

1

MWSUG 2019 – Paper AL-078

Machine Learning? The Machine Already Knows.

Software-Intelligent Application Development Provides

Reliability, Reusability, Extendability, and Maintainability

for Strong Smart Systems in an Ever-Changing World

LeRoy Bessler PhD

Bessler Consulting and Research, Mequon, WI, USA

Le_Roy_Bessler@wi.rr.com

Abstract

Applications designed and built with Software Intelligence (SI) are robust, made of reusable

parts, and easy and quick to extend or maintain. With dynamically auto-customizing code, such

"living" applications go beyond change tolerance to change amenability, and further—to change

implementation. They cope with ever-changing user or management preferences, run-dates, data

dates, and data content. Common types of changes in report/graph content, format, and function

are handled without reprogramming. If business rules do not change, an SI application can have

eternal life.

Whether you are a new or experienced SAS
®
 programmer, or an analytically oriented user who

does not think of herself or himself as a programmer at all, this paper—which assumes no

advanced SAS knowledge—shows you how to apply principles of Software-Intelligent

Application Development, which are really programming-language-independent, to make your

use of SAS software safe, simple, and speedy.

One of the tools for SI implementation with SAS software is SAS macro language. For users

with no SAS macro language experience, the standup presentation includes a brief, but sufficient,

introduction.

Besides explaining the few, but powerful, principles of Software-Intelligent application

development, the paper provides you with some widely applicable practical examples that you

can put to use back at work.

Introduction

Software Intelligence permits application programs to dynamically customize themselves,

without human intervention, to continue to meet design requirements in a changing environment.

Rather than static expressions and engines of single-point-in-time programmer decision or user

choice, such adaptive programs are “Living Applications”. They go beyond change amenability

(maintainability) to change auto-implementation. Short of a revolution in host computer

technical architecture, or in business or research process to be served, such applications have the

gift of “Eternal Life”.

This paper explains how the objectives of reliability, reusability, extendability, and

maintainability can be met with the SAS System by using Software Intelligence (SI), and

2

illustrates that with examples. Parameter files, macro variables, and macros are SI enablers for

applications that do dynamic auto-customization (i.e., that modify themselves).

Some prior implementations of dynamically auto-customized applications—that can handle,

from run to run, the vicissitudes of data and/or date while meeting report or graph format and

function requirements, and that adapt to changing user or management preferences—were

documented in a series of papers. (Please see the References.) This paper assumes basic

understanding of SAS macro language.

Five coding examples are provided in the Appendix. Example 5 is derived from an interesting

application of Software-Intelligent Application Development presented in Reference 5.

Software-Intelligent Application Development

SI application development is necessary for Maturation in SAS software Use. The first stage of

SAS software use is as an end-user tool—for ad hoc data analysis or data presentation tasks. The

second stage is when the site's SAS support staff enhance SAS software as an enterprise-wide

utility, by providing site-specific customization, macros, formats, templates, etc. The ultimate

stage is SAS as a production application development tool, whether for on-demand online/web

systems or scheduled (possibly computer-scheduled) batch processing systems.

Ad hoc processing is typically: (a) one-time or irregularly needed; (b) custom and iterative in

development of the program code; and (c) often done interactively. Production processing,

online/web or batch, is standardized and hands-off. It must get everything right the first time,

every time.

Reliability

One reliability policy is simple—once your program is working right, never touch it again. The

only safe program change is no change.

More hazardous than changing your own long-in-service program is to change one that someone

else wrote. Most hazardous is to change a program that several people have maintained. Part of

an old program may even be doing no longer needed processing and producing no longer

referenced outputs. Such refusal or neglect to maintain the program is a tacit admission that no

change is a safe change.

But, since user needs do change, an application program must change to meet them. What is a

reasonable recourse?

Foreseeable change can be, and is best, supported through Software Intelligence.

For example, if a tabular or graphic report takes as input the last N years, months, weeks, or days

of history, it is more prudent to keep N in a parameter file that is read by the program, rather than

“hard code” N in the program itself. Every time you or a successor might open the program to

change N, the program would be at risk.

3

Another good candidate to store in a parameter file is a goal or threshold for a measurement

variable. Since judgment of what is good or bad changes over time, it is best to plan to

accommodate that without program change.

Common for some application developers, especially if not full-time IT professionals, is to

include data in the program. This is a productivity aid during application development and

debugging, when you do not want to go to a separate file to change the input every time you need

to test a different case. However, when development is complete, data should be separated from

the program.

Too frequent in applications, especially if originally written for a supposed one-time analysis or

report (any ad-hoc application, if valuable, is likely to experience recurrent use), are manually

entered dates, for a title and/or for a filter on data selection. If such a date is dependably a

function of run-date, let the program use SAS functions to retrieve today's date and to compute

and construct the title or filter date(s) from it. If not a function of run-date, supply the manually

entered date via a parameter file, for the program to read.

Program-change avoidance (i.e., reliability enhancement) is implemented in the situations

described above by what I call “Building Firewalls”. Build Firewalls between your program and

the data, between your program and your (and everyone else’s) programming keyboard.

(My first use of “firewall” in the context of this discussion long antedated the internet, which

requires a different kind of firewall.)

With parameter files, macro variables, and macros, SI can protect program integrity, but still

support limited revision of format, content, or function—to support a “flexible freeze” (to

borrow a phrase from the 1970’s USA-Russia nuclear weapons control dialogue).

Reusability

Reusability can be implemented with includable blocks of source code, or macros. Code or

macros are best stored in shared-access libraries so that anyone, furnished with documentation as

to availability, purpose, required inputs, and provided outputs, can use it or them. Unfortunately,

including reusable code by saying “%INCLUDE sourcefilename” fails to disclose what the

reusable code’s inputs and outputs are. Invocation of a well-designed macro, however, can

require the explicit identification of the names of the inputs and outputs via assignment of values

to parameters. Other parameters are used to control the function of the macro. Such a macro

“documents” the program, and is less likely to be erroneously invoked when reused.

Extendability

When I wrote the first edition of a Visual Information System prototype, every time the number

of graph selections on the menu changed (typically, increased), I had to change lots of program

code. Eventually, I restructured the application with macro processing, and controlled the

number of graph selections via a macro parameter, supplied “outside” from a SAS AUTOEXEC

4

file. This provided extendability (or shrinkability) by requiring the change of only one number,

and protected the working program code.

The benefit was non-trivial. Prior to the extendable macro implementation, each selection line

required its own screen definition code, its own response-field initialization and editing code, etc.

The macro's Software-Intelligent design dynamically auto-customized the application, without

reprogramming every time the user needs changed.

More recently, my colleague Dr. Francesca Pierri and I updated for the web and email an

Enterprise Performance Reporting system that I had developed back in 1987. The structure

(exception reporting for the current report period, exception history reporting, summary

reporting for the current report period, and trend reporting) for each performance criterion is

made externally controllable via a table of descriptions, variable names, standards, types of

standards (comparison operators), and formats for the standard and actual values. When another

performance measure is established, one simply adds another row to the control table. Extending

the system requires no program change. Likewise, changing the standard for a performance

measure requires no program change—which ties into Maintainability, to be discussed next. The

use of such a control table is demonstrated in Example 5.

The Reality of Maintainability

As a programmer for thirty-five years, I have read and heard various claims about tools and

methods (I am pleased, at least, that the preposterous puffery of needless polysyllabification

“methodology” and “methodologies” has gone out of style) that were guaranteed to make it easy

to maintain code. Here are my early conclusions about this challenge.

Bessler's First Theorem: Application maintenance is easy only when maintainer and creator are

the same person.

Bessler’s Corollary to the First Theorem: Ease of Maintenance, E, is inversely proportional to

c raised to the power N-1, where N is the number of persons who have written or modified the

code. Count the creator in N. (One might conjecture that N should instead count the creation

event and the maintenance events, not just the creator and distinct maintainers.)

The Corollary is mathematically expressed with this formula:

E = mc N-1

c is a constant for which the exact value still must be discovered, but we do know with certainty

that 1 > c > 0 so that as the number of program maintainers (or number of program maintenance

events) increases, the maintainability goes down.

The constant m is NOT mass and the constant c is NOT the speed of light,

even if my physicist heritage forced me to emulate this famous formula, E = mc
2
.

Frankly, the value for m is arbitrary. It can be whatever you would like it to be the (arbitrarily

chosen) measure of maximum of Ease of Maintenance. You might like 100, the perfect score

when grading an examination. Or you might prefer 10, the customary maximum when ranking

the goodness of some quality on a scale from 1 to 10.

5

Whenever it is the case that N is 1 (i.e., the maintainer is the person who was the creator, and

there is this only this initial maintenance event), E is exactly equal to m, the Maximum Ease of

Maintenance, because c (regardless of its value) raised to the power 0 is equal to 1.

Bessler's Second Theorem: Application maintenance is very easy only if the maintainer created

it recently—within the last few weeks, preferably yesterday. When looking at an old program,

even a very experienced programmer often must ask herself or himself: “Why did I do that?” I

leave it to a future investigator to suggest a formula to quantify the effect described in my

Second Theorem.

Examples

The Appendix contains five coding examples. Example 1 is the easiest way to use SAS macro

language to apply simple, quick, safe changes to a program. You do not need to be a macro

programmer for this. Example 2 is a “helping” macro to do simple auto-customized reporting.

The remaining examples are bona fide examples of software intelligent applications. Examples 3

and 4 are macros to do dynamically auto-customized reporting. Example 5 combines a software-

intelligent macro with a control table to demonstrate how to build an application where the

program code will never need to be touched again. A recent interesting application of Software-

Intelligent Application Development is presented in Reference 5.

Conclusion

Software Intelligence can make application maintenance rare, quick, and safe. All foreseeable

changes and extensions can be best delivered by merely updating one or more parameter files,

rather than by changing program code, or changing %LET statements at the top of a program.

References (Related Papers by the Author)

1. Intelligent Production Graphic Reporting Applications, Proceedings of the Sixteenth Annual

SAS Users Group International Conference, 1991. Cary, NC: SAS Institute Inc.

2. Software Intelligence: Applications That Customize Themselves, Proceedings of the

Eighteenth Annual SAS Users Group International Conference, 1993. Cary, NC: SAS Institute

Inc.

3. Reusable, Extendable, Maintainable, Reliable Application Development: Using Software

Intelligence to Build an EIS with Only SAS & SAS/GRAPH
®
 Software, Proceedings of the

Twentieth Annual SAS Users Group International Conference, 1995. Cary, NC: SAS Institute

Inc.

4. Strong, Smart Systems: Software-Intelligent Development for Reliable, Reusable, Extendable,

and Maintainable Applications, Proceedings of the Twenty-Third Annual SAS Users Group

International Conference, 1998. Cary, NC: SAS Institute Inc.

5. Tell Them What’s Important: Communication-Effective Web- and Email-Based Software-

Intelligent Enterprise Performance Reporting, Proceedings of the Twenty-Eighth Annual SAS

6

Users Group International Conference, 2003. Cary, NC: SAS Institute Inc. With Francesca

Pierri PhD.

Author Information

Your questions, comments, and suggestions are always welcome.

LeRoy Bessler PhD

Mequon, Wisconsin, USA

Strong Smart Systems™

Visual Data Insights™

Le_Roy_Bessler@wi.rr.com

Dr. LeRoy Bessler has presented at conferences in the USA, Canada, and Europe, on effective

visual communication (using graphs, tables, web pages, maps, or color), SAS to Excel, tools for

SAS server administrators, users, and managers, and Application Development for Reliability,

Reusability, Maintainability, Extendibility, and Flexibility. His experience includes application

development and supporting users, servers, software, and data. He is writing a book on

communication-effective data visualization, and has declared himself to be a Data Artist.

SAS, SAS/GRAPH, and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the

USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Strong Smart Systems and Visual Data Insights are trademarks of LeRoy Bessler PhD.

7

Appendix: Examples

Example 1: Simplest Use of SAS Macro Language. Easy Way To Do Safe Program Changes

This illustration is ridiculous, in terms of the brevity and simplicity of the sample program. A

more realistic program might be tens or hundreds of lines of code, or even thousands. Suppose

that from run to run you need to change just one aspect of the program functions. E.g., do it for a

different selection of the data.

If you are going to change a program at all, it is certainly convenient to change it in only one

place, and, ideally, right at the top of the program, rather than having to hunt for the right

location(s) in the code.

The SAS Macro Facility allows your program to store information in a symbol table in computer

memory at run time, and allows your program to retrieve information from the symbol table.

Here is a sample program and the resulting output.

%LET TitleText = Students 11 Years Old;

%LET AgeSelect = 11;

title "&TitleText";

proc print data=sashelp.class(where=(age EQ &AgeSelect)); run;

 Students 11 Years Old

 Obs Name Sex Age Height Weight

 6 Joyce F 11 51.3 50.5

 18 Thomas M 11 57.5 85.0

The %LET statement is probably the easiest tool (except for %PUT) in the SAS macro language

to master. It stores information in the symbol table. (You can also do so with CALL SYMPUT,

but that is outside the scope of this discussion.)

As you can guess from above, the & is a signal to SAS that you want it to retrieve information

with that symbolic name from the symbol table. (You can also do so with CALL SYMGET, but

that is outside the scope of this discussion.)

Tip: If you are supplying a value that must appear within quotes in the final resolved run-time

program, be sure to use double quotes, as in—

TITLE "&TitleText";

If single quotes were used in the TITLE statement, the above report would display

 &TitleText

instead of
 Students 11 Years Old

8

Example 2: A Simple SAS Macro. In the prior example, a macro variable was used in a data

selection filter (i.e., to control the reported range of values). This example is the converse. It

extracts from a date-keyed data set the earliest and latest dates (i.e., the boundaries of the range

of found values), and supplies them as formatted global variables for use in a TITLE statement.

%MACRO DateRange(data=,

 DateVar=,

 FirstDateMacroVar=,

 LastDateMacroVar=);

proc sort data=&DATA out=DATES(keep=&DateVar) nodupkeys;

by &DATEVAR;

run;

data _null_;

%global &FirstDateMacroVar &LastDateMacroVar;

set dates end=Last;

by &DATEVAR;

if _N_ EQ 1 then

call symput("&FirstDateMacroVar",

 trim(left(put(&DATEVAR,WORDDATE20.))));

else

if Last then

call symput("&LastDateMacroVar",

 trim(left(put(&DATEVAR,WORDDATE20.))));

run;

%MEND DateRange;

%DateRange(data=SASHELP.CITIDAY,

 DateVar=DATE,

 FirstDateMacroVar=FirstDate,

 LastDateMacroVar=LastDate)

run;

title "Dow Jones from &FirstDate to &LastDate";

proc print data=SASHELP.CITIDAY(keep=SNYDJCM DATE);

format DATE YYMMDD10.;

run;

Output from PROC PRINT:

 Dow Jones from January 1, 1988 to February 5, 1992

 Obs DATE SNYDJCM

 1 1988-01-01 .

 2 1988-01-04 740.20

 3 1988-01-05 747.38

 1069 1992-02-05 1167.85

9

Example 3. Rank the Top NN observations from a data set, with NN being selectable and

appearing automatically in the title. If the ranking includes all the observations, or if a minimum

cutoff is used, then the title says “Ranked List of”, rather than “Top NN”. A subtitle shows what

percent of the total is accounted for in the table. An extra subtitle is generated if the minimum

cutoff is used with effect.

Output 3A: Top 10 Students By Weight

This list accounts for 61.3% of the total Weight in Pounds

 Weight

 in

 Rank Student Pounds

 1 Philip 150.0

 2 Ronald 133.0

 3 Robert 128.0

 4 Janet 112.5

 5 Alfred 112.5

 6 Mary 112.0

 7 William 112.0

 8 Carol 102.5

 9 Henry 102.5

 10 John 99.5

 ======

 1164.5

Program 3A: %TOPNN(DATA=sashelp.class,
 CLASSVAR=Name, CVARLABL=Student,

 RANKVAR=Weight,

 RVARFMT=6.1, /* make wide enough for total */

 RVARLABL=Weight in Pounds,

 NN=10, MINRVAR=.,

 TTLTEXT=Students By Weight)

 run;

Output 3B: Ranked List of Students By Weight

This list accounts for 21.6% of the total Weight in Pounds

 Only values not less than 125.0 are listed

 Weight

 in

 Rank Student Pounds

 1 Philip 150.0

 2 Ronald 133.0

 3 Robert 128.0

 ======

 411.0

Program 3B: %TOPNN(DATA=sashelp.class,
 CLASSVAR=Name, CVARLABL=Student,

 RANKVAR=Weight,

 RVARFMT=6.1, /* make wide enough for total */

 RVARLABL=Weight in Pounds,

 NN=10, MINRVAR=125,

 TTLTEXT=Students By Weight)

 run;

10

Macro Used to Produce Outputs 3A & 3B:

%MACRO TOPNN

(DATA=,

 CLASSVAR=,

 CVARLABL=,

 RANKVAR=,

 RVARFMT=,

 RVARLABL=,

 NN=,

 MINRVAR=.,

 TTLTEXT=);

DATA FORTOPNN;

SET &DATA;

%GLOBAL BELOWMIN;

IF _N_ EQ 1 THEN CALL SYMPUT('BELOWMIN','N');

IF &MINRVAR NE . THEN DO;

 IF &RANKVAR GE &MINRVAR THEN RETURN;

 ELSE DO;

 CALL SYMPUT('BELOWMIN','Y');

 DELETE;

 END;

END;

KEEP &CLASSVAR &RANKVAR;

RUN;

PROC SORT OUT=FORTOPNN;

BY DESCENDING &RANKVAR;

RUN;

DATA TOREPORT;

SET FORTOPNN;

IF _N_ LT &NN + 1;

RANK = _N_;

RUN;

PROC MEANS DATA=&DATA NOPRINT SUM N;

VAR &RANKVAR;

OUTPUT OUT=ALL SUM=SUMTOT N=NTOT;

RUN;

PROC MEANS DATA=TOREPORT NOPRINT SUM N;

VAR &RANKVAR;

OUTPUT OUT=TOPNN SUM=SUMTOP N=NTOP;

RUN;

11

DATA _NULL_;

MERGE ALL TOPNN;

FORMAT PCTTOT 5.1;

PCTTOT = ROUND((100 * (SUMTOP / SUMTOT)),.1);

%GLOBAL RANKLEN;

CALL SYMPUT('RANKLEN',LENGTH(LEFT(&NN)));

%GLOBAL MIN;

IF &MINRVAR NE . THEN CALL

SYMPUT('MIN',TRIM(LEFT(PUT(&MINRVAR,&RVARFMT))));

%GLOBAL PCTTOT;

CALL SYMPUT('PCTTOT',TRIM(LEFT(PCTTOT)));

%GLOBAL HTTLMIN;

FORMAT TTLTOPNN $14.;

IF NTOP LT NTOT AND NTOP EQ &NN THEN DO;

 TTLTOPNN = "Top &NN";

 CALL SYMPUT('HTTLMIN','0');

 END;

ELSE DO;

 TTLTOPNN = 'Ranked List of';

 IF &MINRVAR EQ . OR "&BELOWMIN" EQ 'N'

 THEN CALL SYMPUT('HTTLMIN','0');

 ELSE CALL SYMPUT('HTTLMIN','1');

END;

%GLOBAL TTLTOPNN;

CALL SYMPUT('TTLTOPNN',TRIM(TTLTOPNN));

RUN;

OPTIONS NODATE NONUMBER;

PROC PRINT DATA=TOREPORT NOOBS U LABEL SPLIT='*';

FORMAT RANK &RANKLEN..;

FORMAT &RANKVAR &RVARFMT;

LABEL RANK = 'Rank'

 &CLASSVAR = "&CVARLABL"

 &RANKVAR = "&RVARLABL";

VAR RANK &CLASSVAR &RANKVAR;

SUM &RANKVAR;

TITLE1 "&TTLTOPNN &TTLTEXT";

TITLE3 "This list accounts for &PCTTOT% of the total &RVARLABL";

%IF &HTTLMIN EQ 1 %THEN %DO;

TITLE5 "Only values not less than &MIN are listed";

%END;

%MEND TOPNN;

12

Example 4. Produce an Exception Report, but be able to automatically handle the situation of

No Exceptions. (A valuable extra is to let the program send email. One option is to email both

good and bad news; another option is to email only bad news. Another choice is whether to

attach the exception report to the email, or to web publish it and just email a hyperlink. Neither

of these enhancements is covered here, but they were implemented in Reference 5 for an

Enterprise Performance Reporting system.)

Output 4A. Tall Students in SASHELP.CLASS

 Exception Report for Height GT 65

 Obs Name Height

 1 Barbara 65.3

 2 Mary 66.5

 3 Alfred 69.0

 4 Philip 72.0

 5 Ronald 67.0

 6 William 66.5

Program 4A. %ReportOneTypeOfExceptions

 (data=sashelp.class,

 var=Height,

 comparison=GT,

 standard=65,

 ExceptionIDvar=Name,

 title=Tall Students in SASHELP.CLASS)

 run;

Output 4B. Heavy Students in SASHELP.CLASS

 Exception Report for Weight GT 150

 No Exceptions To Report

Program 4B. %ReportOneTypeOfExceptions

 (data=sashelp.class,

 var=Weight,

 comparison=GT,

 standard=150,

 ExceptionIDvar=Name,

 title=Heavy Students in SASHELP.CLASS)

 run;

13

Macro Used to Produce Outputs 4A & 4B:

%macro ReportOneTypeOfExceptions

 (data=,

 var=,

 comparison=,

 standard=,

 ExceptionIDvar=,

 title=);

%let ExceptionsFound = N;

data

 Exceptions (keep=&ExceptionIDvar &var)

 NoExceptions(keep=Message);

retain Message 'No Exceptions To Report';

set &data;

if _N_ EQ 1 then output NoExceptions;

if &var &comparison &standard;

call symput('ExceptionsFound','Y');

output Exceptions;

run;

title1 ' '; /* spacer: this could be eliminated */

title2 "&title";

title3 "Exception Report for &var &comparison &standard";

%if &ExceptionsFound EQ Y

%then %do;

proc print data=Exceptions;

var &ExceptionIDvar &var;

%end;

%else %do;

proc print data=NoExceptions noobs label;

label Message='00'X; /* Message needs no report column label */

var Message;

%end;

run;

%mend ReportOneTypeOfExceptions;

14

Example 5. Produce an Exception Report that covers multiple types of exceptions. As types of

exceptions are added to and removed from the report, and/or as the standard for any particular

exception is changed over time, no program change must be required. Create the data analyzer /

report writer once, and never change it. First, let us look at the output and the coding, and at part

of the SAS log from the execution of Program 5A. Then, we will look at the control table.

(This example is really derivative of part of a Software-Intelligent application for Enterprise

Performance Reporting prototype in Reference 5. That paper was an update, to the era of web

and email, based on my first SI application development in 1987, when I built a performance,

capacity, and usage reporting system for IT computer and communications resources.)

Output 5A:
 Exceptions in SASHELP.CLASS using Criteria Set 1

Obs Student Exception Variable Value Comparison Standard

 1 Barbara Tall Height 65.3 GT 65.0

 2 Mary Tall Height 66.5 GT 65.0

 3 Alfred Tall Height 69.0 GT 65.0

 4 Philip Tall Height 72.0 GT 65.0

 5 Philip Heavy Weight 150.0 GT 135.0

 6 Ronald Tall Height 67.0 GT 65.0

 7 William Tall Height 66.5 GT 65.0

Program 5A.
 %ReportMultipleTypesOfExceptions

 (data=sashelp.class,

 criteria=Define.ExceptionCriteria1,

 ExceptionIDvar=Name,

 ExceptionIDvarLabel=Student,

 title=Exceptions in SASHELP.CLASS using Criteria Set 1)

 run;

Output 5B:
 Exceptions in SASHELP.CLASS using Criteria Set 2

 No Exceptions Found

Program 5B.
 %ReportMultipleTypesOfExceptions

 (data=sashelp.class,

 criteria=Define.ExceptionCriteria2,

 ExceptionIDvar=Name,

 ExceptionIDvarLabel=Student,

 title=Exceptions in SASHELP.CLASS using Criteria Set 2)

 run;

15

Macro Used to Produce Outputs 5A & 5B:

%macro ReportMultipleTypesOfExceptions

 (data=,

 criteria=,

 title=,

 ExceptionIDvar=,

 ExceptionIDvarLabel=);

data _null_;

set &criteria end=LastOne;

call symput('ExcDesc'||trim(left(_N_)),trim(left(ExceptionDesc)));

call symput('ExcVar' ||trim(left(_N_)),trim(left(ExceptionVar)));

call symput('ExcComp'||trim(left(_N_)),trim(left(ExceptionCompare)));

call symput('ExcStd' ||trim(left(_N_)),trim(left(ExceptionStd)));

call symput('ExcFmt' ||trim(left(_N_)),trim(left(ExceptionFormat)));

if LastOne;

call symput('NumberOfCriteria',_N_);

run;

data ExceptionsFound;

keep &ExceptionIDvar ExcDesc ExcVar ExcValue ExcComp ExcStd;

label &ExceptionIDvar = "&ExceptionIDvarLabel";

label ExcDesc = 'Exception';

label ExcVar = 'Variable';

label ExcValue = 'Value';

label ExcComp = 'Comparison';

label ExcStd = 'Standard';

length ExcDesc $ 50;

length ExcVar $ 50;

length ExcValue $ 50;

length ExcComp $ 3;

length ExcStd $ 50;

set &data;

%do i = 1 %to &NumberOfCriteria;

if &&ExcVar&i &&ExcComp&i &&ExcStd&I then do;

 ExcDesc = "&&ExcDesc&i";

 ExcVar = "&&ExcVar&i";

 ExcValue = put(&&ExcVar&i,&&ExcFmt&i);

 ExcComp = "&&ExcComp&i";

 ExcStd = put(&&ExcStd&i,&&ExcFmt&i);

 output;

end;

%end;

run;

16

data _null_;

if NumberOfExceptions NE 0

then do;

 call symput('ExceptionsFound','Y');

 stop;

end;

else do;

 call symput('ExceptionsFound','N');

 Message = 'No Exceptions Found';

 output;

end;

set ExceptionsFound nobs=NumberOfExceptions;

run;

title1 ' ';

title2 "&title";

%if &ExceptionsFound EQ Y

%then %do;

proc print data=ExceptionsFound label;

%end;

%else %do;

proc print data=NoExceptions noobs label;

label Message='00'X;

var Message;

%end;

run;

%mend ReportMultipleTypesOfExceptions;

17

SAS Log Excerpt to Show Run-Time Generated Code for ExceptionsFound DATA Step

for Program 5A, where criteria=Define.ExceptionCriteria1:

data ExceptionsFound;

keep Name ExcDesc ExcVar ExcValue ExcComp ExcStd;

label Name = "Student";

label ExcDesc = 'Exception';

label ExcVar = 'Variable';

label ExcValue = 'Value';

label ExcComp = 'Comparison';

label ExcStd = 'Standard';

length ExcDesc $ 50;

length ExcVar $ 50;

length ExcValue $ 50;

length ExcComp $ 3;

length ExcStd $ 50;

set sashelp.class;

if Height GT 65 then do;

 ExcDesc = "Tall";

 ExcVar = "Height";

 ExcValue = put(Height,4.1);

 ExcComp = "GT";

 ExcStd = put(65,4.1);

 output;

end;

if Weight GT 135 then do;

 ExcDesc = "Heavy";

 ExcVar = "Weight";

 ExcValue = put(Weight,5.1);

 ExcComp = "GT";

 ExcStd = put(135,5.1);

 output;

end;

run;

 /* The blank lines and indents were added by the author after

pasting this code in from the SAS log. Macro generated code is

displayed in the SAS log only if using OPTIONS MPRINT. The macro name

prefix that appears at the left end of each code line in the log was

erased by the author after pasting this code in from the log. */

18

Control Table Used by Program 5A. This DATA Step is for illustration only. You could

support the control table with View/Edit Table in a SAS Display Manager session, or could

support the control data as a .txt file or .csv file, either of which can be read with a SAS program.

Instead of this DATA Step being used to create the Exception Definitions as a SAS data set, it

could be replaced by one that reads such an external .txt or .csv file to create a SAS data set for

input to the macro. It should not require a SAS programmer to maintain the control table. That is

an administrative task.

libname Define 'C:\ExceptionDefinitions';

data Define.ExceptionCriteria1;

 /* five variables for each Exception Criterion */

label ExceptionDesc = 'Exception Description';

label ExceptionVar = 'Exception Variable';

label ExceptionCompare = 'Exception Comparison';

label ExceptionStd = 'Standard Value';

label ExceptionFormat = 'Format for Data Values';

length ExceptionDesc $ 50;

length ExceptionVar $ 50;

length ExceptionCompare $ 3;

length ExceptionStd 8;

length ExceptionFormat $ 40;

 /* Define each Exception Criterion */

ExceptionDesc = 'Tall';

ExceptionVar = 'Height';

ExceptionCompare = 'GT';

ExceptionStd = 65.0;

ExceptionFormat = '4.1';

output;

ExceptionDesc = 'Heavy';

ExceptionVar = 'Weight';

ExceptionCompare = 'GT';

ExceptionStd = 135.0;

ExceptionFormat = '5.1';

output;

 /* Repeat assignments and output statement

 for each Exception Variable.

 Add, change, delete at any time. */

run;

 /* To build Define.ExceptionCriteria2, in code above

 simply replace 65 with 95 and 135 with 155. */

