
1 

MWSUG 2019 - Paper IN-116 

Simulating Skewed Multivariate Distributions Using SAS®: Cases of Lomax, 
Mardia’s Pareto (Type I), Logistic, Burr and F Distributions 

Zhixin Lun, Oakland University, Rochester, MI 

Ravindra Khattree, Oakland University, Rochester, MI 

ABSTRACT  

By using various build-in functions in SAS software, it is easy to generate data from several common 
multivariate distributions such as multivariate normal (RANDNORMAL function) and multivariate Student's 
𝒕 (RANDMVT function). However, functions for generating data from other less common multivariate 
distributions are not readily available in SAS. We will illustrate the simulation and generation of random 
numbers from a multivariate Lomax distribution. Importance of the work lies in its wide applicability in 
reliability theory and many other situations where one needs to use a flexible nonnegative skewed 
multivariate distribution for modeling. Further, based on various useful properties of multivariate Lomax 
distribution, Mardia’s multivariate Pareto of type I, multivariate Logistic, multivariate Burr, and multivariate 
𝑭 random variables can also be readily simulated. We develop and implement a SAS macro using 
SAS/IML to generate random numbers from all of these multivariate probability distributions. 

INTRODUCTION  

Multivariate Lomax (Pareto Type II) distribution was introduced by Nayak (1987) as a joint distribution of 
several skewed nonnegative random variables 𝑋1, 𝑋2, ⋯ , 𝑋𝑘 with probability density function (pdf) given 
by,  

 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑘|𝑎, θ1, θ2, ⋯ , θ𝑘) =
[∏ θ𝑖

𝑘
𝑖=1 ]𝑎(𝑎 + 1) ⋯ (𝑎 + 𝑘 − 1)

(1 + ∑ θ𝑖𝑥𝑖
𝑘
𝑖=1 )𝑎+𝑘

,  𝑥𝑖 > 0, 𝑎 > 0, θ𝑖 > 0, 𝑖 = 1, ⋯ , 𝑘. 

 

Nayak (1987) also indicated that the multivariate Lomax distribution can be obtained by mixing several 
independent exponential distributions with different failure rates via a random mixing parameter η. 
Specifically, with a given random variable η distributed as 𝑔𝑎𝑚𝑚𝑎(𝑎, 𝑏), we assume that conditional on η, 
the 𝑘 random variables 𝑋𝑖 ’s,  𝑖 =  1, 2, ⋯ , 𝑘, are independently and exponentially distributed with failure 

rates ηλ𝑖 (that is, with respective means 1/ηλ𝑖),  𝑖 =  1, 2, ⋯ , 𝑘. Then, the unconditional joint distribution of 

𝑋𝑖 ’s,  𝑖 =  1, 2, ⋯ , 𝑘, is a multivariate Lomax distribution with parameters 𝑎 and θ𝑖 = λ𝑖/𝑏, 𝑖 = 1, ⋯ , 𝑘.  

The above fact readily provides an approach to simulate multidimensional random vectors from a 
multivariate Lomax distribution. We further note later that the multivariate Lomax distribution is easily 
transformable to many other useful multivariate distributions and hence simulation of random numbers 
from any of these distributions is also easily accomplished. 

The objective of this work is to accomplish the above tasks and to provide a ready to use SAS code for 
users to efficiently execute the simulations. This is what we achieve in next two sections. 

SIMULATION FROM MULTIVARIATE LOMAX DISTRIBUTION 

We use the relationship between the independent exponential random variables, a gamma variate and 
the multivariate Lomax distribution stated above to arrive at and then implement the following algorithm. 

 

ALGORITHM 

1. Generate a vector of random numbers η from gamma distribution using RANDGEN function with 

specified shape parameter 𝑎 and scale parameter 𝑏. 
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2. For a given value of η, generate independent component 𝑋𝑖  from exponential/gamma distribution 
using RANGAM function with specified parameter ηλ𝑖. Note that exponential distribution is 
essentially gamma distribution with shape parameter=1. 

3. For a chosen multivariate distribution among these mentioned earlier, transform the random 
vector (𝑋1, 𝑋2, ⋯ , 𝑋𝑘)′ according to the appropriate transformation function (given in the next 
section). 

 

IMPLEMENTATION 

We develop the macro RANDGENMV which generates random numbers from a specified distribution by 
using the following format: 

%RANDGENMV(distname, <a>, <paramList1>, <paramList2>, nSize, ndim, seed, 

out); 

The macro takes the following input arguments: 

Argument Description Remark 

distname specifies the name of a probability distribution  

<a> specifies a distribution parameter optional with default value = 1 

<paramList1> specifies a vector of distribution parameters optional with default value = {1} 

<paramList2> specifies a vector of distribution parameters optional with default value = {1} 

nSize specifies the sample size  

ndim specifies the number of data dimension  

seed specifies the seed for random numbers generation  

out specifies a name of data set that is to be filled with 
random samples from the specified distribution 

 

Table 1. Description of Arguments for macro RANDGENMV 

 

Distribution distname parm parmList1 parmList2 

Lomax ‘Lomax’ ⟨𝑎 = 1 ⟩ {θ1  ⋯  θ𝑘} N/A 

Generalized Lomax ‘GLomax’ ⟨𝑎 = 1 ⟩ {𝜃1  ⋯  𝜃𝑘} {𝑙1  ⋯  𝑙𝑘} 

Mardia's Pareto (Type I) ‘MPareto1’ ⟨𝑎 = 1 ⟩ {𝜃1  ⋯  𝜃𝑘} N/A 

Logistic ‘Logistic’ N/A N/A N/A 

Burr ‘Burr’ ⟨𝑎 = 1 ⟩ {𝑑1  ⋯  𝑑𝑘} {𝑐1  ⋯  𝑐𝑘} 

𝐹 ‘F’ ⟨𝑎 = 1 ⟩ {𝑙1  ⋯  𝑙𝑘} N/A 

Table 2. Parameters Assignments for Distributions 

 

AN EXAMPLE OF RANDOM NUMBERS GENERATION 

To generate random variates from the multivariate Lomax distribution, specify 'LOMAX' for the 

distname argument. In the following example, we use our macro titled RANDGENMV to generate 

10,000 samples for 𝑋1, 𝑋2, 𝑋3 and 𝑋4 from the multivariate Lomax distribution with parameters 𝑎 = 5, θ1 =
0.5, θ2 = 1, θ3 = 1.5, θ4 = 2.0. For this, we take,  

η ∼ gamma(𝑎 = 5, 𝑏 = 1), 

𝑋1 ∼ exp(λ1η), 𝑋2 ∼ exp(𝜆2η), 𝑋3 ∼ exp(𝜆3η), 𝑋4 ∼ exp(𝜆4η), (𝜆1, 𝜆2, 𝜆3, 𝜆4) = (0.5,1.0,1.5,2.0). 

Clearly then θ𝑖 = λ𝑖/𝑏 =  λ𝑖 , 𝑖 = 1, … , 𝑘 for which 𝑏 = 1 and hence (θ1, θ2, θ3, θ4) = (0.5,1.0,1.5,2.0). We 

assign θ𝑖 ’s to paramList1 argument as shown in the following code: 
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%include " Directory\randgenMV.sas"; 

 

%randgenMV(distname = 'LOMAX', a = 5, paramList1 = {0.5 1 1.5 2}, nSize = 

10000, ndim = 4, seed = 123, out = TEST_Lomax); 

We have shown the first five random vectors generated by above macro in Table 3. The descriptive 
statistics for 10,000 samples are summarized in Table 4. By comparing the descriptive statistics with the 
corresponding theoretical values, we can see that the summary of the simulated data matches the 
features of the theoretical multivariate Lomax distribution. 

 

Obs x1 x2 x3 x4 

1 0.75887 0.24062 0.00265 0.07670 

2 1.46380 0.83515 0.04143 0.17602 

3 0.75816 0.28828 0.14874 0.09205 

4 0.19735 0.23063 0.07766 0.23814 

5 2.62512 0.72608 0.79903 0.29616 

Table 3. First five samples from multivariate Lomax distribution 

 

𝒙𝒊   𝒂   𝛉𝒊  Mean   Variance   Skewness 

𝑥1  5 0.5  0.4840664 (0.5000)   0.4093268 (0.4167)   4.9902167 (4.6476) 

𝑥2  5 1 0.2464027 (0.2500) 0.1027076 (0.1047) 4.1206686 (4.6476) 

𝑥3  5 1.5  0.1676471 (0.1667)   0.0462597 (0.0463)  3.6823457 (4.6476) 

𝑥4  5 2 0.1255278 (0.1250) 0.0266295 (0.0260) 4.1011152 (4.6476) 

Table 4. Simulated and theoretical descriptive statistics (in parentheses) of multivariate Lomax distribution 
(with parameters 𝒂 = 𝟓, 𝛉𝟏 = 𝟎. 𝟓, 𝛉𝟐 = 𝟏, 𝛉𝟑 = 𝟏. 𝟓, 𝛉𝟒 = 𝟐. 𝟎) with sample size = 10,000. 

 

For illustration, we also evaluate the distribution of the simulated data by comparing the histogram and 
the theoretical joint density plot in the bivariate case in Figure 1. The code of creating histogram and 
theoretical density plot is given as below. Consider the bivariate data with sample size = 10,000 from 
bivariate Lomax distribution with parameters (𝑎 = 5, θ1 = 0.5, θ2 = 1). The shape of histogram of 
simulated bivariate random variables clearly resembles the corresponding the plot of joint density. 

 

/*------- Create the histogram for generated bivariate Lomax data -------*/ 

%randgenMV(distname = 'LOMAX', a = 5, paramList1 = {0.5 1}, nSize = 10000, 

ndim = 2, seed = 123, out = Bivar_Lomax); 

 

ods graphics on; 

proc kde data = Bivar_Lomax; 

bivar x1 (gridl = 0 gridu = 5) x2 (gridl = 0 gridu = 5) / plots =   

HISTSURFACE noprint; 

run; 

ods graphics off; 
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/*------- Create the density plot of bivariate Lomax data -------*/ 

data density_Lomax; 

 a = 5; 

 k = 2; 

 theta_1 = 0.5; 

 theta_2 = 1.0; 

 keep x1 x2 z; 

 label z = Density; 

 const = theta_1*theta_2*a*(a+1); 

 do x1 = 0 to 5 by 0.10; 

  do x2 = 0 to 5 by 0.10; 

   z = const*(1/((1+theta_1*x1+theta_2*x2)**(a+k))); 

  if z > .0001 then output; 

  end; 

 end; 

run; 

 

 

proc g3d data = density_Lomax; 

 plot x2*x1 = z/ rotate = -30; 

run; 

quit; 

  

Figure 1. Plot of the joint density function (left) and histogram (right) of simulated bivariate Lomax random 

vector with parameters (𝒂 = 𝟓, 𝜽𝟏 = 𝟎. 𝟓, 𝜽𝟐 = 𝟏) 

 

RANDOM NUMBER GENERATION FROM VARIOUS OTHER MULTIVARIATE DISTRIBUTIONS 

Nayak (1987) has also pointed out the inter-relationships between many other nonnegative multivariate 
probability distributions and the multivariate Lomax distribution. In view of these relationships, once 
random number generation from multivariate Lomax distribution has been achieved, appropriate 
transformations allow us to generate random numbers from these distributions as well. This is a task 
which can be quite difficult to achieve directly by using the corresponding density functions for most of 
these random variables. Specifically, we have, 
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Mardia’s Multivariate Pareto - Type I Distribution 

Let 𝑌𝑖 = 𝑋𝑖 + 1/θ𝑖 , 𝑖 = 1, ⋯ , 𝑘, then the joint distribution of 𝑌1, … , 𝑌𝑘 is a multivariate Mardia's Pareto (Type 
I) with pdf 

𝑓(𝑦1, ⋯ , 𝑦𝑘|𝑎, θ1, ⋯ , θ𝑘) =
[∏ θ𝑖

𝑘
𝑖=1 ]𝑎(𝑎 + 1) ⋯ (𝑎 + 𝑘 − 1)

(∑ θ𝑖𝑦𝑖
𝑘
𝑖=1 − 𝑘 + 1)𝑎+𝑘

,  𝑦𝑖 >
1

θ𝑖

> 0, 𝑎 > 0, θ𝑖 > 0, 𝑖 = 1, ⋯ , 𝑘. 

Multivariate Logistic Distribution 

Let 𝑈𝑖 = − ln(θ𝑖𝑋𝑖) , 𝑖 = 1, ⋯ , 𝑘, 𝑎 = 1, then the joint density of 𝑈1, … , 𝑈𝑘 which follow multivariate logistic is 
given by 

𝑓(𝑢1, ⋯ , 𝑢𝑘) =
𝑘! exp(− ∑ 𝑢𝑖

𝑘
𝑖=1 )

[1 + ∑ exp(−𝑢𝑖)
𝑘
𝑖=1 ]1+𝑘

,  −∞ < 𝑢𝑖 < ∞. 

Multivariate Burr Distribution 

Let 𝐵𝑖 = (θ𝑖𝑋𝑖/𝑑𝑖)
1/𝑐𝑖 , 𝑖 = 1, ⋯ , 𝑘, 𝑐𝑖 > 0, 𝑑𝑖 > 0, then the joint density of 𝐵1, … , 𝐵𝑘 is 

𝑓(𝑏1, ⋯ , 𝑏𝑘|𝑎, 𝑐1, ⋯ , 𝑐𝑘 , 𝑑1, ⋯ , 𝑑𝑘) =
[∏ 𝑐𝑖𝑑𝑖

𝑘
𝑖=1 ]𝑎(𝑎 + 1) ⋯ (𝑎 + 𝑘 − 1)[∏ 𝑏𝑖

𝑐𝑖−1𝑘
𝑖=1 ]

(1 + ∑ 𝑑𝑖𝑏𝑖

𝑐𝑖𝑘
𝑖=1 )

𝑎+𝑘 ,   𝑏𝑖 > 0, a > 0, 

which corresponds to a multivariate Burr distribution. 

RANDOM NUMBER GENERATION FROM GENERALIZED MULTIVARIATE LOMAX 
DISTRIBUTION 

GENERALIZED MULTIVARIATE LOMAX DISTRIBUTION 

A generalized multivariate Lomax distribution is defined essentially in the same way as the multivariate 
Lomax distribution but by replacing the conditional distribution of 𝑋𝑖 given η by the more general 

distribution of gamma(𝑙𝑖 , ηλ𝑖). 

Specifically, we let 

η ∼ gamma(𝑎, 𝑏),  𝑋𝑖 ∼ gamma(𝑙𝑖 , ηλ𝑖), 𝑖 = 1, ⋯ , 𝑘, 

where 𝑋1, ⋯ , 𝑋𝑘 are conditionally independent and 𝑎 and 𝑙𝑖 are the shape parameters, 𝑏 and ηλ𝑖 are the 

rate parameters of corresponding gamma distributions. The joint density of 𝑋1, … , 𝑋𝑘 is, then 

𝑓(𝑥1, ⋯ , 𝑥𝑘|𝑎, θ1, ⋯ , θ𝑘 , 𝑙1, ⋯ , 𝑙𝑘) =
[∏ θ𝑖

𝑙𝑖𝑘
𝑖=1 ]Γ(∑ 𝑙𝑖

𝑘
𝑖=1 + 𝑎) ∏ 𝑥𝑖

𝑙𝑖−1𝑘
𝑖=1

Γ(𝑎)[∏ Γ(𝑙𝑖)𝑘
𝑖=1 ](1 + ∑ θ𝑖𝑥𝑖

𝑘
𝑖=1 )∑ 𝑙𝑖

𝑘
𝑖=1 +𝑎

,  𝑥𝑖 > 0, 

where θ𝑖 = λi/𝑏, 𝑙𝑖 > 0, 𝑖 = 1, ⋯ , 𝑘. 

 

MULTIVARIATE 𝐅 DISTRIBUTION 

By replacing θ𝑖 = 𝑙𝑖/𝑎, 𝑖 = 1, ⋯ , 𝑘, the density of 𝑋1, … , 𝑋𝑘 becomes what is commonly called as the 
multivariate 𝐹 density (Johnson and Kotz, 1972) with degrees of freedom (2𝑎, 2𝑙1, ⋯ ,2𝑙𝑘). Its density 
function is given by, 

𝑓(𝑥1, ⋯ , 𝑥𝑘|𝑎, 𝑙1, ⋯ , 𝑙𝑘) =
[∏ (𝑙𝑖/𝑎)𝑙𝑖𝑘

𝑖=1 ]Γ(∑ 𝑙𝑖
𝑘
𝑖=1 + 𝑎) ∏ 𝑥𝑖

𝑙𝑖−1𝑘
𝑖=1

Γ(𝑎)[∏ Γ(𝑙𝑖)
𝑘
𝑖=1 ] (1 + ∑

𝑙𝑖𝑥𝑖

𝑎
𝑘
𝑖=1 )

∑ 𝑙𝑖
𝑘
𝑖=1 +𝑎

,  𝑥𝑖 > 0, 𝑎, 𝑙𝑖 > 0, 𝑖 = 1, ⋯ , 𝑘. 

Thus, using the algorithm given earlier and by making the above change (that is, by replacing 
exponentiality by suitably chosen gamma), random number generation from the generalized multivariate 
Lomax distribution is straight forward. Further, rechristening the parameters as θ𝑖 = 𝑙𝑖/𝑎, 𝑖 = 1, ⋯ , 𝑘, we 



6 

also cover the case of random number generation from the multivariate 𝐹 distribution. Implementation of 
above has been made part of previous algorithm. 

SAMPLE OUTPUT 

We simulate 10,000 samples and show first five of them for each of the multivariate distributions stated in 
the previous two sections. A comparison between simulated and theoretical descriptive statistics is also 
provided. 

 

MARDIA’S MULTIVARIATE PARETO - TYPE I DISTRIBUTION 

To generate the numbers from Mardia's multivariate Pareto of type I with parameters 𝑎 = 5, θ1 = 1, θ2 =
2, θ3 = 3 and θ4 = 4, we specify 'MPareto1' for the distname and assign above parameters to the a 

and paramList1 arguments. The Table 5 shows the first five samples and the Table 6 gives the 

comparison between simulated and theoretical descriptive statistics in terms of mean, variance and 
skewness. 

%randgenMV(distname = 'MPareto1', a = 5, paramList1 = {1 2 3 4}, nSize = 

10000, ndim = 4, seed = 123, out = TEST_MPareto1); 

 

Obs x1 x2 x3 x4 

1 1.37943 0.62031 0.33466 0.28835 

2 1.73190 0.91758 0.35405 0.33801 

3 1.37908 0.64414 0.40771 0.29603 

4 1.09868 0.61532 0.37216 0.36907 

5 2.31256 0.86304 0.73285 0.39808 

Table 5. First five samples from Mardia's multivariate Pareto of type I distribution 

 

𝒙𝒊 𝒂 𝛉𝒊 Mean Variance Skewness 

𝒙𝟏 5 1  1.2420332 (1.2500)   0.1023317 (0.1042)   4.9902167 (4.2603) 

𝒙𝟐  5 2  0.6232013 (0.6250)   0.0256769 (0.0260)   4.1206686 (4.2603) 

𝒙𝟑  5 3  0.4171569 (0.4167)   0.0115649 (0.0116)   3.6823457 (4.2603) 

𝒙𝟒  5 4  0.3127639 (0.3125)   0.0066574 (0.0065)   4.1011152 (4.2603) 

Table 6. Simulated and theoretical descriptive statistics (in parentheses) of Mardia's multivariate Pareto of 
type I distribution (with parameters 𝒂 = 𝟓, 𝛉𝟏 = 𝟏, 𝛉𝟐 = 𝟐, 𝛉𝟑 = 𝟑 and 𝛉𝟒 = 𝟒) with sample size = 10,000. 

 

MULTIVARIATE LOGISTIC DISTRIBUTION 

To generate the numbers from multivariate logistic distribution, we specify 'Logistic' for the 

distname argument. The Table 7 shows the first five samples and the Table 8 gives the comparison 

between simulated and theoretical descriptive statistics. 

%randgenMV(distname = 'Logistic', nSize = 10000, ndim = 4, seed = 123, out = 

TEST_Logistic); 

 



7 

Obs x1 x2 x3 x4 

1 -1.36314 -0.90768 3.19451 -0.45745 

2 0.72953 0.59756 3.19576 1.46144 

3 0.53348 0.80731 1.06354 1.25573 

4 0.87686 0.02786 0.71089 -0.69729 

5 -0.83880 -0.24672 -0.74793 -0.04313 

Table 7. First five samples from multivariate logistic distribution. 

 

𝒙𝒊 Mean Variance Skewness 

𝒙𝟏   0.0149735 (0)    3.3260940 (3.289868)   0.0601667 (0) 

𝒙𝟐   0.0066787 (0)    3.3277500 (3.289868)   0.0354062 (0) 

𝒙𝟑   -0.0167239 (0)   3.4034982 (3.289868)   -0.0272500 (0) 

𝒙𝟒   -0.0172631 (0)   3.2073399 (3.289868)   -0.0295767 (0) 

Table 8. Simulated and theoretical descriptive statistics (in parentheses) of multivariate logistic distribution 
with sample size = 10,000. 

 

MULTIVARIATE BURR DISTRIBUTION 

To generate the numbers from multivariate Burr distribution with parameters 𝑎 = 3, 𝑑1 = 1, 𝑑2 = 2, 𝑑3 =
2.5, 𝑑4 = 3 and 𝑐1 = 1, 𝑐2 = 1.5, 𝑐3 = 2, 𝑐4 = 3, we specify 'Burr' for the distname and assign above 

parameters to the paramList1 and paramList2 arguments. The Table 9 shows the first five samples 

and the Table 10 gives the comparison between simulated and theoretical descriptive statistics. 

%randgenMV(distname = 'Burr', a = 3, paramList1 = {1 2 2.5 3},  paramList2 = 

{1 1.5 2 3}, nSize = 10000, ndim = 4, seed = 123, out = TEST_Burr); 

 

Obs x1 x2 x3 x4 

1 0.60908 0.33411 0.05055 0.43458 

2 1.61558 0.94713 0.23424 0.63745 

3 0.68515 0.40790 0.40163 0.48047 

4 0.17758 0.35052 0.28958 0.65863 

5 3.01316 0.88560 1.04908 0.76815 

Table 9. First five samples from multivariate Burr distribution 
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𝒙𝒊 𝒂 𝒃𝒊 𝒄𝒊 Mean Variance Skewness 

𝒙𝟏  3 1 1  0.4867022 (0.5)   0.6360966 (0.75)   6.5802177 (no closed form) 

𝒙𝟐  3 2 1.5  0.3349340 (0.3385547)   0.0908590 (0.09866)   2.5023496 (no closed form) 

𝒙𝟑  3 2.5 2  0.3747323 (0.3725471)   0.0639581 (0.06121)   1.8628573 (no closed form) 

𝒙𝟒  3 3 3  0.4663825 (0.4657845)   0.0417502 (0.04141)   0.9077997 (no closed form)  

Table 10. Simulated and theoretical descriptive statistics (in parentheses) of multivariate Burr distribution 
(with parameters 𝒂 = 𝟑, 𝒅𝟏 = 𝟏, 𝒅𝟐 = 𝟐, 𝒅𝟑 = 𝟐. 𝟓, 𝒅𝟒 = 𝟑 and 𝒄𝟏 = 𝟏, 𝒄𝟐 = 𝟏. 𝟓, 𝒄𝟑 = 𝟐, 𝒄𝟒 = 𝟑) with sample size = 
10,000. 

 

GENERALIZED MULTIVARIATE LOMAX DISTRIBUTION 

To generate the numbers from generalized multivariate Lomax distribution with parameters 𝑎 = 5, θ1 =
1, θ1 = 3, θ1 = 5, θ1 = 7 and 𝑙1 = 3, 𝑙2 = 6, 𝑙3 = 9, 𝑙4 = 12, we specify 'GLOMAX' for the  distname 

argument and assign above parameters to a, paramList1, and paramList2, respectively. The Table 

11 shows the first five samples and the Table 12 gives the comparison between simulated and theoretical 
descriptive statistics. 

%randgenMV(distname = 'GLOMAX', a = 5, paramList1 = {1 3 5 7}, paramList2 = 

{3 6 9 12}, nSize = 10000, ndim = 4, seed = 123, out = TEST_GLomax); 

 

Obs x1 x2 x3 x4 

1 0.22082 0.23608 0.51410 0.23713 

2 1.17087 1.13377 0.93032 0.46419 

3 0.27848 0.17701 0.44490 0.36987 

4 1.49210 0.19961 0.40918 0.51605 

5 3.73857 2.34994 0.78979 0.91950 

Table 11. First five samples from generalized multivariate Lomax distribution 

 

𝒙𝒊 𝒂 𝜽𝒊 𝒍𝒊 Mean Variance Skewness 

𝒙𝟏 5 1 3  0.7527525 (0.75)        0.4352055 (0.4375)       3.1878871 (3.779645) 

𝒙𝟐 5 3 6  0.4948338 (0.5)         0.1275871 (0.13888889)   2.7736863 (3.577709) 

𝒙𝟑 5 5 9  0.4456667 (0.45)        0.0946357 (0.0975)       3.1771275 (3.522819)  

𝒙𝟒 5 7 12  0.4258841 (0.4285714)   0.0775375 (0.08163265)   2.8155959 (3.5) 

Table 12. Simulated and theoretical descriptive statistics (in parentheses) of generalized multivariate Lomax 
distribution (with parameters 𝒂 = 𝟓, 𝛉𝟏 = 𝟏, 𝛉𝟏 = 𝟑, 𝛉𝟏 = 𝟓, 𝛉𝟏 = 𝟕 and 𝒍𝟏 = 𝟑, 𝒍𝟐 = 𝟔, 𝒍𝟑 = 𝟗, 𝒍𝟒 = 𝟏𝟐) with sample 
size = 10,000. 

 

MULTIVARIATE 𝐅 DISTRIBUTION 

To generate the numbers from multivariate 𝐹 distribution with degrees of freedom (10, 2, 6, 10, 14), i.e., 

𝑎 = 5 and 𝑙1 = 1, 𝑙2 = 3, 𝑙3 = 5, 𝑙4 = 7, we specify 'F' for the distname argument and assign above 

parameters to a and paramList1. The Table 13 shows the first five samples and the Table 14 gives the 

comparison between simulated and theoretical descriptive statistics. 
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%randgenMV(distname = 'F', a = 5, paramList1 = {1 3 5 7}, nSize = 10000, ndim 

= 4, seed = 123, out = TEST_F); 

 

Obs x1 x2 x3 x4 

1 1.89716 0.56261 0.80985 0.56524 

2 1.76018 1.30660 2.02943 2.78502 

3 0.58985 0.58212 0.86527 1.02004 

4 0.64897 1.19425 0.96708 1.91616 

5 7.90548 1.84270 1.39392 1.58767 

Table 13. First five samples from multivariate 𝑭 distribution. 

 

𝒙𝒊 𝒂 𝒍𝒊 Mean Variance Skewness 

𝒙𝟏  5 1  1.2422795 (1.25)   2.5050634 (2.6041667)   3.9292800 (4.647580) 

𝒙𝟐  5 3  1.2217160 (1.25)   1.0810380 (1.2152778)   2.8596516 (3.779645) 

𝒙𝟑  5 5  1.2423353 (1.25)   0.8831846 (0.9375000)   2.6852025 (3.614784) 

𝒙𝟒  5 7  1.2413076 (1.25)   0.7484897 (0.8184524)   2.4953732 (3.552939) 

Table 14. Simulated and theoretical descriptive statistics (inside parentheses) of multivariate 𝑭 distribution 
with degrees of freedom (10, 2, 6, 10, 14) and sample size = 10,000. 

CONCLUSION 

We have an approach to simulate and generate random numbers from a multivariate Lomax distribution. 
Further, we have shown how to simulate from many other multivariate distributions due to their 
relationships with the multivariate Lomax distribution. The %RANDGENMV macro is useful to readily 
generate random numbers from these multivariate distributions. The empirical distributions of the 
simulated random numbers clearly match the theoretical features of corresponding distributions and 
hence it is reassuring that our macro offers a very useful tool to support statistical modeling and data 
simulation. 
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APPENDIX 

/* ***********************************************************************; 

*** This SAS program generates multivariate data according to specified 

*** distribution and parameters. 

***********************************************************************/ 

 

%macro randgenMV(distname = , a = 1, paramList1 = {1}, paramList2 = {1},  

nSize = , ndim = , seed = , out = ); 

 

proc iml; 
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call randseed(&seed); 

 

eta = j(&nSize, 1);  

eta_a = &a; 

eta_b = 1; 

 

mvGLomax = j(&nSize, &ndim); 

 

call randgen(eta, 'GAMMA', eta_a, 1/eta_b); 

 

if &distname='F' then do; 

  GLalpha = &paramList1; 

end; 

 

else if &distname='GLOMAX' then do; 

  GLalpha = &paramList2; 

end; 

 

else GLalpha = j(&ndim, 1); 

 

if &distname = 'Logistic' | &distname='Burr' then do; 

  x_lambda = j(&ndim, 1); 

end; 

 

else if &distname = 'F' then do; 

  x_lambda = &paramList1/eta_a; 

end; 

 

else x_lambda = &paramList1; 

 

do i = 1 to &nSize; 

  do j = 1 to &ndim; 

    GLbeta = eta[i]*x_lambda[j];  

    mvGLomax[i,j] = rangam((&seed+i+j),GLalpha[j])/GLbeta; 

  end; 

end; 

 

if &distname = 'LOMAX' | &distname = 'GLOMAX' then do; 

  mvData = mvGLomax; 

end; 

 

if &distname = 'MPareto1' then do; 

  mvMPareto1 = j(&nSize, &ndim); 

  theta = &paramList1/eta_b; 

  do k = 1 to &nSize; 

    mvMPareto1[k,] = mvGLomax[k,] + 1/theta; 

  end; 

  mvData = mvMPareto1; 

end; 

 

if &distname = 'Logistic' then do; 

  mvLogistic = j(&nSize, &ndim); 

  do k=1 to &nSize; 

    mvLogistic[k,] = -log(mvGLomax[k,]); 

  end; 

  mvData = mvLogistic; 
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end; 

 

if &distname = 'Burr' then do; 

  mvBurr = j(&nSize, &ndim); 

  do k=1 to &nSize; 

    mvBurr[k,] = (mvGLomax[k,] # 1/&paramList1) ## (1/&paramList2); 

  end; 

  mvData = mvBurr; 

end; 

 

if &distname = 'F' then do; 

  mvData = mvGLomax; 

end; 

 

create &out from mvData[c = ("x1":"x&ndim")]; 

append from mvData; 

close &out; 

quit; 

 

%mend randgenMV; 
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