAS® PROCEDURES.
However, using multiple WHERE statements and
combinations of WHERE statements and WHERE=
dataset options behave differently.

USING MULTIPLE WHERE STATEMENTS IN A
PROCEDURE

Multiple WHERE statements in a SAS® PROCEDURE
behave the same as when they are used in a DATA step.
When SAS® encounters a second WHERE statement in
a PROCEDURE, the first is replaced by the second.

In Display 5, the programming examples want to sort a
subset our sample ADSL dataset for the Full Analysis Set
(FASFL =“Y") and Male Subjects (SEXN = 1).

At first, the program uses a PROC SORT with two
WHERE statements: WHERE SEXN = 1 and WHERE
FASFL = “Y". Reviewing the log NOTES, we see that the
WHERE statement has been replaced and the resulting
dataset EXAMPLES3A is only subsetted by FASFL = “Y”
before sorting and has 99 observations. Again, this is not
our expected result.

Next, the program submits a PROC SORT with a
WHERE statement followed by a WHERE ALSO
statement: WHERE SEXN = 1 and WHERE ALSO
FASFL = “Y”. With this program, the resulting dataset
EXAMPLE3B has 51 records and the log confirms that
the records with both FASFL =“Y” and SEXN =1 are
read and sorted. Here is our expected result!

Finally to confirm the behavior of a WHERE SAME AND
statement in a PROCEDURE, a similar program is
constructed using a WHERE statement followed by a
WHERE SAME AND statement. The resulting dataset
EXAMPLE3C has the expected 51 observations and the
subsetting is confirmed in the log.

USING A WHERE STATEMENTS AND A
WHERE= OPTION IN A PROCEDURE

Unlike the DATA step, in a PROCEDURE a WHERE=
dataset option and a WHERE statement can be used in
combination successfully.

In Display 5, the programming examples want to sort a
subset our sample ADSL dataset for the Full Analysis Set
(FASFL =“Y”) and Male Subjects (SEXN = 1) and then
sort a subset of subjects in the Full Analysis Set (FASFL
="Y"), Males (SEXN = 1), and with Age less than 65
years (AGEGR1N = 1).

The first programming example shows a PROC SORT
with a WHERE= dataset option, WHERE = (FASFL =
“Y"), and a WHERE Statement, WHERE SEXN = 1.
Reviewing the log shows that this is a successful
programming strategy in a PROCEDURE. The resulting
dataset EXAMPLEA4A has the expected 51 observations

Display 5. Multiple WHERE Statements in a Procedure
Log - {Untitled) [-1O]

Proc Sort Data = MY_LIB.ADSL

85 Out = Exampledn;

86 Where SEXN = I

87 Hhere FASFL = “Y"

[NOTE: WHERE clause has hEEn replaced.

88 By USUBJID;

89 Run;

[NOTE: There were 99 uhservatlnns read from the data set MY_LIB.ADSL .
NHEHE FASFL="Y"

NOTE: The data set WORK.EXAMPLE3A has 99 ohservations and 9 variables.

NOTE: PROCEDURE SORT used (Total process time):

real time 0.01 seconds

cpu time 0.01 seconds
90
91 Proc Sort Data = MY_LIB.ADSL
EH Out = Exanple3B;
93 Where SEXN = 1;
94 Where ALSO FASFL = “¥7;
NOTE: WHERE clause has been algmented.
a5 Hy USUBJID;
96 Ru
NOTE: There were 51 abservations read from the data set MY_LIB.ADSL.
WHERE (SEXN=1) and (FASFL='Y®
NOTE: The data set WORK.EXAMPLESB has 51 observations and 9 variables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds
a7
98 Proc Sort Data = NYLIB.ADSL
a3 it - Exampledt;

100 Hhere SEXN "

101 Where SAME AND FASFL = Y

: WHERE clause has been augmented.
102 By USUBJID;

103 Run;

here were 51 observations read from the data set MY_LIB.ADSL .
NHEHE (SEXN=1) and (FASFL='Y');
: The data set WORK.EXAMPLE3C has 51 observations and 9 variables.
: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

Display 6. WHERE= Option and WHERE Statement in
a Procedure

B Log - (Untitled)

234

135 Proc Sort Data = MY_LIB.ADSL (MHERE = (FASFL = "Y"))
Out = Exampledn;

13? Hhere SEXN = 1;

NOTE: WHERE clause has been augmented.

138 By USUBJID;

139 Run;

[_[DIx]
=l

NOTE: There were 51 observations read from the data set MY_LIB.ADSL.

MHERE (FASFL="Y') and (SEXN=1);

NOTE: The data set WORK.EXAMPLE4A has 51 observations and 9 variables.
NOTE: PROCEDURE SORT used (Total process time):
real tine 0.01 seconds
cpu time 0.01 seconds
140
141 Proc Sort Data = MY_LIB.ADSL (MHERE = (FASFL = "Y”))
142 Out = ExampledB;
143 Where SEXN = 1;
NOTE: LHERE clause has been augmented.

144 Where AGEGRIN = 1;

NOTE: WHERE clause has been augmented.
145 By USUBJID;
146 Run;
INOTE: There were 95 observations read from the data set MY_LIB.ADSL.
WHERE (FASFL="Y') and (AGEGRIN=1);
NOTE: The data set WORK.EXAMPLE4B has 95 observations and 9 wvariables.
NOTE: PROCEDURE SORT used (Total process time):
real time 0.00 seconds
cpu time 0.00 seconds

148 Proc Sort Data = MY_LIB.ADSL (WHERE = (FASFL = "Y"))

149 Dut = ExampledC;

150 Where SEXNH = 1;

: WHERE clause has been augmented.

151 Where ALSD AGEGRIN = 1; —
: WHERE clause has been augmented.

152 By USUBJID;

153 Run;

: There were 48 observations read from the data set MY_LIB.ADSL.
WHERE (FASFL="Y') and (SEXN=1) and (AGEGRIN=1);
: The data set WORK.EXAMPLE4C has 48 observations and 9 variables.
: PROCEDURE SORT used (Total process time):
real time 0.01 seconds
cpu time 0.01 seconds

155 Proc Sort Data = MY_LIB.ADSL (WHERE = (FASFL = "Y"))
156 Out = ExampledD;

157 Uhere SEXN =

: WHERE clause has been augmented.

158 Where SAME AND AGEGRIN = 1;

: WHERE clause has been augmented.

159 By USUBJID;

160 Run;

: There were 48 observations read from the data set MY_LIB.ADSL.
WHERE (FASFL=Y') and (SEXN=1) and (AGEGRIN=1);
: The data set MORK.EXAMPLE4D has 48 observations and 9 variables.
: PROCEDURE SORT used (Total process time):
real time 0.01 seconds

cpu tine 0.00 seconds

WHERE, Oh, WHERE Art Thou? A Cautionary Tale for Using WHERE Statements and WHERE= Options, continued

and the log NOTES confirm that records with both FASFL = “Y” AND SEXN = 1 were processed.

The second programming example uses multiple WHERE statements with a WHERE= dataset option. Recall that
previously we showed that a second WHERE statement is replaced in a PROC SORT. However, when used in
combination with a WHERE= dataset option, the log returns a different log message around the WHERE statements.
When reviewing the log around EXAMPLE4B, we see the WHERE clause was augmented. But, was it really? At
further examination, we see 95 observations rather than the expected 48 observations. Moreover, the later log
NOTES contradict the previous ones and describes the subsetting as FASFL ="Y” and AGEGR1N = 1. The SEXN =
1 was not used in the subsetting. In this case, the SAS® log NOTES are false. The WHERE clause was not
augmented it was replaced!

The last two programming examples show that by using a WHERE ALSO or a WHERE SAME AND statement will
execute and correctly return our expected results with 48 observations that have FASFL =“Y” and SEXN =1 and
AGEGRIN = 1.

CONCLUSION

In this paper, the different behaviors of combining WHERE statements and WHERE= dataset options has been
demonstrated. Further, misleading SAS® log messages of NOTE: Where clause has been augmented has been
exposed. Although, WHERE statements and WHERE= dataset options are a staple programming, the simplicity of
the syntax should not be overlooked in log reviews. The programmer needs to fully understand how these statements
and options in combination are being processed in DATA steps and PROCEDURES. lt is critical to review logs for
expected results including confirming any WHERE clause augmentation or replacement and number of observations
in the resulting output dataset.

ACKNOWLEDGMENTS

First, | would like to thank my Lord, Jesus Christ. It is through Him that | find my strength, patience, and resolve.

Next, | would like to thank my family: my encouraging husband, Justin, and my kids (Hope, Faith, Justin, Danny,
Charity, and Paul) who are my never-ending source of happiness.

RECOMMENDED READING

e Base SAS® Language Reference

e Base SAS® Procedures Guide

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:

Britney Gilbert

Juniper Tree Consulting, LLC
Britney.Gilbert@JuniperTreeConsulting.com
www.JuniperTreeConsulting.com
@JuniperTreel9

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	Where Statements and options in a DATA step
	Using Multiple WHERE Statements IN A DATA STEP
	Using A WHERE Statements and a WHERE= Option IN A DATA STEP

	Where Statements and options in a Procedure
	USing Multiple WHERE Statements IN a PROCEDURE
	Using A WHERE Statements and a WHERE= Option IN A PROCEDURE

	Conclusion
	Acknowledgments
	Recommended Reading
	Contact Information

