
MWSUG 2019 - PO-045

Have Your SAS® Program And Schedule It Too!

Mario Tejada, Data Solutions Developer

NORC @ the University of Chicago

ABSTRACT

In some SAS environments, it is common to use the Windows Task Scheduler to launch production jobs

on a set schedule. In order to create a basic task, one needs to manually open Task Scheduler and enter

the desired parameters for the job. This paper will explore the possibility of using SAS to drive the

scheduling process. Instead of going into Task Scheduler, the programmer can use SAS to set the

parameters of a job and programmatically register that task in Windows using PowerShell.

This paper assumes a basic understanding of SAS data step programming, SAS Macros and

administrator-level access to run Windows Operating system (PowerShell) commands. Some familiarity

with creating scheduled tasks is assumed. Programs on this paper were tested using SAS 9.4M5 and

PowerShell version 5.1 on Windows 10.

INTRODUCTION

Setting up a scheduled task on Windows usually takes several steps: (1) Opening Task Scheduler, (2)

Creating a task by following several more steps to set various parameters on the Task Wizard and (3)

Registering the task by supplying the credentials to use for the job. The number of steps can be cut

down by using PowerShell’s Register-ScheduledJob cmdlet:

Note that the tilde “`” character was used to split lines for better readability.

DISCUSSION

A SAS data _null_ step will be used to generate the PowerShell code shown above and then will be

executed using an unnamed pipe. The syntax for this device-type pipe is shown below:

Register-ScheduledJob -Name "MyScheduledJob" `
 -FilePath "Path_To_Scriptfile.ps1" ` <#SAS-generated#>
 -Trigger $datetime_triggers `
 -ScheduledJobOption $job_options `
 -Credential $cred

FILENAME fileref PIPE 'program-name' option-list;

Fileref is any valid fileref, as described in Referencing External Files.

PIPE is the device-type keyword that tells SAS that you want to use an unnamed pipe.

program-name specifies the external Windows application program.

option-list can be any of the options valid in the FILENAME statement, such as the LRECL= or RECFM= options.

From http://support.sas.com/documentation/cdl/en/hostwin/63047/HTML/default/viewer.htm#n16puwsro9pakqn1jamy1vwyaqx6.htm

http://support.sas.com/documentation/cdl/en/hostwin/63047/HTML/default/n07buc7sg08fdrn1c1jmmr8hl78r.htm
http://support.sas.com/documentation/cdl/en/hostwin/63047/HTML/default/viewer.htm#n16puwsro9pakqn1jamy1vwyaqx6.htm

In the sections that follow, code snippets that make up the full program will be described. As a simple

example, we attempt to programmatically schedule this program:

First, we set up a PowerShell script that will execute the SAS program above:

Second, the parameters for the scheduled job are stored in macro variables:

Third, set up the data _null_ step that would generate the PowerShell script which would register the
scheduled job:

Program name: Path_To_Scriptfile.ps1

$sasexe94="E:\Program Files\SASHome\SASFoundation\9.4\sas.exe"
$file_path=" C:\Users\username\Documents\SAS_Paper_2019\print_SAS_Cars_dataset.sas";

Start-Process "$sasexe" -ArgumentList $file_path

%let username = domain\username;
%let working_folder = C:\Users\username\Documents\SAS_Paper_2019;
%let jobname= MyScheduledJob;
%let freq = daily; *options: daily, hourly, weekly;
%let time = 1:45pm;

Program name: print_SAS_Cars_dataset.sas

ods pdf
 file= 'C:\Users\username\Documents\SAS_Paper_2019\practice_output\test_output.pdf';
 proc print data=sashelp.cars; run;
ods pdf close;

filename process pipe "powershell -noprofile -executionpolicy bypass -Command ""
.\PS_Schedule_MySAS_program.ps1""";
data loglines;
 infile process firstobs=4;
 length longtext $ 1000;
 input @1 longtext;
run;

**[1.1] remove password file **;
X "del C:\Users\username\Documents\SAS_Paper_2019\SAS_CRED\ MY_PSCRED.txt";

Fourth, call the above script using a pipe to register the job and then delete the temporary text file that
stores the encrypted password.

After running the script above, the scheduled job will be added to Task Scheduler:

Important notes about this script

The user account should have admin rights on the machine where the scheduled job will be run. When

naming the job, if there is an existing task with the same name, then the task registration fails.

Please see references for information on creating the temporary credentials file.

CONCLUSION

This e-poster outlined the steps needed to schedule a SAS program by leveraging PowerShell’s Register-

ScheduledJob cmdlet. Armed with this information, you can now have your SAS program and schedule it

too!

REFERENCES

More information about Register-ScheduledJob can be found on the Microsoft website:
https://docs.microsoft.com/en-us/powershell/module/psscheduledjob/about/about_scheduled_jobs?view=powershell-5.1

More information
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-

6#examples

ACKNOWLEDGMENTS

The author would like to thank Joe Matise for his support and valuable input to this paper.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Name: Mario Tejada

Enterprise: NORC @ the University of Chicago

Address: 55 E Monroe St.

City, State ZIP: Chicago, IL 60603

Work Phone: 312-357-3894

E-mail: tejada-mario@norc.org

Web: www.norc.org

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

https://docs.microsoft.com/en-us/powershell/module/psscheduledjob/about/about_scheduled_jobs?view=powershell-5.1
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-6#examples
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.security/convertto-securestring?view=powershell-6#examples

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are registered trademarks or trademarks of their respective companies.

Appendix

Full Code

%let username = domain\username;
%let working_folder = C:\Users\username\Documents\SAS_Paper_2019;
%let jobname= MyScheduledJob;
%let freq = daily;
%let datetime = 1:45pm;

** Script that actually runs the SAS program **;
%let runsas_scriptfile = 'C:\Users\username\Documents\SAS_Paper_2019\
Path_To_Scriptfile.ps1';

** Script for registering Scheduled Task **;
%let reg_scriptfile = &working_folder\PS_Schedule_MySAS_program.ps1;

X "cd &working_folder.";

filename script "®_scriptfile.";
data _null_;
 file script ;
 put "$my_cred_folder = '&working_folder.\SAS_CRED'";
 put "$username = '&username.'";
 put '$password = Get-Content "${my_cred_folder}\MY_PSCRED.txt" | ConvertTo-
SecureString';
 put "$cred = new-object -typename System.Management.Automation.PSCredential -
argumentlist $username, $password";
 put "$opt = New-ScheduledJobOption -RequireNetwork -RunElevated";
 put "$newtrigger=New-JobTrigger -Daily -At 2:45PM";
 put "Register-ScheduledJob -name TEST_SAS_Generated_Scheduled_Task3 -Trigger
$newtrigger -Credential $cred -FilePath &runsas_scriptfile. -ScheduledJobOption
$opt";
run;

