
1

MWSUG 2016 – TT13

An Animated Guide: The Internals of PROC REPORT
Russ Lavery, Bryn Mawr PA

ABSTRACT
PROC REPORT is an exciting “big file technique” that every programmer should know. PROC REPORT
allows the creation of complicated reports, with many levels of summarization, while only reading a large
source file one time. PROC REPORT allows -in just one step- summarization to a desired level,
calculation of new variables and the appending of different kinds reports into one complex report. ALL this
happens in one read of the input data. Especially interesting is that the internal file for PROC REPORT, a
file that holds “the combined multiple report” can be sent to a SAS ® data set and used as a input data.

This paper will attempt to show the time sequence of the internal actions of PROC REPORT. Knowing the
time sequence of actions, especially calculations, is crucial to doing complicated PROC REPORTs. This
paper supports a highly animated PowerPoint deck where the time sequence could be demonstrated as a
sequence of events. This paper must use screen prints from the presentation and words, knowing words
are less effective than visuals, to explain the time sequence.

INTRODUCTION
Figure 1 is just an illustration of what is meant by combining multiple reports into one – and doing that in
only one pass through the data. Remember a data read is an expensive operation.

I think of Figure 1 as combining two different kinds of reports. Inside the red box I “see” something like a
PROC FREQ – a crossing of variable values. This is powerful because PROC REPORT will add columns
depending on the number of zones that happen to be in the data set.

Appended to the
right we see a
different type of
report. Three
columns show
averages for three
different variables
but there is no
“crossing” of the
variables involved.
An interesting trick
is that the internal
file for this report
can be sent to a
SAS table and
used in some other
way.
The fact that
PROC REPORT
can produce all of
this in one read of
the data is why I
call PROC
REPORT a “big file
technique”.

Figure 1

2

PROC REPORT INTERNALS
Please look at the
important graphic
in figure 2.
In the upper upper-
left-hand corner we
see the data set
that will be used
for our examples –
though many
examples will have
a where clause to
limit the data used
in the report.

On the left-hand
side we see the
SAS syntax.

Figure 2

On the right hand side we see a representation of the computer’s RAM holding the PROC REPORT
internal file (the Computed Summary Information or CSI). In the bottom right-hand corner, we see the
output. A slide represents a complete example.

THE THREE MAJOR STEPS INSIDE A PROC REPORT
In figure 2 you can see that part of the RAM holds what looks like a SAS table. The maroon colored table
is an internal file for PROC REPORT and is called the computed summary information or CSI.

The major process of producing a PROC REPORT has three steps:

Step one: The evaluation phase: In this step SAS reads the syntax and creates the structure for the CSI
(as well as creating internal code that PROC REPORT will run). Of crucial important importance is the
column statement. Variables in the column statement will be in the CSI.

Step two: The setup phase: In this step SAS reads the data from the source file into the CSI. I now think
of PROC REPORT is a “big file technique” because it is very efficient. The source file is only read once. If
we were reporting on “sales by state” and had millions of individual sales records, they would be read
once into the CSI which would have 50 rows of data. Any calculations required would be on the 50 rows
of data and would be fast. The setup phase really makes PROC REPORT a great tool because, by
reading the big file only once, we get the report we want in a short amount of time.

Step three: Report row phase: After reading all the raw data from the source file and summarizing to get
to whatever grouping level desired, it is common for a programmer to want to perform a calculation on
each, or at least some, of the rows in the CSI. The CSI is processed from top to bottom, one row at a
time, and calculations are performed on each row. After all the calculations have been performed, a row
is sent to an output data set to be routed through the ODS and displayed in some format.

3

RULES
The major deliverable of this talk will be showing the reader pictures of the internal process of PROC
REPORT. This will allow a reader to “see” what the words in the documentation mean. I want to collect all
of rules in this one place, so that this paper can be used as a reference.

I do not expect just reading the rules will offer much enlightenment. It is suggested that you read this
paper in three steps. First, read the rules quickly. Second, read the rest of the paper and see how the
rules are applied. Third, come back and read the rules again. I only expect that the rules will make any
sense if you have had a chance to study some of the examples contained in the rest of the paper.

*The Column statement creates variables in the Computed Summary Information.
 To use a variable, from a data set, you request it via the column statement.
* Variables mentioned in the column statement will appear in the CSI
*If you need a variable in a calculation, but do not want to print it, list the variable in the column statement
 and define it as “NOPRINT”.
*Define statements assign characteristics to variables (group, order, across, sum, NOPRINT).
*Rbreak before/after, or compute before/after create a “report level” summary line in the CSI.
*Break before/after var, or compute before/after var, create a “variable level” summary line in the CSI.
*Summary lines in CSI are not printed unless you code a break line with a / summarize option.
*Compute variable blocks execute on every line in the CSI. Please note that they execute 1) in the order
in which variables appear in the column statement and 2) that all compute var. blocks execute before the
Compute Before/Compute After blocks.
*Compute before Var blocks create lines in the CSI and then execute when SAS is processing that line, in
the CSI, that is before/after a new value of the variable.
*Compute before blocks (no variable mentioned) create lines in the CSI and execute when SAS is
processing that line, in the CSI, that is before/after all other lines in the CSI
* The CSI always contains a _break_ column that is used by PROC REPORT to identify the level of
summarization for that row and “trigger” internal processes.
* Summary lines in CSI are not printed unless there is an associated Break statement with a /summarize
option. This can seem a bit confusing but giving programmers control of the process is a good thing and
allows the creation of complicated reports.

EXAMPLE 1: AN ILLUSTRATION OF BASIC PROC REPORT STEPS
Figure 2 shows all the steps “at the same time” and is inaccurate. It’s difficult to illustrate a time sequence
on a printed page.

Stage 1: In the evaluation stage, the column statement is read and used to create the CSI structure. At
this point, the CSI is a table, with the metadata information we might see from a PROC CONTENTS, but
with no rows of data.

The CSI will always have an extra column called _break_. This is created by PROC REPORT and is
used, by PROC REPORT, to identify rows that are summary rows as opposed to rows containing detailed
data. The first row in this CSI is of type _R break_. This tells PROC REPORT that this line, in the CSI, is
a report level summary. Any numbers in this row will be describing the whole input data set (or at least the
rows from the input data set that made it through the where clause – here we coded where zone LE 2 just
to make the output fit on a slide).

PROC REPORT is fast and here is one trick that makes it fast. In this example, as each observation is
read into the CSI it affects two rows. Each observation will affect the summary row and also affect the role
for its zone. Having observations change multiple totals is very powerful and a great speed trick. It is easy
to see that the total number of bathrooms where zone is less than or equal to two is, in fact, 17.

4

At this stage, because zone is defined as “group”, PROC REPORT knows that it will group data by zone.
Price and baths are defined as type “sum”. We could ask for other types (Min, Max average and others).
By asking for type “sum” we are going to get the totals of the prices and bathrooms, not only on rows for
zone one and zone two – but also for the report level row. We will come back to this point later.

In step three, the Report row phase, the CSI is read from top to bottom, one row at a time, and
appropriate calculations are performed.

The code has a “compute before” block and SAS knows that a “compute before” statement should only
be executed on the row “that is before any other rows in the CSI” and is type _Rbreak_. “Compute before”
and “Compute after” statements only execute on rows of the type _R break_ but the individual compute
blocks are smart enough to know whether they should execute on the first, or on the last, row in the CSI.

A “Compute before” statement is used to make the output more understandable. It changes the zone, on
the first line, to “ALL” and that makes the report easier to read. You should note that zone was defined as
character and was also defined as being wide enough to hold the character string “ALL”. If the zone were
numeric, or was character, but not wide enough to hold three letters, we would have a problem.

EXAMPLE 2: AN ILLUSTRATION OF TIMEING IN THE REPORT ROW PHASE
To make various
“cut and pastes” of
output fit on these
slides I had to use
unusual
abbreviations for
the variables.

STY stands for
style of house.
REGN stands for
the region of the
city in which the
house is located.
DETL is a “made
up” variable that
has no logical
connection to
selling houses. It is
a detail variable
and, by that I
mean, it will show
up on every row in
the CSI.

Figure 3

REPT stands for report and this variable has no logical connection to selling houses. It is just a name.
GRUP is a variable that has no logical connection to selling houses. The variable name is pronounced
like group and I just want to show this variable values to “the group of people attending the seminar”.

Please start by looking at the code on the left-hand side of figure 3. The column statement lists the
variables that will be in the CSI. The rightmost variable is n, a PROC REPORT reserved word that
causes PROC REPORT to count the number of rows. STY and REGN are “order” variables and DETL,
REPT and GRUP are “computed”. In this example, we will compute most of the values in the CSI. This is
how the CSI would look at the end of stage II – the setup stage.

5

As figure 3 says, changing the sequence of the “code blocks” does not affect the order in which blocks
execute. Blocks are aligned to variable names and execute in the order in which the variables appear in
the column statement.

I’d like to discuss the different compute blocks that were coded in this example. Combined they created a
CSI (that we can examine using the out = option) that will allow us to deduce the timing of the execution
of compute blocks.

Compute block one creates a row in the CSI but does not cause any calculations to execute. This might
seem a bit weird but is a characteristic of a PROC REPORT that a programmer can exploit.

Compute block two is a “compute var” block and it computes a variable in the CSI. It will set the value of
detail to 333. Important rules concerning “compute var” blocks are 1) “compute var” blocks execute on
every line in the CSI and 2) execute before any “compute before” or “compute after” blocks

Compute block three is a “compute var” block and sets the value of REPT to 10.

Compute after style is a “compute after var” block it executes only on the lines in the CSI that occur after
STY changes value. This block does not actually request that any calculations be done. It was intended to
show that the “compute before var” and’ compute after var” blocks create rows in the CSI.

We should remember that STY was defined as an order variable and that caused all the rows of a
particular style of house to be “bunched” together and also to have the groups sorted.

Block five is also a “compute after var” block. It causes REPT to have a value of 3 and GRUP to have a
value of 4. Block five was created to allow a reader to see, on which lines, those kinds of statements
execute.

Block six is a “compute after” block. We should remember that, the CSI is processed from the top row to
the bottom row and that PROC REPORT performs “appropriate” calculations on each row of the CSI. The
statements in block six will only execute on the last row of the CSI – where the value of _break_ is
Rbreak and the row is the last row of the CSI.

6

Figure 4 focuses
on the issue of
compute blocks
and when they
execute. If you are
going to do
complicated
calculations in a
PROC REPORT
you must know the
timing of the
different compute
blocks.

Figure 4 shows the
CSI after all the
compute blocks
have executed and
so it can be used
to illustrate the
rules listed above.

Figure 4

As a start, let’s take a look at the column _break_. It has values of _R break_, regn and sty. These
values identify rows that contain summary level information. They identify rows where grouping variables
have changed values and, with proper coding, these rows in the CSI can occur before, or after, the
variable changes value.

If you look at previous figures you can compare the raw data with the value for the n variable that occurs
on summary lines under the variable n. A reader can confirm that n, in these rows, is holding summary
level data, generally, for the rows above. The first row in the CSI was created by the “compute before”
block and contains data (n is six) that summarizes rows that follow.

DETL has a value of 333, even on the first and last rows of the CSI, because “compute var” blocks
execute on every line of the CSI – and they execute before any other compute block.

REPT has a value of 10 on most rows, but not all. On some rows the value of REPT is three. One must
ask if the values of REPT were, at one time, 10 and then were changed to three or if they were always
valued at three. Whenever REPT has a value of three GRUP has a value of four and this suggests that
the value of three came from the “compute after regn” block.

The “compute after sty” block just adds a line to the CSI. A programmer will often want to create lines in
the CSI that she does not print and we will explore this more in later examples.

The last compute block, the “Compute after” block, gives strong evidence as to the timing of computes. It
instructs to take the current value of REPT and multiply it by 2.2. It also overwrites the value of GRUP. If
you look in the CSI, REPT has a value of 22. The only way this could occur as if REPT had been set to
10 by a “compute var” block and then multiplied by 2.2. This is strong evidence that “compute var”
statements execute on every line and execute before other compute blocks execute.

Understanding the timing of execution of compute blocks is critical to programming complicated reports.

7

EXAMPLE 3: IF STATEMENTS AND HOW DUMPING THE CSI IS CONFUSING
If statements can
be useful when
creating a
complicated report.
Coding if
statements is a bit
tricky and I use a
three step process.
Step 1: Before
writing any if
statements, I write
the program
without if
statements and
“dump” the CSI to
a file - which I
print. It is good to
see the CSI
because not all
rows in the CSI are
printed to the SAS
listing and I like to
see the “missing”
rows.

Figure 5

However; there is a problem with “dumping” the CSI. When we use the out = option to “dump” the CSI to
a file SAS fills in any missing values that had been caused by values repeating over several lines (please
see the STY variable in figure 5). In the CSI, these values are missing and so one cannot code if
statements by simply looking at a “dump” of the CSI. If you look in figure 4, the fourth row does not show
the word “condo”. That value is missing in the CSI and in the listing but not in the “dump” of the CSI.

Step 2: I print the listing/output from the PROC REPORT. This does not show all of the rows in the CSI
but does show where repeated values have been set to missing.

Step three: After comparing what I’ve seen, in the previous two steps, I’m ready to take a try at coding the
if statements. If statements require a little bit of thinking because, if one were to get a data refresh with
more rows and more repetitions, the pattern of missing values might change. We will examine a few rows
in The CSI in figure 5.

The first row came from a “compute before”.
The second row is for one house that is a condo in region one.
The third row is a summary row, because we have reached the end of condos in region one. Note that
RBreak has the value of regn,

The fourth row, with the missing value for STY, is actually a row describing a condo in region two.
“Condo” is suppressed because it would be a repetition of the word “condo” in the row above. Putting
underlines on summary lines makes reports a lot more readable.

The fifth row is a summary for condos in region two note that the column _break_ is valued as regn. This
is a REGN level break line.

The sixth row is a summary for all the condos. REGN is missing on this row and that makes sense. This
row summarizes condos for more than one region. It summarizes condos over region 1 and region 2. It
makes sense that REGN is blank on this row. Notice that _break_ has the value of STY on this row.

8

I also ask you to look at the output at the bottom of this figure. Compute statements cause the creation of
rows in the CSI but they do not cause those rows to print. Only break statements with a /summarize
option cause summary rows in the CSI to print. Because of this, the printed output, shown in the bottom
right-hand corner of this figure, is much smaller than the CSI. This looks weird but is a bit of brilliant
programming logic.

Programmers have good reason to have rows in the CSI that they do not print. These rows allow a
programmer to compute running percentages as we will see in the next example.

EXAMPLE 4: PERCENTAGES WITHIN GROUPS OR “RETAINING” IN PROC REPORT
This example
covers a pretty
complicated topic
and will require
several slides.
Even the code for
this example would
not fit on one slide.

Figure 6 only
shows part of the
code for this
example.

This report does
not make a very
compelling
business story.
People might say
that managers
would not want this
report, and might
be right.

Figure 6

However; this report does fit on a slide and demonstrates several important concepts.

We want to use PROC REPORT to compute the total sales inside a zone. The report (lower right corner)
looks useful.

We also want to compute, for each style of house in a zone, the two percentages of sales. We wish to
see, for each row, the row’s percent of the total dollars in the data set and the percent of the total dollars
in the zone.

To calculate these percentages, we need the denominators for the calculations to be stored somewhere
in RAM. The denominators will be stored in ram, but separate from the CSI, in what are called “temporary
variables”. Think of them as the similar to the memory buttons that you have on your calculator. You can
store values in temporary variables and recall the values when you want to use them in a calculation.

9

Figure 7 shows the
rest of the code for
this example.

AllPr (all zone
prices) and ZnTot
(Zone Price total)
are temporary
variables.

Temporary
variables cannot
be named in the
column statement
– because
variables in the
column statement
become part of the
CSI.
Temporary
variables appear in
at least two
compute blocks.

Figure 7

At least one of the compute blocks will move data from the CSI into the temporary variable, as “the
proper” row in the CSI is being processed. At least one of the compute blocks will recall values from the
temporary variable so that it can be used in a computation. In figure 7, you can see that AllPR and ZnTot
do not appear in the column statement and do appear in compute blocks.

In figure 8 we start
to process the first
row of the CSI.
The “rbreak before
/ summarize ul” will
make this row print
and underline it in
the listing.

In the “Compute
before” statement
we change the
value of zone to be
a more useful
string.

Figure 8

We take the value of price for this row, which is the sum of the dollars in zones 1 and 2, and move it from
the CSI to the temporary variable. This is how you store of value in a temporary variable.

10

I also set Ptot to be missing, though this is not required. Ptote is missing already and I was just being
cautious (or confused) when I wrote this code.

 “Compute Var”
blocks execute on
every CSI row.
The statements in
the “Compute
PZne” block
execute on this
row but return
missing because
AllPr and ZnTot
are missing.

Figure 9 shows us
processing a “zone
total row”. It is not
printed because
there is no break
line with a
/summarize
option.

This code loads
the total dollars for
zone 1 into ZnTot.

Figure 9

Notice that there are two gold arrows from this compute block. This statement will execute a second time
– just as we start processing rows for zone two.

In figure 10, we
see an example of
processing rows of
data inside a zone.

The “Compute
PZne” block
executes and the
two percentages
are calculated.

This pattern
repeats until the
end of the block.

Figure 10

11

Figure 11 shows
the processing of
the last row in
zone one. We
change some text
to make the report
easier to read.

We show the total
dollars for this
zone.

The “Compute
PZne” block
calculates dollars
as percentage of
the total (.52) and
of its own (1.00).

Figure 11

The next row of
data will allow us
to change the
value of ZnTot.

In figure 12 we see
the processing for
the compute
before zone block.

It just moves the
value of price
(which has been
defined as a sum
variable) from the
CSI to the
temporary variable
ZnTot.

Figure 12

 We now have a divisor we can use in calculating percentages for zone two. Please note that we did not
have to change the divisor for the Ptot which is stored in AlllPr.

12

Figure 13 shows
the calculations for
a typical row inside
of zone two.

Calculations are
done because the
“Compute PZne”
block executes ad
executes on every
row.

A similar pattern is
followed until we
hit the summary
row for zone two.

Figure 13

Figure 14 shows
the processing for
the summary row
for zone two.

Two blocks of code
execute.

They are:
 ”Compute PZne”
and
“Compute After
Zone”.

The “break after
Zone / summarize;”
will cause the line
to print.

Figure 14

13

Figure 15 shows
the processing for
the final row in the
CSI.
To make this final
row of output, two
sections of code
must execute.

First the “Compute
PZne” block
executes to
calculate the
percentages.
Pzne is calculated
and is calculated
wrong. SAS
divides 771700 by
373900. SAS
resets this to
missing in the
“Compute after
block”.

Figure 15

Then the “Compute after” block of code executes and this block deserves a bit of discussion.
We change the text in the variable “zone” to “CITY SUM” to make the report easier to read.
PZne is set to missing. PZne was calculated incorrectly and, besides, does not make logical sense on
this row. We calculate PTot again, but this was not required. PTot had been calculated correctly in the
“Compute PZne” block

REFERENCES
It is useful to know the timing of calculations when coding complex PROC REPORTs.This talk – the
PowerPoints and my voice, in its full 2 ½ hour length- was burned onto a CD and included in the back of
the hardcover (only) version of Art Carpenter’s excellent book on PROC REPORT. If you have a chance
to buy this book I would do so – especially if you can get the hard cover version. I appreciate the chance
I had to work with Art on this project.

ACKNOWLEDGMENTS
Thanks to all the helpful folks at SAS and especially those at Tech Support.

RECOMMENDED READING
Carpenter's Complete Guide to the SAS REPORT Procedure (Sas Press)

CONTACT INFORMATION
Your comments and questions are valued and encouraged. Contact the author at:
Russ Lavery Russ.lavery@verizon.net

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.
Other brand and product names are trademarks of their respective companies.

	Abstract
	Introduction
	PROC REPORT INternals
	the three major steps inside a PROC REPORT
	RULES
	Example 1: An illustration of basic PROC REPORT steps
	Example 2: an illustration of timeing in the report row phase
	Example 3: If statements and how dumping the csi is confusing
	example 4: percentages within groups or “retaining” in PROC REPORT
	References
	Acknowledgments
	Recommended Reading
	Contact Information

