
MWSUG 2019 – Paper PO030

Badge in Batch with Honeybadger:
Generating Conference Badges with

Quick Response (QR) Codes Containing
Virtual Contact Cards (vCards) for

Automatic Smart Phone Contact List Upload

Troy Martin Hughes

ABSTRACT

Quick Response (QR) codes are widely used to encode information such as uniform record locators (URLs)
for websites, flight passenger data on airline tickets, attendee information on concert tickets, or product
information on product packaging. The proliferation of QR codes is due in part to the broad dissemination
of smart phones and the accessibility of free smart phone applications that scan QR codes. With the ease
of QR code scanning has come another common QR code usage—the identification of conference
attendees. Conference badges, emblazoned with attendee-specific QR codes, can communicate attendee
contact information to other conference goers, including organizers, vendors, potential customers or
employers, and others. Conference badges that contain QR codes make it easy for attendees to link up
with each other because snapping a photo of a badge can immediately capture contact information (that
could not otherwise be printed on the badge itself). To that end, this text introduces flexible Base SAS®
software that dynamically creates attendee QR codes from a data set containing contact and other
information. This data-driven approach could be used to create attendee badges by conference organizers
rather than costly third-party vendors. When a badge QR code is scanned by a conference goer, the
attendee’s personal information—including name, job title, company, phone number, email address, city,
state, website, and biographical statement—is ported into a variant call format (VCF) file (or vCard) that
can be uploaded automatically into a smart phone’s contact list. Attendees are able to select what personal
information is contained within their QR code and conference organizers are able to customize and
configure badge format and content through an external cascading style sheets (CSS) file that dynamically
alters badges without the necessity to modify the underlying code. This end-to-end system offers
conference organizers potential cost savings of thousands of dollars—money that can be diverted from
costly, third-party badge vendors to open bars and other necessities.

INTRODUCTION

Quick response (QR) codes, launched in 1994, are barcodes that contain information encoded in boxy
black and white patterns. Some QR codes are unique. For example, if you’ve purchased an airline ticket,
concert ticket, or sporting event ticket in the past decade, the ticket probably had a QR code (unique to
you) that was scanned as you entered the event. The QR code in part demonstrates that the ticket was
valid and unique (so that would-be thieves cannot attempt to enter the same venue with the same ticket).
In other cases, a QR code may not be unique, such as a code used on product packaging, in which the
code may be printed on thousands of boxes. For example, in a recent trip to Best Buy (aka, the Amazon
showroom), I scanned QR codes on a number of printers, which linked me to online product information.

In addition to other uses, QR codes have become ubiquitous at trade, technical, and other professional
conferences. With individualized QR codes emblazoned on attendee badges, conference organizers can
ensure that attendees belong in designated events. Moreover, other conference goers can snap photos of
attendee badges or scan them with QR-code readers, and immediately upload the associated contact
information into a cellular phone contact list. The use of QR codes on conference badges can tremendously
increase the ability of conference goers to interact with each other and to exchange and receive contact
information.

This text introduces a data-driven method that generates variant call format (VCF) files (or vCards) that can
be uploaded automatically to contact lists of smart phones. Contact information is collected when attendees
register for a conference or other event, and eventually makes its way to a database or table. The SAS®
Honeybadger takes those data, converts them to a QR code that can be placed dynamically on individuals’

2

badges, and creates those badges as a file that can be saved and printed. This allows conference
organizers to print badges themselves rather than paying a third-party vendor. When conference attendees
want to exchange contact information, they only have to snap a picture of a badge (or use a QR code reader
application) to have the vCard uploaded in their phones.

Special thanks to Rob Allison for his blog post that wholly inspired this endeavor!i Rob’s code is posted
here, dated September 12, 2016, and formed the basis of this exploration.ii The Honeybadger relies on the
Google Infographics QR code generator that is still functional, but which has been deprecated.iii

ATTENDEE PERSONAL DATA

Personal data for conference attendees is commonly collected during the online conference registration
process. Although some of this information is confidential (e.g., credit card information), other information
is considered public (e.g., first and last name, company) and is commonly printed on conference badges.
And in the middle may lie personal information (e.g., phone number, email, city of residence, social media
username) that some attendees don’t mind releasing although others will want held confidential. In other
words, some attendees would prefer to be recognized by name only whereas others would prefer to walk
around with a business card emblazoned on their chest. Thus, the first step is to ensure that attendees can
“opt in” to all personal data that will be released—either displayed in plain text on a badge (like company
name) or encoded within the QR code.

Behind the scenes, the data are collected and amassed into a database or table. This table, converted into
a SAS data set, can be used to drive the dynamic creation of QR codes and subsequent badges that can
be printed for all conference attendees. Note that conference organizers are responsible for converting their
specific attendee table into the format of the Attendees data set, depicted in Table 1.

Table 1. Attendees Data Set Collected from Theoretical Conference Registration Table

Within the Biography field, carriage returns are changed to “/n” so that line breaks and multiple lines are
supported within the vCard NOTE field. Blank lines are also supported, so long as they occur between text
blocks (i.e., paragraphs), and are represented by two successive “/n” escape codes.

Information Variable Name Format

Prefix prefix $5

First Name firstName $30

Middle Name middleName $30

Last Name lastName $30

Suffix suffix $5

City city $30

State state $2

Cell Phone cellPhone $12

Work Phone workPhone $12

Email Address email $40

Website URL URL $100

Biography bio $100

Company Name company $30

Professional Title jobTitle $40

3

SAMPLE ATTENDEES DATA SET

The following DATA step creates a sample data set (HONEYBGR.Attendees) that includes some loveable
characters from NBC’s hit comedy, The Office:

%let loc=D:\SAS\honeybadger\; * USER MUST CHANGE THIS VALUE!!! *;

libname honeybgr "&loc";

data honeybgr.attendees;

 infile datalines dsd;

 length prefix $5 firstName $30 middleName $30 lastName $30

 suffix $5 city $30 state $2 cellPhone $10 workPhone $10

 email $40 URL $100 bio $100 company $30 jobTitle $40;

 input prefix $ firstName $ middleName $ lastName $

 suffix $ city $ state $ cellPhone $ workPhone $

 email $ URL $ bio $0 company $ jobTitle $;

 label prefix='Prefix' firstName='First Name' middleName='Middle Name'

 lastName='Last Name' suffix='Suffix' city='City' state='State'

 cellPhone='Cell Phone' workPhone='Work Phone'

 email='Email' URL='URL' bio='Biography' company='Company' jobTitle='Job

Title';

datalines;

Mr.,Michael,Gary,Scott,,Scranton,PA,,570-344-

1212,mscott@dundermiff.com,https://theoffice.fandom.com/wiki/Michael_Scott,Michael

Scott is the Regional Manager of Dunder Mifflin.,Dunder Mifflin,Regional Manager

Mr.,Jim,,Halpert,,Scranton,PA,,570-344-

1214,jhalpert@dundermiff.com,https://theoffice.fandom.com/wiki/Jim_Halpert,Jim

Halpert has been a paper salesman for far too long.,Dunder Mifflin,Salesman

Mr.,Dwight,K,Schrute,,Scranton,PA,,570-344-

1269,dschrute@dundermiff.com,https://theoffice.fandom.com/wiki/Dwight_Schrute,"Dwig

ht is a fan of Battlestar Galactica, bears, and beets.",Dunder Mifflin,Assistant to

the Regional Manager

Ms.,Pam,,Halpert,,Scranton,PA,,570-344-

1279,phalpert@dundermiff.com,https://theoffice.fandom.com/wiki/Pam_Beesly,"Pam

Halpert has held various roles, including receptionist, salesman, and office

manager.",Dunder Mifflin,Office Manager

Ms.,Angela,,Martin,,Scranton,PA,,570-344-

1206,amartin@dundermiff.com,https://theoffice.fandom.com/wiki/Angela_Martin,Angela

Martin is the head of the Accounting Department and loves her kitties.,Dunder

Mifflin,Accountant

Ms.,Meredith,,Palmer,,Scranton,PA,,570-344-

1208,mpalmer@dundermiff.com,https://theoffice.fandom.com/wiki/Meredith_Palmer,Mered

ith Palmer sleeps with suppliers for steak coupons and discounted products.,Dunder

Mifflin,Supplier Relations

;

Note also that the &LOC global macro variable must be changed to reflect the user’s local SAS
infrastructure. In reality, conference data would have been maintained in a database, table, or SAS data
set, from which those data could be ported to the HONEYBGR. Users will also need to ensure that only
those data approved for release (by attendees) are included in the Attendees data set. Thus, this represents
the finalized, culled data set in which personal information that attendees wish to remain private (like
personal cell phone numbers) have been removed.

CREATING A VIRTUAL CONTACT CARD (VCARD)

The vCard format specification is defined as an ANSI standard to ensure compatibility across devices.iv All
possible vCard fields are not incorporated into the QR codes that are utilized; thus, only those fields listed
in Table 1 are utilized by the Honeybadger. The metadata content contained within the QR codes represent
the typical contact information (e.g., name, phone number, email, job title, company) that would be printed
on a business card, as well as additional (optional) information (e.g., short biography) that might be

4

exchanged in introductory conversation. And, for those conference goers who value privacy, their QR codes
can be generated to include only first and last name, with no additional information.

When a conference attendee scans a QR code on a badge, the smart phone recognizes the vCard format,
and prompts the user to create (or update) a contact (based on the specific phone make and model). The
contact information is automatically saved to the phone and, if the badge wearer has provided optional
biographical information, that information can be reviewed later. vCard files can also contain one URL, so
attendees can choose to highlight their LinkedIn, Facebook, Twitter, or other social media handle, or to link
to a blog or other location. In this way, although many conference goers may still choose to carry and
distribute business cards at conferences, they can also rely on their badge to dynamically (and in a much
“greener” fashion) convey that same information.

The following DATA step iteratively creates a vCard file for each person in the Attendees data set:

data _null_;

 set honeybgr.attendees end=eof;

 length fname $200;

 array line $200 line1-line13;

 fname="&loc" || 'vCard' || strip(put(_n_,8.)) || '.vcf';

 file f filevar=fname;

 line1='BEGIN:VCARD';

 line2='VERSION:4.0';

 line3=cats('N:',lastName,';',firstName,';;',prefix,';');

 line4=catx(' ','FN:',firstName,lastName);

 line5=cats('ORG:',company);

 line6=cats('TITLE:',jobTitle);

 line7=cats('TEL;TYPE=work:tel:+',workPhone);

 line8=cats('TEL;TYPE=cell:tel:+',cellPhone);

 line9=cats('ADR;TYPE=work:',city,';',state);

 line10=cats('EMAIL;TYPE=work:',email);

 line11=cats('URL:',url);

 line12=cats('NOTE:',bio);

 line13='END:VCARD';

 do over line;

 put line;

 end;

 if eof then call symputx('numpeeps',strip(put(_N_,8.)),'g');

run;

Thus, given the sample data set, the DATA step creates six vCard files (vCard1.vcf through vCard6.vcf).
For example, the first observation (Michael Scott) is saved as vCard1.vcf:

BEGIN:VCARD

VERSION:4.0

N:Scott;Michael;;Mr.;

FN: Michael Scott

ORG:Dunder Mifflin

TITLE:Regional Manager

TEL;TYPE=work:tel:+570-344-1212

TEL;TYPE=cell:tel:+

ADR;TYPE=work:Scranton;PA

EMAIL;TYPE=work:mscott@dundermiff.com

URL:https://theoffice.fandom.com/wiki/Michael_Scott

NOTE:Michael Scott is the Regional Manager of Dunder Mifflin.

END:VCARD

CREATING A QR CODE FROM A VCARD

The QR macro (thank you again Rob Allison!) contacts the Google API and converts a text file—in this
case, the vCard text files that were dynamically created—to a QR code PNG file:

%macro qr(in,out);

data;

5

 infile &in recfm=f lrecl=4096 length=l;

 length url_encoded $8192;

 keep url_encoded;

 input @1 all $varying4096. l;

 url_encoded='chs=500x500&cht=qr&chl='||urlencode(strip(all))||'&chld=l';

 call symputx('qrtextl',length(url_encoded));

 output;

 stop;

run;

filename qrtext temp recfm=f lrecl=&qrtextl;

data _null_; set;

 file qrtext;

 put url_encoded;

run;

proc delete;

run;

proc http in=qrtext out=&out method='post'

 url='https://chart.googleapis.com/chart?'

 ct='application/x-www-form-urlencoded';

run;

filename qrtext clear;

%mend;

The CALLQR macro iterates through the list of vCard files and calls the QR macro to build a QR PNG file
from each vCard file:

%macro callqr();

%local i;

%do i=1 %to &numpeeps;

 filename vcardin "&loc.vCard&i..vcf";

 filename qrout "&loc.qrcode&i..png";

 %qr(vcardin,qrout);

 filename vcardin clear;

 filename qrout clear;

 %end;

%mend;

%callqr;

This invocation of CALLQR, for example, creates QRcode1.png through QRcode6.png. Figure 1
demonstrates QRcode1.png, which represents the vCard data for Michael Scott.

Figure 1. vCard Data for Michael Scott (QRcode.png)

6

SCANNING A QR CODE AND ADDING A CONTACT

When a user (such as a conference organizer, security guard, or other attendee) scans the QR code in
Figure 1 (using a free cell phone app), the user is immediately prompted with choices. For example, Figure
2 demonstrates how this appears on a Samsung smart phone.

Figure 2. Scanned QR Code Import on a Samsung Smart Phone

Once the vCard information is populated, clicking “Add” will create a contact (i.e., phone book entry) that
can be edited. For example, clicking “Add” on Michael Scott is demonstrated in Figure 3.

7

Figure 3. Creating a New Contact

If no edits are required, the contact can be saved immediately. Thus, in five seconds, a conference goer
can snap a picture with a QR code scanning app, import the vCard, save the vCard as a new contact, and
have all information represented in Table 1 imported into their phone. Figure 4 demonstrates the new
contact, again as it appears within a Samsung smart phone.

8

Figure 4. New Contact Saved in Phone

CREATING BADGES

Once the Attendees data set has been populated, the vCard text files have been created, and the QR code
images have been created, the final step (for conference organizers) is to run the Honeybadger to create
the HTML output that contains the badges:

9

data _null_;

 set honeybgr.attendees end=eof;

 array line $200 line1-line5;

 length cssfile qrfile logofile $200;

 cssfile="&loc.badges.css";

 qrfile="&loc.QRcode" || strip(put(_n_,8.)) || '.png';

 logofile="&loc.pharmasug_logo.jpg";

 file "&loc.badges.html";

 if _n_=1 then do;

 put '<!DOCTYPE html>';

 put '<html>';

 put '<head>';

 put '<link rel="stylesheet" href="' cssfile '">';

 put '</head>';

 put '<body>';

 put '<table>';

 end;

 line1='<div class="f1">' || strip(firstName) || ' ' || strip(lastName)

 || '</div>
';

 line2='<div class="f2">' || strip(jobTitle) || ', ' || strip(company)

 || '</div>
';

 line3='<div class="f3">' || strip(city) || ', ' || strip(state)

 || '</div>

';

 line4='';

 line5='';

 if mod(_n_,2)=1 then put '<tr>';

 put ' <td>';

 do over line;

 put ' ' line;

 end;

 put ' </td>';

 if mod(_n_,2)=0 then put '</tr>';

 if mod(_n_,2)=1 and eof then put '</tr>';

 if eof then put '</table></body></html>';

run;

When the DATA step executes, the Badges.html file is created, which references the Badges.css stylesheet
from which all style attributes are derived:

<!DOCTYPE html>

<html>

<head>

<link rel="stylesheet"

href="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\badges.css ">

</head>

<body>

<table>

<tr>

 <td>

 <div class="f1">Michael Scott</div>

 <div class="f2">Regional Manager, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode1.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

 <td>

 <div class="f1">Jim Halpert</div>

 <div class="f2">Salesman, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

10

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode2.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

</tr>

<tr>

 <td>

 <div class="f1">Dwight Schrute</div>

 <div class="f2">Assistant to the Regional Manager, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode3.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

 <td>

 <div class="f1">Pam Halpert</div>

 <div class="f2">Office Manager, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode4.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

</tr>

<tr>

 <td>

 <div class="f1">Angela Martin</div>

 <div class="f2">Accountant, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode5.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

 <td>

 <div class="f1">Meredith Palmer</div>

 <div class="f2">Supplier Relations, Dunder Mifflin</div>

 <div class="f3">Scranton, PA</div>

 <img class="qr"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\QRcode6.png">

 <img class="logo"

src="C:\Users\manny\stuff\SAS\20190615_PharmaSUG_Phily\QR_codes\pharmasug_logo.jpg"

>

 </td>

</tr>

</table></body></html>

Badges.html is demonstrated in Figure 5. Note that six badges are printed per page, allowing conference
organizers to print multiple pages on conveniently accessible 3” x 4” perforated (or sticky) badge paper. In
Figure 5, a black outline (optional) has been added only to differentiate badge edges. This and other stylistic
customizations can be made by modifying the Badges.css file.

11

Figure 5. Badges.html

INPUT FILES REQUIRED TO PRODUCE BADGES

The previous DATA step requires three input files to complete: a CSS file that prescribes the HTML style
and formatting, the QR code (unique to each attendee, and saved as PNG files), and the PharmaSUG logo
(saved as d:\sas\honeybadger\pharmasug_logo.jpg).

The default CSS file (d:\sas\honeybadger\badges.css) follows:

12

body {

 margin: 25px;

 background-color: rgb(256,256,256);

 font-family: arial, sans-serif;

 font-size: 14px;

}

div

{

 display: inline-block;

}

table {

 table-layout: fixed;

}

td {

 width:4in;

 height:3in;

 max-width:4in;

 min-width:4in;

 max-height:3in;

 min-height:3in;

 border:1px solid black;

 text-align: center;

 vertical-align: bottom;

}

.f1 {

 font:arial, sans-serif;

 font-size: 20pt;

 font-style: normal;

 font-weight: bold;

}

.f2 {

 font:arial, sans-serif;

 font-size: 14pt;

 font-style: italic;

 font-weight: normal;

}

.f3 {

 font:times new roman, sans-serif;

 font-size: 10pt;

 font-style: normal

 font-weight: normal;

}

.qr {

 border: 0in;

 padding: 0in;

 display: block;

 float: left;

 vertical-align: bottom;

 margin-bottom: 0px;

 bottom: 0px;

 width: 1.25in;

 height: 1.25in;

}

.logo {

 border: 0in;

13

 padding: 0in;

 float: right;

 vertical-align: text-bottom;

 left: 2.75in;

 height: 1.25in;

}

By modifying the styles specified in the CSS file (not described in this text), users can customize every
aspect of the badges that are printed. The Honeybadger DATA step likewise can be modified so that specific
attendee metadata are included or omitted. Through these two mechanisms, conference organize have
total autonomy to customize badges with very little effort.

CONCLUSION

This data-driven solution to conference badge creation puts conference organizers squarely in the driver’s
seat. Honeybadger lets organizers control the information printed on the badge, the font and other style
elements, and the size and location of the QR code and optional conference logo. Attendees also have
control over badge information, and are able to indicate what metadata should be made available to
conference attendees (in the QR code) versus metadata that should be available only to conference
organizers (in the conference registration database). Finally, given the often-exorbitant cost of third-party
badge vendors, this home-grown solution offers a huge cost savings to conference organizers who can
redirect it toward more meaningful activities.

REFERENCES

i Robert Allison. How to create your own QR codes with SAS! Retrieved from
https://blogs.sas.com/content/sastraining/2016/09/12/how-to-create-your-own-qr-codes-with-sas/.

ii Robert Allison. Code, including his SAS macro TO_QR. Retrieved from
http://robslink.com/SAS/democd88/qr_robslink.sas.

iii Google Charts Infographics: QR Codes. Retrieved from
https://developers.google.com/chart/infographics/docs/qr_codes.

iv vCard Format Specification. Retrieved from https://tools.ietf.org/html/rfc6350.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Troy Martin Hughes
E-mail: troymartinhughes@gmail.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

https://blogs.sas.com/content/sastraining/2016/09/12/how-to-create-your-own-qr-codes-with-sas/
http://robslink.com/SAS/democd88/qr_robslink.sas
https://developers.google.com/chart/infographics/docs/qr_codes
https://tools.ietf.org/html/rfc6350

