
1

MWSUG 2019 - Paper AL115

Deploying SAS® Viya® to Docker – a practical guide for data scientists

Alan Zablocki, Ph.D., RedMane Technology, Chicago, IL

ABSTRACT

Recently, SAS® has provided the ability to package and deploy SAS® Viya® software in Docker
containers. Users with a valid SAS Viya order have a choice between using the Docker image repository
hosted by SAS or manually building the Docker image using SAS container recipes, an open source
GitHub project. In this paper, we use SAS container recipes to build a customized SAS Viya Docker
image with access to a range of licensed SAS products such as SAS® Visual Statistics and SAS® Visual
Data Mining and Machine Learning. We guide the reader through the entire process of building and
deploying a local SAS Viya Docker image, from configuring local storage and data persistence to adding
support for Jupyter Notebook, Python and R.

INTRODUCTION

Installing SAS Viya is a lengthy and complicated process. An open source project on GitHub called SAS
container recipes (https://github.com/sassoftware/sas-container-recipes) makes it easier to start using
SAS Viya. This is achieved with Docker, which simplifies creating, deploying and running applications in
execution environments called containers. SAS Viya software can be deployed as a single programming-
only Docker container, or across many containers, which are then orchestrated (managed) with
Kubernetes. Although we mention the full SAS Viya deployment briefly, a complete discussion of multiple
container orchestration using Kubernetes is beyond the scope of this paper and will be covered in a future
paper. In this paper, we focus our discussion on building a single programming-only Docker image, and
running it locally. In our companion paper, “Deploying SAS® Viya® Docker images to the cloud - a step
by step guide”, we show how to deploy SAS Viya Docker image using Azure Cloud.

CONFIGURATION

In this section, we describe the system requirements and the set-up process to ensure a successful SAS
Viya Docker image deployment.

SOFTWARE ORDER ZIP

Our SAS Software Order is for SAS Viya 3.4 and gives us access to SAS products such as SAS Visual
Data Mining and Machine Learning. The Software Order Email (SOE) includes license information as well
as a zip file with all the license files (see Figure 1).

Figure 1: The SOE email with the software order zip file.

https://github.com/sassoftware/sas-container-recipes

2

The SOE zip contains two key files in the licenses folder: a .jwt file and a .txt file with the ordered SAS
products. If you are missing the .jwt file, you should update your order. If you proceed with the build, you
will likely encounter an error when parsing the contents of the SOE zip. It may be possible to carry out an
installation without the .jwt file, but we did not test this. You can refer to this GitHub issue
https://github.com/sassoftware/sas-container-recipes/issues/17 for a possible workaround, but updating
the order is the best choice. The SOE zip allows you to build an image and download the software order
to create your own software mirror repository.

DOCKER

Building the SAS Viya image with SAS container recipes requires a supported version of Docker-CE
(Community Edition). In this paper, we use Docker CE Version 18.09.6 (see Appendix). For installation
details and system requirements see https://docs.docker.com/install/linux/docker-ce/centos/.

THE LINUX HOST

SAS container recipes support RHEL and CentOS for single or multiple image builds. SUSE Linux is
supported for single image builds only. Ubuntu is not supported. You can build the Docker image on a
local machine with RedHat or CentOS Linux installed, use a Virtual Machine (VM) in either a Windows or
Linux host, or use a VM hosted in the cloud. In this paper, we use a CentOS VM on a Windows10 host.
The CentOS VM worked out of the box with Oracle’s VirtualBox V5.2.28 (we used CentOS-7-x86_64-
DVD-1810.iso).

Hard Disk Space

Whether you choose to do a Docker build on a local machine or inside a VM, we recommend that you
assign plenty of disk space for the build process. While the amount of space needed for the Docker
image(s) will vary depending on your SAS Software Order, we found that our Software Order created a
25GB programming-only SAS Viya Docker image (including the Jupyter Python addon). Our full build,
which was contained 32 Docker images, took up 113GB.

The built images are stored in /var/lib/docker, and therefore the root partition must be large enough to
accommodate not only the size of the final image(s), but also any intermediate images and/or downloads
that occur. One possible solution is to re-point the /var/lib/docker directory using a symlink to a larger
space such as /home. We chose a different approach.

We used three separate partitions on two different disks. Our root (/) and /home partitions were 120GB
and 104GB respectively. This was more than enough to store our single image builds and our entire
software download (45GB). To perform the full build, we added a new disk and assigned it the /data
partition. We then re-pointed Docker to save images to /data/docker, instead of /var/lib/docker. To change
where Docker saves images, create the file /etc/docker/daemon.json (if it doesn’t exist) as a root user and
add the “data-root” flag:

{

 "data-root": "/data/docker"

}

Now all the images will be stored in /data/docker, which has the same folder structure as /var/lib/docker
(see Figure 2). You do not have to delete the contents of /var/lib/docker. Using the daemon.json file
allows you to point “data-root” back to “/var/lib/docker” to launch images that were built previously.

Figure 2: The new “/var/lib/docker” on the /data partition. It has its own folders, and the previously built
images are stored in /var/lib/docker. You can swap between the two locations to run old and new images.

https://github.com/sassoftware/sas-container-recipes/issues/17
https://docs.docker.com/install/linux/docker-ce/centos/

3

We highly recommend using a mirror repository since there is a limit on the number of order downloads
from the SAS servers (we believe the default to be 5). If you are going to use your own mirror repository,
you will also need a large amount of disk space for the initial download. By default, the files are saved to
the sas_repos folder in the user’s /home directory. Our sas_repos folder was 45GB in size. We cover
setting up the mirror repository in a later section.

For a single programming-only image, we recommend creating a VM with a root (/) partition of at least
60GB (about 10GB is taken up by the OS itself) and depending on whether you plan to use a mirror
repository, a /home partition of at least 50GB also.

SAS AND CONTAINERS

There are two ways to deploy SAS Viya with Docker; using a predefined Docker image and using SAS
container recipes. SAS container recipes is an open source GitHub project by SAS, which makes building
a SAS Viya Docker container much simpler. In this paper, we will build all our containers using the SAS
container recipes found at https://github.com/sassoftware/sas-container-recipes release version v19m05.
See https://github.com/sassoftware/sas-container-recipes/wiki/Introduction for more details.

Setting up the SAS container recipes repository

Download the zipped repository from https://github.com/sassoftware/sas-container-recipes. In the
command line, change to your /home directory and uncompress the file using:

unzip sas-container-recipes-master.zip

You can also run git clone https://github.com/sassoftware/sas-container-recipes.git. Then, place the SOE
zip inside the folder and leave it unzipped.

Setting up a mirror repository

To setup a mirror repository of your software order, follow the instructions in the SAS Viya 3.4 for Linux
Deployment Guide (section: SAS Mirror Manager and the Mirror Repository) accessible here
https://go.documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=p1ilrw734naazfn119i2rqik91
r0.htm&docsetVersion=3.4&locale=en. After downloading and uncompressing the Mirror Manager, issue
the following command:

./mirrormgr mirror --deployment-data /home/azablocki/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --platform x64-redhat-linux-6 –latest

The order repository is then automatically saved inside a sas_repos folder in the user’s /home directory.
We strongly recommend hosting the repository on a separate server. We used Internet Information
Services (IIS), since our Centos VM is hosted on Windows. Once you upload the data to a remote server,
you should be able to view the contents at http://ip-address/sas_repos (see Figure 3).

Figure 3: Software mirror repository contents.

Before starting a build, be sure to check that the entitlements.json file is accessible either by download or
that it can be viewed in the browser. We encountered some errors due to missing MIME types and had to
add the MIME types for .json and .odd files. In addition, the server was not resolving the address for a file
with a special character such as the ‘+’ sign. The problematic file was:

sas_repos/repos/shipped/va/104/va-104-x64_redhat_linux_6-yum/Packages/s/sas-cpp-libstdc++6-
6.0.95404-20180510.1525974525.x86_64.rpm

https://github.com/sassoftware/sas-container-recipes
https://github.com/sassoftware/sas-container-recipes/wiki/Introduction
https://github.com/sassoftware/sas-container-recipes
https://github.com/sassoftware/sas-container-recipes.git
https://go.documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=p1ilrw734naazfn119i2rqik91r0.htm&docsetVersion=3.4&locale=en
https://go.documentation.sas.com/?docsetId=dplyml0phy0lax&docsetTarget=p1ilrw734naazfn119i2rqik91r0.htm&docsetVersion=3.4&locale=en
http://ip-address/sas_repos

4

To fix this you may have to change options in IIS Request Filtering. If you do not have TLS setup, you will
see a warning, but this does not prevent the build from completing. Finally, you may want to use the
server IP address instead of a fully qualified domain name (FQDN) in case you encounter Domain Name
System (DNS) resolution issues.

BUILDING A SAS VIYA DOCKER IMAGE

In this section, we discuss building the first image to test the environment setup. We then show how to
run the basic image locally. Finally, we show in detail how to extend the image by installing various
addons. For the purpose of this introductory guide, we will cover the auth-demo addon, and the ide-
jupyter-python3 addon, with an additional custom addition for R support.

BUIDLING THE BASIC IMAGE

To build a single programming-only image with the default sasdemo user, and to use the SAS download
servers use:

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --addons "auth-demo"

Alternatively, you can add the --mirror-url flag to point to your own hosted software repository. Replace
<ip-address> with your IP address:

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --mirror-url "http://<ip-

address>/sas_repos/" --addons "auth-demo"

The build should proceed without any issues and can take up to two hours to complete depending on
your machine and the internet connection. Once the build completes, you will see the image tag and
instructions on how to run the image. You can use the docker images command to see a list of images,
their names, tags and their size. For detailed descriptions of the build options, type:

./build.sh --help

Issues we encountered while doing a basic build

Initially, we ran into two problems that prevented the build from completing. They were:

• Parsing all content from the SOE zip - if your software order is not new, you may find that you do not
have all the files that the recipe code expects. You will need to update your order. See this GitHub
issue for more details: https://github.com/sassoftware/sas-container-recipes/issues/17.

• Disk space - the /var/lib/docker directory grows quickly in size as the image is being built. If your local
machine or the VM disk runs out of disk space, the build will exit.

DEPLOYING THE BASIC IMAGE

In previous versions of the SAS container recipes, the build returned a command to launch the Docker
image. The command was:

docker run --detach --rm --env CASENV_CAS_VIRTUAL_HOST=eecb5d45bc1d \

--env CASENV_CAS_VIRTUAL_PORT=8081 --publish-all --publish 8081:80 \

--name sas-viya-single-programming-only --hostname eecb5d45bc1d \

sas-viya-single-programming-only:19.04.0-20190516160342-no-git-sha

In the current version of the recipes, there is a new method to deploy the single programming-only SAS
Viya image, and it uses a launch bash script. In the sas-container-recipes-master folder, create a new
directory called run. Copy the example_launchsas.sh file from the samples directory to the newly created
run directory and rename to launchsas_authdemo.sh. This script takes as input the image tag, maps
ports, creates the local directories and maps them to the corresponding folders inside the Docker image
for persistent storage. We show the contents of the launch script in Figure 4.

https://github.com/sassoftware/sas-container-recipes/issues/17

5

Figure 4: The bash script to launch a container with persistent storage.

When you run the launch script, your run directory will be populated by the directories: cas, sasdemo, and
sasinside. You will notice that we also created a home directory and mapped it as a mounted volume to
the /home directory in the Docker container. Once you launch the image, you will also have a home
directory inside the run folder. To deploy your Docker image, run:

./launchsas.sh

You will see a short one-line output. If you launch the image with the interactive mode as in the script, you
will see a more verbose output. Use the docker ps command to view the running container, its image ID,
tag, name, and server address. After a short moment, you should be able to access the image at the
addresses in the output, usually 0.0.0.0:8080 as well as localhost:8080 or 127.0.0.1:8080 as shown in
Figure 5.

6

Figure 5: SAS Viya Docker host page with the link to SAS Studio on port 80.

Click on the SAS Studio link and log into you SAS Viya 3.4 Session in Docker as shown in Figure 6.

Figure 6: SAS Studio login screen, with the default user and password.

Once you log in, you are taken to SAS Studio where you can start programming in pure SAS. The various
SAS products can be found under Tasks and Utilities.

Testing persistent storage

In the launch script shown in Figure 4, you mapped several volumes between your Docker file system
and your local VM. By default, you won’t be able to write to all of them as a non-root user. You will be
able to write to /home/sasdemo. In Figure 7, we save a short script to /home/sasdemo in the Docker
container to test persistent storage.

7

Figure 7: Saving files in the Docker container under /home/sasdemo.

Since you mapped /home in the Docker container to your ~/sas-container-recipes/run/home/ folder, you
can now view the file in your VM. Navigate to the ~/sas-container-recipes/run/home/ folder (see Figure 8).

Figure 8: Access files saved inside the Docker container on your local VM.

If you try to list the contents of /home/sasdemo, you will not be able to do so, even though the files are
there. To see and open the files, you must change to sudo user or root. This is a result of the default
configuration used during the build.

ADDING PYTHON AND JUPYTER NOTEBOOK SUPPORT

The SAS container recipes project has an addon for Python and Jupyter Notebook support, and the
addon is called ide-jupyter-python3. This addon installs Python3.6, pip, and Jupyter system wide. For
more flexibility, a user can choose to modify the Python install in this addon, and use Anaconda to install

8

Python, pip, and Jupyter. In this paper, we install Python system wide. In a later section, we will show
how to modify this addon to add support for R, RStudio server, and the R kernel for Jupyter notebook. To
add Python and Jupyter Notebook support to your auth-demo image, use the same command as before,
but now provide a space-separated list to the --addon flag:

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --addons "auth-demo ide-jupyter-

python3"

If you are using your own mirror repository, add the --mirror-url flag as shown below replacing <ip-
address> with your IP address:

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --mirror-url "http://ip-

address/sas_repos/" --addons "auth-demo ide-jupyter-python3"

The addon build took around 20 minutes on our VM. If you modify the Dockerfile(s) in addons/ide-jupyter-
python3, the build process will pick up on the changes. We use this method to incrementally add R
support by modifying the Dockerfile file in the addons/ide-jupyter-python3 folder.

INSTALLING R, RSTUDIO SERVER, AND JUPYTER R KERNEL

You can add support for R to your SAS Viya image by modifying the Dockerfile in addons/ide-jupyter-
python3. Once you install R, you can add RStudio Server or the R Kernel for Jupyter notebook, or both.
Here we show how to install both.

We found it useful to test the installation of R, RStudio Server and the R Kernel locally first. We
recommend that you do the same on your local machine or in the local VM, to ensure a successful R
install during the Docker image build stage. R packages have a lot of dependencies, and sometimes
package installations fail when those dependencies are missing or if they cannot be installed. This is
often the case when there is a brand new version of R available, when you update your version of R, or if
there are missing system libraries (that you have to manually install with yum on RedHat/CentOS or apt-
get in Ubuntu/Debian). Note that installing R packages can take a while, which will increase the time it
takes to build the Docker image too. For this reason, we recommend you install packages over an
Ethernet connection.

INSTALLING R LOCALLY

To install R locally, type su in the command line to make sure you are the root user, and run the following
commands:

yum install -y openssl-devel && \

yum install -y libcurl-devel && \

yum install -y gsl-devel && \

yum install -y cairo-devel && \

yum install -y libssh2-devel && \

yum install -y libxml2-devel && \

yum install -y R

The libraries above are often needed to install various analytics and machine learning packages in R.
Depending on which packages you want to install during the build, you may need to add a few more
libraries to the list above. Once the installation finishes, exit out of root. Test the installation by typing R in
the command line to start a new R session.

INSTALLING R STUDIO LOCALLY

To install RStudio Server and/or RStudio, find the version of RStudio you want or get the latest .rpm file.
Then, run the following commands:

9

wget https://download2.rstudio.org/server/centos6/x86_64/rstudio-server-

rhel-1.2.1335-x86_64.rpm \

&& yum install -y --nogpgcheck rstudio-server-rhel-1.2.1335-x86_64.rpm \

&& rm -f rstudio-server-rhel-1.2.1335-x86_64.rpm \

&& wget https://download1.rstudio.org/desktop/centos7/x86_64/rstudio-

1.2.1335-x86_64.rpm \

&& yum install -y --nogpgcheck rstudio-1.2.1335-x86_64.rpm \

&& rm -f rstudio-1.2.1335-x86_64.rpm

You should be able to go to http://localhost:8787 and sign into RStudio server with your system username
and password. If you run into Qt display issues with RStudio, you may need to run yum install
libxkbcommon-x11. For more information see https://github.com/rstudio/rstudio/issues/4610.

INSTALLING R KERNEL FOR JUPYTER LOCALLY

In the previous sections, you installed R and RStudio. If you also have Python, pip, and Jupyter installed
locally, you can test the R kernel installation locally. To make R available in Jupyter notebook, install the
IRkernel from https://irkernel.github.io/installation/. Although you can use devtools to install this kernel,
you will need to make sure that you have the right version of CURL installed, in order to successfully
install the right version of devtools. In the Appendix, we show how to update CURL, which will allow you
to get the correct version of devtools.

In this paper, we do not use devtools to install the R kernel and instead use an R session to install the
kernel and other R packages. Since R packages can take a while to install, we provide a minimal list of
packages to install. The content of the minimal script called add_r_kernel_mini.sh is shown below:

#!/bin/Rscript

install.packages(c('rlang','caret','tidyverse', 'dplyr',

'shiny','IRkernel'), repos='http://cran.us.r-project.org')

IRkernel::installspec(user = FALSE)

To check if the R kernel installed correctly, launch Jupyter and load the kernel (you may have to use
jupyter-notebook --allow-root). In the next section, we use this script in the Dockerfile to install the R
kernel in our Docker image.

CREATING THE FINAL DOCKER FILE

In the previous section, we showed the necessary steps to add R to the SAS Viya Docker image. In this
section, we put all the pieces together and modify the default Dockerfile in the ide-jupyter-python3 addon
to install R, RStudio server and the R kernel in the Docker image.

Installing R in the Docker image

The installation consists of adding new commands to the Dockerfile as well as enabling the use of bash
scripts. Note the use of CURL instead of wget, since wget is not present by default in the Docker image.
Follow these steps to install R in your Docker image:

• Inside the addons folder ide-jupyter-python3, create the file add_r_kernel_mini.sh with the contents
exactly as shown in the previous section.

• Then add the line COPY add_r_kernel_mini.sh /usr/local/bin/add_r_kernel.sh right before the line RUN
set -e,

• Use yum with the flag --assumeyes and CURL with the flag --silent

• Run chmod + x on the bash script and execute the script to install R packages and the R kernel

• Place the line yum erase --assumeyes epel-release; \ after the last R installation step

 The final Docker file is shown in Figure 9.

https://github.com/rstudio/rstudio/issues/4610
https://irkernel.github.io/installation/

10

Figure 9: Dockerfile to add Python and R support to the SAS Viya container.

When creating, editing, and saving this Dockerfile in Windows, make sure that you save it with linux/unix
line endings, otherwise your build will fail. You can either clean the file with:

sed -i -e 's/\r$//' your_Docker_file_plus_R.sh

or you can open it in a text editor like gedit and save it with Linux/Unix line endings. The Dockerfile shown
in Figure 9 differs significantly from the default one as it does not check for a SUSE vs RedHat platform.
We removed this logic from our Dockerfile since we kept encountering build issues with an “unknown
platform” error. To make the same changes:

• Inside the addons folder ide-jupyter-python3, copy the contents of post_deploy.sh to a new file called
post_deploy_redhat.sh (if your system is RedHat or CentOS)

• In post_deplot_redhat.sh change the line [[-z ${PLATFORM+x}]] && PLATFORM=@PLATFORM@
to [[-z ${PLATFORM+x}]] && PLATFORM=redhat

• Remove the following line from the Dockerfile inside the ide-jupyter-python3 folder sed -i
"s/@PLATFORM@/$PLATFORM/" /tmp/jpy3_post_deploy.sh; \

• Change the line COPY post_deploy.sh /tmp/jpy3_post_deploy.sh to COPY post_deploy_redhat.sh
/tmp/jpy3_post_deploy.sh

BUILDING THE FINAL IMAGE WITH JUPYTER, PYTHON AND R SUPPORT

With the final changes made to the Dockerfile, you can now build an image with added R support. Simply
repeat the command you used when adding Jupyter and Python:

11

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --addons "auth-demo ide-jupyter-

python3"

If you are using your own mirror, add the --mirror-url flag replacing <ip-address> with your own IP
address:

./build.sh --type single --zip /home/admin/sas-container-recipes-

master/SAS_Viya_deployment_data.zip --mirror-url "http://ip-

address/sas_repos/" --addons "auth-demo ide-jupyter-python3"

In contrast to the first run when you added Python and Jupyter, this R installation will take much longer (it
could take up to an hour depending on your system and internet connection). When the build finishes,
make note of the new tag for this build. Create a clone copy of the launchsas_authdemo.sh script you
used previously and save it as launchsas_jpy3r3.sh. Replace the tag in this file with the one
corresponding to the newest tag. You will use this script in the next section to test your Python and R
Jupyter kernels, and new package installation.

TESTING KERNELS AND NEW PACKAGE INSTALLATION

Now that you have built a new SAS Viya Docker image with support for Python, Jupyter Notebook, and R,
you can test its functionality. In this section, we show how to test the persistent storage setup and
functionality such as loading libraries, and installing new packages for both Python and R.

STARTING THE CONTAINER

To start the container, run the launch script as shown in Figure 10. Use docker ps to confirm that the
container is running.

Figure 10: Launching the right Docker container, with its own launch script.

The contents of the launch script are the same as the script in Figure 4 with one small difference: the
TAG corresponds to the tag for the latest Docker build. It’s good practice that for every build you
complete, you create a new launchsas.sh script and update it with the tag found in the build output.

TESTING THE PYTHON KERNEL

Navigate to 0.0.0.0:8080/Jupyter. Although port 8888 is the usual Jupyter port, the new version of SAS
container recipes now uses port 8080. If you can launch Jupyter, but the kernels are consistently failing to
load or they stop, you may be using the wrong port. We found this to be the case when we accessed
Jupyter without explicitly stating the port, e.g., using 0.0.0.0/Jupyter instead of 0.0.0.0:8888/Jupyter. If you
can launch Jupyter, you should see the file tree along with the option to start a new notebook with three
kernel choices; choose Python 3 as shown in Figure 11.

12

Figure 11: Running Jupyter on port 8080, with 3 kernels available.

Open a new notebook and import packages that were previously installed at the time of the Docker build.
In Figure 12, we load the package pandas and attempt to import the package paramiko.

Figure 12: Testing the Jupyter Python kernel and importing packages.

Since paramiko was not installed initially you will have to install it. Install missing packages with the !pip
command. If you try to install without the --user flag, the install will fail as shown in Figure 13.

Figure 13: Installing new Python packages will not work without the --user option.

Installing a different package such as TensorFlow with the --user flag will now work. To make the package
available to the kernel, restart the kernel (see Figure 14).

13

Figure 14: Installing a new package and loading a new package after kernel restart. Note that sys.path shows
the location where locallly installed packages are stored (when using pip install --user package-name).

In Figure 14, you can see that all new packages are saved in the /home/sasdemo/.local folder. Since you
mapped the /home folder in Docker to a folder in your local VM, any data and newly installed packages
will be stored there and will persist. This will also be the case when using this container in the cloud,
which we cover in our companion paper, “Deploying SAS® Viya® Docker images to the cloud - a step by
step guide”. If you try to install another package (for example, paramiko) with the --user flag, the package
install will now not yield any path warnings (see Figure 15).

Figure 15: Once you install your first local package (TensorFlow) and restart the kernel, subsequent installs
do not return path errors.

14

TESTING THE R INSTALLATION

There are three different ways to start an R session in your Docker image: using the IRkernel in Jupyter,
in a RStudio Server session and in the command line session, when you “exec” into a running Docker
container. For more information on R sessions, see https://stat.ethz.ch/R-manual/R-
devel/library/base/html/Startup.html and https://support.rstudio.com/hc/en-us/articles/115014830827-
Why-is-libPaths-different-in-RStudio-vs-R-. To test the R installation, you will first test the RStudio server
setup. This will show you where RStudio saves locally installed libraries. Then you can test the IRkernel in
Jupyter and learn about local library paths in R, and how to configure them to work with your Docker
image.

Testing R Studio server

RStudio server runs on port 8787 by default. However, if you navigate to 0.0.0.0:8787, you will not see
RStudio, because the server is not running (see Figure 16).

Figure 16: To access RStudio server, the server process must be started from inside the container.

To initiate the server, make sure that Docker is currently running using sudo systemctl start docker. Then
log into or “exec” into the Docker image and execute the start command as shown in Figure 17.

Figure 17: Execing into the Docker image and starting the server.

Navigate to 0.0.0.0:8787 (or refresh the page) and a log in screen will appear, where you use the same
default username and password as you used to log into a SAS Studio session (see Figure 18).

https://stat.ethz.ch/R-manual/R-devel/library/base/html/Startup.html
https://stat.ethz.ch/R-manual/R-devel/library/base/html/Startup.html
https://support.rstudio.com/hc/en-us/articles/115014830827-Why-is-libPaths-different-in-RStudio-vs-R-
https://support.rstudio.com/hc/en-us/articles/115014830827-Why-is-libPaths-different-in-RStudio-vs-R-

15

Figure 18: With the RStudio server running, you can resolve the sign-in page.

Once you log into RStudio, use the .libPaths() command in to show the library paths that are available.
Listed first, will be a local path where package installations performed in RStudio will be saved. This is the
path that you must add to Jupyter so that you can install new R packages inside a Jupyter Notebook
session with an R kernel (see Figure 19).

Figure 19: Use .libPaths() to show available library paths.

Configuring command line R session library path

If you exec into the Docker container and launch an R session, you will see that the path
“/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.6” is missing from the output of the .libPaths()
command (see Figure 20).

16

Figure 20: Output of .libPaths() in an R session launched from the command line.

To make the library path available to Jupyter, you will need to place a .Rprofile file in the /home/sasdemo
directory. You can do this from inside a running Docker container, or as a root user in your VM (recall that
the contents of /home/sasdemo are only visible to the root user). In your local VM, navigate to the
/home/sasdemo directory. As a root user, open a file called .Rprofile. Enter the following (or your R
version equivalent):

.libPaths(“/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.6”)

Restart the container, exec into the image, and open a new R session. If you use .libPaths() to list the
available paths, you will now see the newly added path to R/x86_64-redhat-linux-gnu-library/3.6 (see
Figure 21). The one caveat here is that you must start the session in /home/sasdemo, otherwise the
.Rprofile file is not used. There are other ways to achieve this, but we do not cover these in this paper.

Figure 21: Once you add .Rprofile to your home/sasdemo directory, the local R path is visible.

17

Testing R kernel in Jupyter

In the previous section, we showed how to set up a local R library path with the .Rprofile file. If this file is
removed, then you will not be able to install new libraries in a Jupyter session as shown in Figure 22.

Figure 22: With the .Rprofile file removed, you cannot install new libraries.

When the .Rprofile file is removed, you only see /usr/lib64/R and /usr/share/R, which are the defaults
when you start an R session from the command line. You can import the caret package since it was
installed at the time of the build. Installing a new package fails since /usr/lib64/R is not writable. If you
replace the .Rprofile file, restart the container, and launch Jupyter Notebook with a R kernel, the
command .libPaths() shows the full path to R/x86_64-redhat-linux-gnu-library/3.6 (see Figure 23).

Figure 23: With .Rprofile present, a Jupyter R kernel session can install new packages to the local path.

18

As shown in Figure 23, you can now install new R packages. They are saved to the local R library path
that will persist, and therefore the packages will be available whenever you start up the container.

CONCLUSION

In this paper, we used the SAS container recipes, an open source GitHub project to build a single
programming-only SAS Viya Docker image. We showed how to deploy this image locally with persistent
storage, so that code and data can be shared between the Docker image and the local machine or local
VM. We also showed how to add R support to the image, and we discussed common issues we
experienced during the initial build and subsequent modifications. Finally, we tested Python and R kernels
and new package installations. In our companion paper, “Deploying SAS® Viya® Docker images to the
cloud - a step by step guide”, we show how to deploy this Docker image to the cloud in order to provide a
flexible and a fully scalable data science working environment with SAS Viya, Python and R.

APPENDIX

RE-POINTING /VAR/LIB/DOCKER TO A NEW VOLUME

Before configuring the new volume, make sure to stop docker and backup your previous Docker images:

rsync -aqxP /var/lib/docker/ /home/admin/backup_var_lib_docker/

While you could remove the images with the command docker image prune -a, you do not have to, for
reasons we give below. Assuming your new volume is visible (when using a disk utility or fdisk -l; you can
also look inside /etc/fstab) and the volume is listed under /dev/sdb, issue the following commands as root
to mount the new volume as the /data partition:

fdisk /dev/sdb

mkfs.ext4 /dev/sdb1

mkdir /data

mount /dev/sdb1 /data

The first command will start the partition process; you will be asked to provide various options. We used n
for new partition, followed by p, for primary partition, and we gave the partition the number 1. You will
then be prompted for values for the first and the last sector. Use the suggested defaults, e.g., 2048 and
the upper value for the partition size. Next, edit the file /etc/docker/daemon.json to point the data-root flag
to your new directory:

{

“data-root” : “/data/docker”

}

Finally, change permissions (as root) with:

sudo chown root:root /data/docker/ && chmod 701 /data/docker/

DOCKER VERSION INFORMATION

The Docker version used in this paper:

[admin@RM-SAS-DOCKER-01 ~]$ docker --version

Docker version 18.09.6, build 481bc77156

[admin@RM-SAS-DOCKER-01 ~]$ docker version

Client:

 Version: 18.09.6

 API version: 1.39

 Go version: go1.10.8

 Git commit: 481bc77156

 Built: Sat May 4 02:34:58 2019

19

 OS/Arch: linux/amd64

 Experimental: false

Server: Docker Engine - Community

 Engine:

 Version: 18.09.6

 API version: 1.39 (minimum version 1.12)

 Go version: go1.10.8

 Git commit: 481bc77

 Built: Sat May 4 02:02:43 2019

 OS/Arch: linux/amd64

 Experimental: false

CENTOS VM INFORMATION

The CentOS version used:

[admin@RM-SAS-DOCKER-01 ~]$ uname -a

Linux RM-SAS-DOCKER-01.SASDEV.DMZ 3.10.0-957.21.3.el7.x86_64 #1 SMP Tue Jun

18 16:35:19 UTC 2019 x86_64 GNU/Linux

[admin@RM-SAS-DOCKER-01 ~]$ cat /etc/centos-release

CentOS Linux release 7.6.1810 (Core)

[admin@RM-SAS-DOCKER-01 ~]$ rpm -q centos-release

centos-release-7-6.1810.2.el7.centos.x86_64

UPDATING CURL

If you choose to use devtools to install the R kernel, you may experience errors due to the wrong CURL
version. To update CURL, find the version you need and run:

yum update

wget https://github.com/curl/curl/releases/download/curl-7_65_1/curl-

7.65.1.tar.gz

tar -xvzf curl-7.65.1.tar.gz

cd curl-7.65.1/

./configure

make

make install

curl -V

Restart the machine. You should see the newer version and be able to install the right version of
devtools. To install the IR kernel, use:

devtools::install_github('IRkernel/IRkernel')

REFERENCES

SAS Container Recipes https://github.com/sassoftware/sas-container-recipes

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Alan Zablocki
RedMane Technology
alan_zablocki@redmane.com
www.alanzablocki.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://github.com/sassoftware/sas-container-recipes

