
Paper RF13-2014

The Use of PROC FCMP to Manage Your Functions
Jennifer Tsai, MPH, University of Southern California, Los Angeles, CA

1

ABSTRACT

 SAS programming includes many built-in functions that can be programmed within the DATA Step to
execute specific tasks. However, to run certain calculations and tasks that are not included in the SAS ®
programming procedures, SAS users may choose to write their own user defined functions. PROC FCMP allows
programmers to store their written functions in a work library that can then be used in subsequent code similar to how
the built-in functions in SAS are used. This procedure provides a streamlined and efficient way of managing complex
and tedious codes. The purpose of this paper is to demonstrate how we can utilize Proc FCMP to store and run a
user defined function in the DATA Step.

INTRODUCTION

 Proc FCMP stores user-defined functions, which can be executed in subsequent DATA Steps. This is similar
to how we call up functions that are defined in the SAS user system.

Basic FCMP syntax looks like the following:

APPLICATION OF THE PROC FCMP PROCEDURE

In this example, we look at how Proc FCMP can be used to create a new date variable called
“complain_date” to output formatted complain dates a graduate advisor received from her graduate students about
their classes in the past year given only the month and day the complaint was received (Table 1).

Table 1. Complain Data

Student Name Complain_Month Complain_Day

John
Mary
Daniel
Molly
Daniel
Laura
Joy
Mark
Daniel
Emily
Owen
Joy
Heather

06
07
07
05
01
04
08
02
03
11
09
10
12

27
19
26
17
20
11
02
16
14
24
04
31
10

PROC FCMP OUTLIB = LIBNAME.DATASET.PACKAGE;

FUNCTION FUNCTION-NAME (ARGUMENT... ARGUMENT);
... Program Statements...

RETURN (EXPRESSION);
ENDSUB;

2

CREATING THE FUNCTION THROUGH PROC FCMP

 Before we can utilize the function, we must first create the specific task we want our function to perform
using Proc FCMP. In this example, we want to return a complete complain date with the month, day, and year the
complain was received given the current date (Program 1).

Program 1. Creating the Create_Date Function Using Proc FCMP

OUTLIB

 The Outlib statement tells SAS where the function is written once the Proc FCMP step ends utilizing a three-
level name. In this example, we stored the function in a package called "myfunc". The package is then stored in the
data set "mwsug.complain".

PROC FCMP

 The Proc FCMP statement informs SAS that we are about to create a user-defined function.

FUNCTION

 The Function statement informs SAS to return a value once the data program is run.

FUNCTION NAME & Argument(s)

 The Function Name statement specifies the name we created for our task-specific function. Here, we called
our function "create_date". Argument(s) included in the program tells SAS the specific argument (i.e.,
numeric/character constant, variable, or expression) we want. Here, we have four numeric arguments composed of
the given complain month and day in the date set, and the current month and current day which will be specified once
we run our function. The additional program statements are similar to a regular DATA Step statement that performs
the specific tasks we have written. In this case, we have included an "If/Else if" statement that will parse out the data
based on the given dates.

RETURN (EXPRESSION)

The Return statement specifies that a value needs to be returned at the end of our function, and the
Expression statement is the name we call the value we want returned. Here, we call our return expression
"new_date".

ENDSUB

The Endsub statement informs SAS to end the Function.

LIBNAME mwsug 'T:\MWSUG';

PROC FCMP OUTLIB=mwsug.complain.myfunc;
 FUNCTION create_date (m, d, current_month, current_day);
 if m > current_month then new_date = mdy(m, d, 2013);
 else if m < current_month then new_date = mdy(m, d, 2014);
 else do;
 if d > current_day then new_date = mdy(m, d, 2013);
 else new_date = mdy(M, d, 2014);
 END;
 RETURN(new_date);
 ENDSUB;
run;

3

USING THE PROC FCMP FUNCTION WITH OUR DATASET

Now that our function is written and stored using PROC FCMP, we can now recall the function to be utilized
in formatting our data (Program 2).

Program 2. Using Our Created Create_date Function

OPTIONS CMPLIB

 The CMPLIB statement informs SAS where to locate the function. Here, our "Create_date" function has
been stored in mwsug.complain. If more than one function has been created and stored in different libraries or data
sets, multiple libraries or data sets can be specified.

CREATE_DATE

 The "Create_date" statement is the name of the function we created and is used like any other
previously defined SAS function/statement.

THE RESULTING OUTPUT

OPTIONS CMPLIB=mwsug.complain;
 Data complaindays2;
 set mwsug.complain;
 complain_date = create_date(cp_month, cp_day, 6, 24);
 FORMAT complain_date mmddyy8.;
 run;
PROC SORT DATA=complaindays2;
 by complain_date;
 run;
 TITLE 'Creating complain_date via user-defined function';
 proc print data=complaindays2;
 run;

4

CONCLUSION

 Using Proc FCMP to create a complete date variable is all but one of the many functions a SAS programmer
can create. Other common functions using the PROC FCMP procedure include other formatting functions, weight
conversions, calculations, macros, etc. The functions can be as simple and as complex as the SAS user desires.
Regardless of what the function is utilized for, if the function is not pre-defined in SAS, Proc FCMP allows users to
create and manage their own user-defined function(s) that can be used for multiple data sets.

ACKNOLWEDGEMENTS

The author would like to acknowledge the guidance and assistance of Arthur Li.

CONTACT INFORMATION

 For any additional comments or questions, please contact the author at:

 Jennifer Tsai
 University of Southern California
 2001 N. Soto Street, 3rd Floor
 Los Angeles, CA 90089
 tsaijy@usc.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

