
1 

Paper 47-2019  

Connecting to Datasets through Python and SAS® 

Joe Matise, NORC at the University of Chicago 

ABSTRACT  

Python is a powerful tool for working with data, and makes the perfect partner to SAS to process data, 
particularly data that is obtained from online sources where programmers have developed open source 
Python code to connect to published APIs. 

SAS has developed two tools to make working with Python easier for SAS programmers, without needing 
to know nearly any Python - and also made working with SAS easier for Python programmers who do not 
know SAS!  In this paper, we explore these tools, as well as how to use SAS with Jupyter Notebooks, and 
show how to download some data from a few data sources. 

This paper is aimed at an intermediate level programmer, but does not require particular SAS or Python 
knowledge and should be comprehensible to anyone.  A basic understanding of using APIs to access 
data can be helpful but is not required. 

INTRODUCTION  

In today’s era of open data, it is easier than ever to connect to large, complex public datasets, courtesy of 
the vast trove of open source software on sites like Github.  While SAS tends to be underrepresented in 
the open source world, Python is one of the most common languages that open source packages are 
developed in.   

At the same time, SAS is one of the most powerful tools available for quickly producing analyses, reports, 
and crunching large amounts of data.  While Python is capable of doing most things SAS is, it is often 
easier to use SAS for the same task, and in many environments SAS servers are far more powerful.   

Fortunately for SAS developers and Python developers alike, it is now possible to develop in SAS and 
Python while knowing primarily only one language or the other.  SAS provides two packages, SASPy and 
the saskernel for Jupyter notebooks, which allow Python developers to write Python code that will call 
SAS routines – or allow SAS developers to use Python code to query datasets and then move the data 
easily into SAS for further processing there. 

In this paper we will begin by explaing how to install Python and the SASPy interface module, as well as 
discussing installing and running Jupyter Notebooks.  We will then explore the topic of open datasets, 
how to use already existing Python tools to connect to them, and walk through an example data pull using 
SASPy, Jupyter Notebooks, and of course, SAS. 

STARTING OUT: INSTALLING PYTHON 

Python is a powerful interpreted programming language which can be object-oriented, procedural, or 
functional, depending on the developer’s preference.  It is an open source language, supported by the 
Python Foundation, with an incredibly diverse array of open-source packages available for it.  With the 
appropriate package, Python can be a very powerful statistical programming package rivalling SAS in 
capability and ease of use, though it has a much steeper learning curve. 

To begin with, we will need to install Python on the machine you will work from.  Python is an open source 
programming language that is supported by the Python Foundation, and like many open source 
languages has a number of packages you can choose to install depending on your needs.  For this 
tutorial, we will use the Anaconda3 package.    

Anaconda3 is a package of packages: it contains Python itself, as well as several packages for Python 
such as NumPy (useful for math and statistics work), SciPy (useful for scientific work), Pandas (a data 
manipulation package), and many more – over a hundred packages.   



2 

To download Anaconda, first install Condas (the Anaconda package manager), located at 
https://conda.io/docs/user-guide/install/download.html , and follow the instructions to install Condas and 
then Anaconda.   

One thing to watch out for here: make sure to set the PATH variable in Windows to include your python 
root directory and \scripts subdirectory to it.  This is important because it tells Windows where to find your 
python executable and your python scripts when you don’t explicitly specify their locations.   

INSTALLING OTHER ADD-ONS 

The first thing you should familiarize yourself with is not python, but pip.  Pip is the python package 
installer, and you can use it to install any packages you did not get with Anaconda. For most packages 
you can simply run (from the command line): 

 pip install <package> 

Pip can either install from the Python Package Index (https://pypi.org/), its default, or from another 
location such as Github.  In this paper we will use Github for the most part as typically it will be more up to 
date.   

If you do want to use Github as the source for pip, you will also need to install git if you do not already 
have it installed (https://git-scm.com/downloads).   

LET’S GET SASSY: INTRODUCING SASPY 

SASPy is the Python package that will let us work with SAS in Python. To start with, install SASPy using 
pip: 

 pip install git+https://github.com/sassoftware/saspy 

Or, you can use this if you did not install git: 

 pip install saspy 

They should be the same version, but if they are different the Github version is typically newer. 

Then, there are a few configuration steps. They are documented at 
https://sassoftware.github.io/saspy/install.html and reproduced here. 

First, copy the file SASConfig.py to SASConfig_personal.py (these are all found in the package folder, 
which you can find by typing pip show saspy; for me it was installed in the folder 

C:\Programdata\Anaconda3\Lib\site-packages\saspy\).  You will make some edits to this based on how 
you will connect to SAS.   

CONNECTING TO A LOCAL SAS INSTALL 

If you have SAS installed locally and are on Windows,  then you will edit the SAS_config_names field to read: 

SAS_config_names=['winlocal'] 

This tells SASPy to use the local installation.   

  

https://conda.io/docs/user-guide/install/download.html
https://pypi.org/
https://git-scm.com/downloads
https://sassoftware.github.io/saspy/install.html


3 

CONNECTING TO A SERVER INSTALLATION 

If you have a server installation, then you need to provide SASPy with the connection information to that.  
The full set of possibilities is listed in the above link; here is an example for one server configuration, 
which is a Linux Server using IOM.  Your SAS Administrator should be able to give you the necessary 
details here.  These are found at the bottom of the file, and you need to edit only the one that is relevant 
to your situation.  Usually the ‘iomhost’ is the location of your IOM server, and the rest are often correct 
as-is. 

winiomlinux = {'java'   : 'java', 

            'iomhost'   : 'linux.iom.host', 

            'iomport'   : 8591, 

            'encoding'  : 'latin1', 

            'classpath' : cpW 

            } 

 

If you use that, then you would also set: 

SAS_config_names=[winiomlinux] 

 

You also may need to add the path to sspiauth.dll to your system path in windows.   

USING SASPY 

Here’s an example program using SASPy: 

import saspy 

 

sas = saspy.SASsession(cfgname='winlocal') 

cars = sas.sasdata("CARS","SASHELP") 

cars.describe() 

 

Let’s break it down and explain what each line does. 

1. The Import Statement 

import saspy 

 

This statements tells Python to include the SASPy module.  It allows us to use the various 
methods that are included in that module, namely the methods that interact with SAS. 

2. The SAS connection 

sas = saspy.SASsession(cfgname='winlocal') 

 

This creates the connection with SAS, authenticating (if in a server environment) and spinning up 
a SAS session.  Make sure the configuration name you used in the setup is the one in this 
method call. 

  



4 

3. Pulling down a SAS dataset  

cars = sas.sasdata("CARS","SASHELP") 

 

Here we create a python dataset (type, SASdata) which contains a dataset defined in SAS.  The 
first argument is the dataset name, the second is the library name.  This is the python equivalent 
of: 

 data cars; 

     set sashelp.cars; 

     run; 

 For the most part, we can treat this just like a SAS dataset. 

4. Running a SAS-like method 

cars.describe() 

 

Here we call the describe method of the SASdata class, which basically runs a PROC MEANS 

on the dataset. 

>>> cars.describe() 

      Variable            Label    N  NMiss   Median    ...         Min       P25      P50      P75       Max 

0         MSRP              NaN  428      0  27635.0    ...     10280.0  20329.50  27635.0  39215.0  192465.0 

1      Invoice              NaN  428      0  25294.5    ...      9875.0  18851.00  25294.5  35732.5  173560.0 

2   EngineSize  Engine Size (L)  428      0      3.0    ...         1.3      2.35      3.0      3.9       8.3 

3    Cylinders              NaN  426      2      6.0    ...         3.0      4.00      6.0      6.0      12.0 

4   Horsepower              NaN  428      0    210.0    ...        73.0    165.00    210.0    255.0     500.0 

5     MPG_City       MPG (City)  428      0     19.0    ...        10.0     17.00     19.0     21.5      60.0 

6  MPG_Highway    MPG (Highway)  428      0     26.0    ...        12.0     24.00     26.0     29.0      66.0 

7       Weight     Weight (LBS)  428      0   3474.5    ...      1850.0   3103.00   3474.5   3978.5    7190.0 

8    Wheelbase   Wheelbase (IN)  428      0    107.0    ...        89.0    103.00    107.0    112.0     144.0 

9       Length      Length (IN)  428      0    187.0    ...       143.0    178.00    187.0    194.0     238.0 

You see the variables, their labels, and some basic statistics about them. (There are a few more 
hidden by the ‘…’, including Mean itself.)  This is actually built similarly to a Pandas dataframe, for 
those python programmers out there; if you know Pandas you know what to do here. 

 

Other Methods 

SASPy offers many methods, which are documented at https://sassoftware.github.io/saspy/api.html (the 
API Reference).  For the most part, they can be grouped as methods of the SASData object (such as 
describe() above), Procedure methods, and submitting SAS code directly through the submit() 

method.  We recommend developers familiarize themselves with this documentation as there is a lot of 
power in SASPy beyond simply connecting SAS and Python. 

SAS Procedures 

Some SAS procedures have been implemented directly in SASPy.  Browse the documentation to see if a 
procedure you need is there; and if not, there’s a way to add one if you are feeling adventurous. 

https://sassoftware.github.io/saspy/api.html


5 

Submiting SAS code directly 

So far, if you are a SAS programmer and not a Python programmer, you have likely been looking at this a 
bit askance – I thought this was about helping SAS programmers run SAS in Python, not making me 
learn another language!  Well, this section is for you. 

While you can do a lot in Python, if you’re not a Python developer you may prefer to run things in SAS as 
much as possible.  For that, the developers of SASPy created the submit() method.  That takes one 

argument – a text string – and sends it up the wire to SAS, returning whatever it gets back as text (SAS 
results, basically).  It also creates datasets which you can then access through the SASData class as 
above. 

rc = sas.submit(""" 

proc contents data=sashelp.class; 

run; 

""") 

The above returns the SAS results which can be parsed with the HTML method in the IPython.display 
module or other similar modules. 

BLASTING OFF: INTRODUCING JUPYTER NOTEBOOKS 

Jupyter notebooks, thus named because of the early support for JUlia, PYThon, and R, are a great way to 
develop code, particularly for doing data exploration or writing up analyses you want to distribute along 
with the code.   

Jupyter notebooks combine text markup with runnable code blocks that display their results inline.  The 
text is written in Markdown, an easy to learn syntax for writing nicely formatted text.  Jupyter notebooks 
can be distributed to other programmers and run on their machines easily, allowing for reproducible 
results with minimal effort. 

SAS added support for Jupyter notebooks, courtesy of the sas kernel, which you can install using pip: 

 pip install sas_kernel 

Jupyter is installed as part of the Anaconda installation.  Once you have installed the sas kernel, then 
open a command line window and run it: 

 jupyter notebook 

That will run the jupyter notebook server, which will then load a web page which contains the notebooks 
available to you. 

CREATING YOUR FIRST JUPYTER NOTEBOOK 

To create a notebook, select New, and select SAS as the kernel to use.  It opens a new window to the 
new notebook.  You can give it a name by clicking on the “Untitled” at the top.  You will see a single entry 
box, currently a Code block.  The two blocks you will usually work with are Code blocks (which contain 
code to run) and Markdown blocks (which contain text).   

Let’s change the first cell to a Markdown block – specifically a header.  Select the cell but don’t click in the 
text box.  Then type ‘1’.  This will change it to a header (H1) markdown cell, like a SAS title.  Go ahead 
and put a title there. 

Then click shift+enter which will “run” the block (i.e., print the header out).  It will also create a new code 
block underneath.   

In that code block enter some SAS code.  Say, run a proc on SASHELP.CLASS or similar. This is just 

normal SAS code, nothing different from entering it in a regular SAS session. Then press shift+enter, and 
see what happens.  You should get after a few seconds a message that it connected to SAS, with a 
subprocess ID and then some SAS output based on the proc you ran. 



6 

LIMITATIONS (FOR NOW) 

Jupyter notebooks do not, at least for the moment, support multiple kernels in a single notebook.  While 
you can have Python notebooks and SAS notebooks, you can’t directly use both in one notebook.  You 
can of course have a Python notebook running SASPy, and from there submit SAS code, however. 

 

 

INFORMATION WANTS TO BE FREE: OPEN DATASETS AND PYTHON 

Researchers who depend on datasets produced by other organizations, such as governments or 
nonprofits, are undoubtedly familiar with the concept of Open Data.  Open data refers to datasets that are 
freely provided for the public benefit, with no or minimal restrictions on use.  Perhaps the most common 
example used in survey research in many countries are Census datasets; provided by many countries for 
use by their citizens, these datasets are commonly used to balance samples and provide weighting 
targets.   

One of the biggest challenges to using open datasets is that there are often many steps required to get 
the data into the shape you need.  Downloading it takes time, then learning the structure of the data and 
reformatting it to meet your needs takes even more.  

Fortunately, for many open datasets someone has already done the work for you.  This is where Python 
comes in. 

PYTHON MODULES FOR OPEN DATA 

Many major open datasets have one or more Python implementations to choose from, either provided by 
the data providers or more often provided by a kind-hearted soul who’s taken the time to do all of the hard 
work These modules can usually be found on GitHub, or simply by searching the web for the name of the 
open dataset provider and python. 

In this paper we will work with the US Census data, and a package developed to work with that data.  The 
creatively named Census package connects to the US Census API and downloads data in a neat, 
compact format that is easy to work with and handles much of the back end data manipulation for you.  
All you need to know is the table you need and have an API key and you can get right to the fun part – 
working with your data. 

HANDS ON DATA WITH THE US CENSUS 

First, we will need to install the package that we found (on GitHub) locally.  We use pip for that: 

 pip install git+https://github.com/datamade/census 

Then, we need to obtain an API key.  This is a common requirement, and typically free, but this allows the 
data provider to uniquely identify requests and implement rate limiting to prevent their servers being 
overloaded.  That’s available here: 

◦ https://api.census.gov/data/key_signup.html 

Finally, because the census API is based on tables, we need to look up what table we want to download 
data for.  For this example we will query the ACS 5-year tables.  There are several ways to look up what 
table you want, we used https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtm and 
searched “Sex by age”, as we want to see a few breakdowns of the ACS 5 year totals.  That is the 
B01001 table, so we’ll query that. 

Pulling the data with Python, then sending up to SAS 

Here is the code we’ll use to download the data and then send it to SAS.  We’ll present the code first and 
then break it down line by line. 

  

https://github.com/datamade/census
https://api.census.gov/data/key_signup.html
https://factfinder.census.gov/faces/nav/jsf/pages/searchresults.xhtm


7 

The code: 

from us import states 

from census import Census 

import pandas as pd 

import saspy 

#First, define a connection using our API key 

c = Census("e7cd51b9bf4678c6e1c993116f0984b44cded26") 

 

#Download a couple of census questions 

cen_data = 

pd.DataFrame(c.acs5.state(('NAME','B01001_002E','B01001_026E'), 

Census.ALL)) 

 

#now, upload to SAS 

upload_to_SAS(df=cen_data,path='c:\\temp',sastbl='uscen_data') 

 

The import section 

from us import states 

from census import Census 

import pandas as pd 

import saspy 

Here we import the python modules we will need.  SASPy, of course, Pandas to create a data frame from 
the results, the Census module, and then the states module if we want to filter to only certain states. 

Creating a connection to the Census 

 

c = Census("e7cd51b9bf4678c6e1c993116f0984b44cded26") 

This creates a connection to the Census server, and submits our API key.  Here you will provide your own 
API key, not the fake one above, of course.  Once you have run this, you can use the object c to make 

what calls you need to the Census API. 

Get that data! 

cen_data = 

pd.DataFrame(c.acs5.state(('NAME','B01001_002E','B01001_026E'), 

Census.ALL)) 

 

Unpacking this some, this creates a DataFrame named cen_data which contains the results of the call 

to the Census API.  C.acs5.state is how we make that call; this specifies which survey to query (the 

ACS 5 year) and then to get data for a specific state or group of states.  We then pass it the list of 
information we want, mostly table names, plus the geography we want – in this case, all states. 

This returns data that can be coerced into a Pandas dataframe, and is stored in the variable cen_data. 

  



8 

Push the data up to SAS 

upload_to_SAS(df=cen_data,path='c:\\temp',sastbl='uscen_data') 

Now, we push the data to SAS.  This line actually will not work on its own; that is because it is a user 
defined function that needs to be compiled first.  Here is the definition: 

 
def upload_to_SAS(df,path,sastbl): 

    sas = saspy.SASsession(cfgname='winlocal') 

    sas.saslib('demo',path=path) 

    sas.df2sd(df=df,table=sastbl,libref='demo') 

 

This creates a new SAS session, defines a SAS library with the path you provide, and then pushes a 
pandas dataframe (i.e., the one you just created) up to SAS.   

One note here: the SAS session is not passed to or from the function, so it will create a new session each 
time you run it, and you cannot use the session outside of the function.  The dataset of course will be 
available in whatever library you put it in, but that library will need to be re-created.  If you want to be able 
to reuse the SAS session, a modification could be made to pass that as a parameter. 

def upload_to_SAS(df,path,sastbl,sas): 

    sas.saslib('demo',path=path) 

    sas.df2sd(df=df,table=sastbl,libref='demo') 

 

And then you call it like this: 

upload_to_SAS(df=cen_data,path='c:\\temp',sastbl='uscen_data', sas=sas) 

 

This requires you to have already defined the SAS connection before you call the function.   

 

At this point, your dataset is now in SAS, and you can either continue working in SASPy using 
sas.submit(), or you can move into SAS and work from there. 

 

DATA… I NEED MORE DATA! 

Census data is just one example of open data that can be easily read in with a Python API.  There are 
many other sources of data – for those Canadians out there StatCan has a similar API, for example, for 
downloading Canadian vital statistics and census-type information; see 
https://github.com/ianepreston/stats_can/ for an example Python module, and see 
https://www150.statcan.gc.ca/n1/en/type/data to identify the table numbers for StatCan. 

Google BigQuery (https://cloud.google.com/bigquery/docs/reference/libraries) is a great option for 
downloading large datasets.  Kaggle is another popular source of data, particularly for learning (or 
participating in Kaggle competitions), and has a easy to use API (https://github.com/Kaggle/kaggle-api).   

One good option for finding datasets is the CKAN service.  CKAN stores information (metadata) about 
open datasets, voluntarily uploaded, including how to access them.  While CKAN does not actually store 
the data themselves, it is often easy to get to it from the information CKAN has.  You can connect Python 
to CKAN using the CKAN API (https://github.com/ckan/ckanapi) or browse the readme on that page for 
more about how to use CKAN.  Many of the datasets indexed by CKAN also have Python packages 
available to use for downloading their data as well. 

https://github.com/ianepreston/stats_can/
https://www150.statcan.gc.ca/n1/en/type/data
https://www150.statcan.gc.ca/n1/en/type/data
https://cloud.google.com/bigquery/docs/reference/libraries
https://github.com/Kaggle/kaggle-api
https://github.com/ckan/ckanapi


9 

CONCLUSION 

A veteran SAS developer has many tools in their belt, and thanks to SAS Institute’s support, Python is 
now one of the more powerful tools that a SAS programmer can utilize.  Python’s widespread adoption in 
the open source community has lead it to be a great source for code other developers have created to 
accomplish common tasks, so we do not have to reinvent the wheel to connect to many data sources.  
Even with only a rudimentary understanding of Python, we can take advantage of these open-source 
modules to save time and access more data than ever before. 

We would encourage you to not only be a user, but a creator as well.  If you do find modules have not yet 
been developed for your particular use case, make one and share it.  SASPy also is an open source 
project, and has simple documentation for how to contribute a new module of your own.  Contributing to 
projects is often as easy as writing code to solve your problem and then posting it to the project’s Github 
page.  And even if you don’t feel comfortable writing code yourself to post, you can create an issue and 
include the necessary information to solve it, so someone else can easily add it to the project. 

ACKNOWLEDGMENTS 

Thanks to Matt Kastin for giving helpful feedback on the paper, and the whole NORC Data Services team 
for giving feedback on the presentation that goes with it.  Thanks to Derek Montrichard and the Toronto 
SAS Users Group for generously inviting me to give the original talk that spawned this paper.  Also, 
thanks to Dave Trevarthen and Jeff Vose for giving me much needed support and encouragement to 
write this paper and to present it. 

RECOMMENDED READING 

• SASPy documentation, https://sassoftware.github.io/saspy/ 

• How to configure Python and SASPy, http://www.scsug.org/wp-content/uploads/2018/10/McCarthy-
How-to-configure-Python-and-SASPy.pdf 

• The SAS Dummy, How to run SAS programs in Jupyter Notebooks, 
https://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/ 

 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Joe Matise 
NORC at the University of Chicago 
Email: matise.joe@gmail.com 
https://stackoverflow.com/users/1623007/joe  
 

 

https://sassoftware.github.io/saspy/
http://www.scsug.org/wp-content/uploads/2018/10/McCarthy-How-to-configure-Python-and-SASPy.pdf
http://www.scsug.org/wp-content/uploads/2018/10/McCarthy-How-to-configure-Python-and-SASPy.pdf
https://blogs.sas.com/content/sasdummy/2016/04/24/how-to-run-sas-programs-in-jupyter-notebook/
mailto:matise.joe@gmail.com
https://stackoverflow.com/users/1623007/joe

