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ABSTRACT 

Writing code to support data analysis has a unique set of problems and is a vastly different task than writing 
traditional software.  More often than not, it is throwaway code whose ultimate direction is not always known at the 
start of the project – intermediate results drive further investigative steps.  Additionally, there is often a time-sensitivity 
to these types of projects.  This limits the usefulness of traditional requirements gathering and technical specification 
writing.  Even so, writing code to support analytics can be tricky and one must stick to simple, repeatable techniques 
to confidently write code that works the first time, every time.  In this paper, I will describe a process of work 
developed over the last 30 years aimed at eliminating both coding and data interpretation errors as they occur.  The 
methods are not rocket science, but rather rely on straight-forward techniques and “data diligence”. 

INTRODUCTION 

“Approximately half the articles published in medical journals that use statistical methods use them incorrectly.” [1] 
Published accounts of statistical errors in the literature come directly from a review of the literature itself.  But how 
can one identify faulty data preparation from a literature review?  Great statistical analysis on top of bad data is 
potentially more troublesome than mediocre analysis on top of solid data.  As this paper will focus heavily on coding 
techniques and not so much on statistical techniques, a fair question would be “Why isn’t this paper being presented 
in a BASE SAS

®
 forum?”  My response is simple:  garbage in – garbage out.  Data preparation may not be sexy, but 

it is a critical part of the statistical analysis process that is often short-changed even by experienced analysts. 

One wintery day in the mid 80’s, we got a call from a government researcher stating that he was having difficulty 
reproducing numbers from one of our published papers on traffic safety.

1
  He was sufficiently sure of his results that 

he had already reported his findings to both his and our senior leadership.  As our paper was considered by many to 
be a land-mark work in the area of safety belt effectiveness, was based on publicly available fatal accident data 
maintained by the US government, and was being challenged by one of its own highly regarded traffic safety 
researchers; we were obviously concerned. 

It turned out to be faulty data filters in the government study that had caused the difference; and, as a young analyst, 
I thought long and hard on whether I had been good or just lucky.  Either way, I learned a valuable lesson – you 
cannot over check the impact of your filters.  It also leads one to wonder – just how much of the literature out there is 
wrong?  Given their confidence in their original results, it is likely that the government study referenced above would 
have been published with incorrect results.  This paper is focused on four major themes: 

1. An “iterative programming” technique which breaks the code development process up into small chunks that 
are fully developed and tested before going on to the next “chunk”. 

2. Use of simple, repeatable coding techniques that have stood the test of time. 

3. Data filtering is king.   Check and recheck – know your row counts, your data, and your filters.  Treat the data 
filtering trail as a police detective treats his evidence trail. 

4. SAS
®
 software is the perfect environment to implement Steps 1 – 3. 

ITERATIVE APPROACH TO WRITING CODE 

I believe very strongly in the divide and conquer strategy when it comes to any task, especially coding.  I took a 
graduate systems course from an extraordinary professor who happened to be both blind and Jewish while teaching 
at a Jesuit school.

2
  When passing out coding assignments, he gave very explicit instructions as to the number, 

length, and content of subroutines for each project.  It irritated me until one day I stopped by to see him in his office 
and found him engaged with a teaching assistant who was reading source code to him.  I realized then that by forcing 
us to use small routines, he was forcing us to provide him with chunks of code that could be processed in his head. 

                                                 
1
 Readers interested in traffic safety research (and perhaps misdirected government policy) should visit my long-time research 

partner and mentor’s web-site at www.scienceservingsociety.com. 
2
 Abraham Nemeth taught at the University of Detroit for over 30 years.  He is well known for his contributions to mathematics, 

computer science, and educational aids for the blind (e.g. the Nemeth Braille Code for Mathematics and Science Notation). 
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This made a distinct impression on me and to this day I seldom write more code at one time than I can actively 
process in my mind in one chunk before I test.  As an example, let’s assume I need to build a DATA step to read a 
text file, recode some of the variables, and filter the data based on values of one of the input variables.  Rather than 
write the entire DATA step in one fell swoop, I would break this task into 4 steps, each of which is tested fully before 
going on to the next task. 

1. Set up the DATA step so that it only reads the text file and prints out the first 10 or so lines.  Validate that 
the SAS output actually matches the input table for each field (that is, did I read the raw data correctly.) 

2. Let SAS read the rest of the file, run the FREQ procedure on the categorical variables, run the 
UNIVARIATE procedure on numeric variables, and validate that values read are legitimate (if working with 
a new data set, you most likely will need to check with a subject matter expert). Double check that it read 
the correct number of rows.  The SAS notes are invaluable in this process. 

3. Add the code to recode the variables.  Use PROC FREQ (cross-tab) to double check that the encoding is 
correct. 

4. Finally add the code to filter the data.  Use PROC FREQ to determine the expected number of 
observations before filtering and then double check the counts after filtering the datasets. 

By breaking the larger task into these smaller tasks and testing as I go, I have a better chance of identifying bad code 
as it is written; i.e., while my brain is still fully engaged with what I was trying to accomplish with the code.  It also 
gives me a chance to uncover problems in the data (or my understanding of the data) prior to writing the code to 
process that data. 

As an example, take a look at the Microsoft Excel [2] sheet in Figure 1
3
.  It has 76,510 observations with 7 fields.  

Each row corresponds to a person who was involved in a fatal accident in the US during calendar year 2009.  
Assume our task is to read this comma delimited text file and subset the data to deceased, restrained drivers of 
motorized vehicles.  We have been told that each field has a code for missing values (999 for age, 99 seating 
position, and 9 for all other fields.)  Although we do not know all of the individual codes for the variables, we have 
been told that a value of “0” implies no drinking and “1” implies drinking.  Further a restraint code of “3” implies a 
person was wearing a standard 3 point lap/shoulder belt, a seating position code of “11” implies that the person was 
sitting in the left front seat, and that an injury severity of “4” implies the person died as a result of the accident. 

STEP 1 – ENSURE PROPER READING OF THE STRUCTURE OF THE DATA 

As a first step, I want to focus on the mechanics of reading the file correctly. The DATA step in Figure 2 reads the first 
10 lines from the file which can be dumped to the output window.  Notice the wealth of information in the notes which 
tell us if we indeed read the correct file, the expected number of records, and whether or not the actual file is wider 
than expected (more characters, SAS defaults to 256.)  Further the SAS NOTES would have flagged illegal data if 
present (say character data in a numeric field).  Also, by inspection of the output window, we can get a quick read on 
whether or not we are reading the individual fields properly and starting with the correct first row. 

 

 
Figure 1:  Extract from 2009 NHSTA Fatal Accident Reporting System 

                                                 
3
 The data in this sheet is from an extract of the Person File from the US Fatal Accident Reporting System (FARS) data for calendar 

year 2009.  FARS is a database of fatal vehicle accidents in the United States that is maintained by the National Highway 
Transportation Safety Administration (NHSTA) and is made publically available on their web-site. 

Figure 2:  DATA Step to Read First 10 Lines 
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STEP 2 – ENSURE PROPER READING OF THE FIELDS, STRUCTURE AND CONTENT 

As a second step, I want to focus on whether the data in the individual fields match what I was expecting.  Notice 
from the SAS NOTES in Figure 3 that I am now reading 76,510 records as expected.  Do not underestimate the value 
of these notes.  PROC FREQ is used to check 
field values.  Based on the starting 
information, I was expecting to see values of 0 
(no alcohol), 1 (alcohol), or 9 
(missing/unknown).  Yet from Figure 4 we can 
see that 41% of the responses have a value 
of 8.  NHSTA makes a distinction between not 
reported (value of 8) and missing/unknown 
(value of 9).  What if I had simply written the 
code to drop 9’s and count everything greater 
than zero as alcohol related? (I have seen 
stranger code than this).  It is exactly this type 
of issue I am trying to uncover in the second step.  
Finding an error in either the data itself or in my 
understanding of the data before I have recoded 
or filtered any variables saves time in the long 
run.  Also notice that every record has a coded 
value for each of the three variables listed 
below.  This is not always the case, even if a 
code for missing values exists. 

At this point, it is important to understand legal 
values for fields and, if at all possible, expected 
relative penetration of each value.  In the case 
of the FARS data, one can check the coder’s 
manual to find out legal values for every field 
and NHTSA publications for penetration.  Injury 
severity of 4 implies a fatality.  The 33,883 
fatalities in Figure 4 exactly match the expected 
total [3].  For internal data sources, local subject 
matter experts can be invaluable sources for 
confirmation of data levels. 

Depending on the data source, I will run queries 
outside of SAS against the input file and 
compare to the results from PROC FREQ to 
help further validate that I have read the data 
properly.  In the old days with fixed column 
input, I would use the “find all” command of a 
text editor to give me counts of levels for a given 
field.  Today, I take the time to load the data into Excel and run a PIVOT table to get frequency counts.  This level of 
effort may seem extreme to some, but my goal is to make 100% certain that I have loaded the data properly and have 
confidence that the data is valid.  I never work on a new data set without running a PROC FREQ on all fields and 
PROC UNIVARIATE on numeric fields and then checking values with either known references or subject matter 
experts.  If I have an established code running against a known data set, I will add code to check for legal values and 
ABORT the data step if a value is found outside of the good data range.  When working with a customer at the start of 
an important project, my preferred approach is to validate the univariate results with them prior to starting the actual 
analysis.  Again, my goal is to do everything in my power to know the data is solid before starting an analysis. 

STEP 3 – RECODE VARIABLES 

In the third step, it is time to recode variables if needed.  Assume we 
want to split people into 3 age groups (young: 0-24, middle: 25-65, 
and old: over 65)

4
.  In this case, the “IF statement” is 

straightforward.  Even so, resist the urge to just plug in and go.  
Take the time to do a cross-tab of the original and the re-coded 
variables as a double check.  Can you see the flaw in the code 
shown in Figure 5?  The mistake may be trivial, but I will bet that just 
about everyone has made it.  Results from this DATA step are 
shown in Figure 6. 

                                                 
4
 There was a time when I used to break middle-aged and old at age 55 - no longer. 

Figure 3:  DATA Step to Read Entire Text File 

Figure 4: Frequency Counts of Key Variables 

Figure 5:  Flawed Data Step to Recode 
                 a Variable 



4 

 

 
Figure 6:  Coded versus Un-coded Age Variable, Age>=90 

STEP 4 – FILTER THE DATA 

Finally, in the fourth step, we are ready to filter the data.  Remember that our task was to restrict the data to dead, 
restrained drivers of motorized vehicles.  Again, resist the temptation to take shortcuts.  I would initially do this filtering 
in 3 separate DATA steps:  (1) Filter on dead persons. (2) Filter on drivers. (3) Filter on restrained persons.  This 
allows me to understand the impact of 
each filter and to double check against 
known percentages.  The first 3 DATA 
steps in Figure 7 show the results.  The 
33,883 fatalities is a known number.  
About 60% of the general population is 
drivers so the reduction to 21,835 seems 
reasonable.  Although not shown in the 
paper, the reduction to 7,454 is also 
reasonable compared to the general 
population.  In practice, I would do a 
PROC FREQ between each of the data 
steps to validate I am dropping the 
correct number of observations and to 
visually double check I am dropping what 
I think I am dropping.  Remember the 
“Drinking” example where a code of “8” 
for “not reported” existed without my 
knowledge.  I may need to take 
corrective action with such a large 
number of observations coded as “not 
reported”. 

Finally, the fourth DATA step in Figure 7 
applies all three filters in one fell swoop.  
Clearly it is simpler code, easier to read, 
and evens run nominally faster.  
However, unless one is very familiar with 
the data; how do you check that losing 
90% of your records is reasonable? 

 

 

ITERATIVE PROGRAMMING SUMMARY 

The motivation behind this technique is to focus on one task, get it programmed, get it tested, and then move on.  By 
focusing on one and only one task at a time, I find I do a much better job of testing and almost always find my errors 
on the spot as I am developing the code. I find I also end up with a much better understanding of, and confidence in, 
the underlying data. 

Figure 7:  DATA Step Filtering 
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SIMPLE/REPEATABLE CODING TECHNIQUES 

It is hard to imagine that any programming system offers a richer set of tools than SAS.  Not only can SAS help solve 
just about any coding/analytical problem, it often provides many different ways to solve the same problem.  As a SAS 
user, the question becomes, just how many different ways do you need to know to skin a cat?  If your goal is to 
support/teach SAS, than you need to know most, if not all of them.  If your goal is to skin the cat as quickly and 
efficiently as possible, you only need to know one.  The best way to avoid making errors when writing code is to use 
familiar structures so you can keep your eye on the code logic, not the code syntax.  The theme of this section is 
KISS, “Keep-Ing SAS Simple”. 

REUSE OLD CODE AS A PATTERN 

The most obvious technique I use to get the code right as quickly as possible is to start with an old program which 
performs a similar task.  I suspect this is a fairly universal approach; but don’t underestimate its power in getting both 
the logic and syntax correct. 

BE FAITHFUL TO A SMALL SET OF SAS PROCEDURES 

Over the years, many SAS procedures have grown closer and closer to each other (e.g. PROC SUMMARY, MEANS, 
and to some extent UNIVARIATE).  Today, I almost exclusively use PROC SUMMARY unless I need a specific 
format, feature, or statistic that is not available in Summary.  It’s not that I think Summary is better than the other two; 
I just know the syntax inside and out and for the most part don’t have to give its usage much thought.  I do the same 
thing with Regressions.  Since I seldom need any heavy lifting in this area, I almost exclusively use PROC REG.  This 
concept can be extended to techniques like joining data sets.  I use MERGE statements because I find the IN= 
Option invaluable for checking how many observations are being contributed/ignored from each data set.  Others who 
are fluent SQL users can probably make similar claims for it and should stick to it.  My main point is that sticking to 
one or the other yields a smaller chance of error/lost time than switching back and forth. 

BE A SAS DINOSAUR (OR WHY I NEED TO APOLOGIZE TO WARREN REPOLE [4]) 

Despite peer pressure or the coolness factor to try the latest and greatest new features, stick to what you know if you 
want to write fast, consistent, working code.  There is a reason some methods are considered “tried and true” – they 
work.  Let the other guy experiment with (and debug) new features from the vendor

5
.  Very rarely have I ever gotten 

back the time spent exploring and developing code using new techniques over existing, established ones. 

At a previous MWSUG, I learned about “hash tables” [5].  I was so enthused that I immediately recoded several 
existing data joins (merge) in our production code to use the hash table technique.  I had the perfect application:  an 
extremely large table with a plant code and a second smaller table that included the plant code and supporting fields 
(name, location, etc.).  Although I was able to remove a large sort from the code, the overall time difference in a set of 
jobs that ran only once a month did not even save the time spent in development and test. 

My criteria for using new features are simple: 

 Does it solve a problem I don’t already know how to solve? 

 Does it help me eliminate a meaningful bottleneck in the throughput of my job? 

 Does it give me better feedback on how my processes are running (movement of observation in/out)? 

USE “SUB-SETTING IF” STATEMENTS RATHER THAN “WHERE CLAUSES” IN A DATA STEP 

To me, this is a no-brainer.  I want as much feedback from 
SAS as possible on how the data is being processed.  
Take a look at the two simple DATA steps in Figure 8.  
The difference is subtle, but provides a potentially 
invaluable clue that you are on/off the right track.  It is very 
clear in the first that I dropped 50 observations.  In the 
second you are clueless.  I will discuss this topic in more 
detail in the section on data filtering, but I believe strongly 
in monitoring the comings and goings of observations.   

 

 

                                                 
5
 It took me almost a complete day to write my first SAS program, despite its simplicity (read 10 numbers and 

perform a PROC FREQ).  It turns out that someone had given my JCL to run a test version of SAS rather than the 

production code.  PROC FREQ had a bug.  Is it an extreme case? Yes.  Did I lose a day? Yes  

Figure 8:  Sub-setting IF in a DATA Step 
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USE SIMPLE CODE WHENEVER POSSIBLE 

A number of years ago, I needed to write SAS code to generate throughput and reliability metrics for a large supply 
chain organization.  We designed a dozen or so report templates that needed to be called multiple times for various 
metrics and geographic/organizational levels.  Unfortunately I decided to write a very complicated set of nested 
macros that could recursively call themselves as needed based on the data. They worked great and, except for 
maybe when I programmed the graphics chip inside my old Atari 800 directly with machine language, was probably 
some of the most enjoyable code I have ever written.  The rub came 6 months later when another member of my 
group needed to familiarize himself with the code as I was to be leaving on a short term overseas assignment.  Even I 
had a hard time unraveling the macro nesting after 6 months.  We used the nested code for the rest of that year, but I 
eventually split it into 12 separate programs, each of which was responsible for generating a specific type of template.  
Run time was longer, but the code was much, much cleaner and easier both for me and others to follow in the future.  
Elegance and style points do not really count for much in the coding world.  The more complicated the code, or even 
an expression, the more likely you are to get it wrong. 

DON’T BE AFRAID TO WASTE THE COMPUTER’S TIME. 

Unless the application has been shown to be a bottleneck or timing is mission critical, don’t be afraid to waste the 
computer’s time to get simpler code.  Modern compilers and processors are amazing.  Let them do the work.  Even 
something as simple as using a straight DO LOOP with start and stop values that executes unnecessary loops may 
be preferable to coding a DO Until/DO While loop for which you, the coder, are responsible for book-keeping the loop 
increments.   The difference in execution time is not nearly as great as you might think and the chance of error, either 
now or later, are much less with a standard DO LOOP. 

Below is an extreme example.  I generated 1,000,000 normal random variates (mean=100, standard deviation=10) 
and stored them in a SAS data set.  By inspection, I knew that the break between the smallest and second smallest 
values was 54 and was the 7,940

th
 generated number in the sequence.  I then wrote two different DATA steps to 

search an array to find and then print any observation less than 54.  This first DATA step uses a straight DO LOOP 
with no branch out; hence it continues to test every array member and technically would print out more than one if it 
existed.  The second DATA step utilizes a DO UNTIL LOOP and stops immediately after finding the first (and in this 
case only) value less than 54.  In an attempt to keep the contest fair, I completely exited SAS between executing the 
DATA Steps.  Figure 9 shows the execution times for each DATA Step.  They took essentially the same amount of 
time despite the huge difference in loop traversals.  Is this a function of a fast processor or a smart complier?  I don’t 
know, but I also don’t care.  At the end of the day, the first code block is easier to write and less likely to cause an 
issue down the road.  I’ve never had an infinite loop with a straight Do Loop. 

 

 

Figure 9: DO LOOP versus DO UNTIL 
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DATA FILTERING 

Data filtering occurs in two flavors.  One can sub-set an existing table via a “sub-setting if” or “where clause” or one 
can drop observations from one or more tables as they are being joined.  I feel very strongly that one needs to track 
the comings and goings of observations much like the police track their chain of evidence.  Over the years, I have 
adopted a tree diagram approach for documenting the evidence chain (simplified data flow diagram).  In this section, I 
will again utilize data from the 2009 Fatal Accident Reporting System (FARS) to demonstrate the technique. 

FARS is managed by the National Highway Traffic Safety Administration and contains detailed records on every fatal 
motor vehicle accident that has occurred in the United States since 1975.  The FARS data is available to the public 
through NHTSA’s web-site in a variety of formats, including SAS data sets.  FARS records for a given calendar year 
are stored in three primary tables: (1) Accident File, (2) Vehicle File, and (3) Person File.  Each fatal accident has its 
own unique identifier which allows one to pick and choose variables of interest amongst the three different tables for 
a given analysis. 

For this example, let us assume we would like to build an analysis data set that contains teen-age drivers of 
passenger cars where the crash occurred between 11:00 pm and 3:00 am.  As we are interested in the type of 
highway, weather conditions, vehicle 
type, single versus multi vehicle 
accident, etc.; we will need to pull key 
fields from each of the three main 
tables and then join them into one 
table for the analysis.  What makes 
life interesting is that the accident file 
has just one record per accident, the 
vehicle file has one record per 
reported vehicle, and the person file 
has one record per person involved in 
the accident. 

Figure 10 shows DATA steps to pull 
each of the three main tables and 
restrict the variables to those of 
interest.  Since we are only interested 
in drivers, I further restricted the 
PERSON file to drivers only.  As we 
have seen earlier, NHTSA does a 
great job of publishing traffic facts so 
the expected totals from each of these 
data sets is easily validated.  Notice 
that I used a “sub-setting if” to filter out 
non-drivers.  This allows me to 
validate both the total number of 
persons and the total number of drivers.  A 
“where clause” would only allow me to 
check the number of drivers. 

Figure 11 shows the start of the data 
tree diagram which will depict how 
observations enter and leave our 
study data.  There is a bubble for 
each of our three main tables, each 
with a label and starting number of 
observations.  In addition, it captures 
the results of the first filtering 
operation – sub-setting the person file 
to drivers only. 

Notice that we have about 200 more vehicles than we have drivers.  This is not unusual with this data.  Drivers do 
head for the hills before the police arrive.  On average, we have about 1.5 vehicles per accident.  So, what is the best 
way to join these three tables?  In addition to the CASE ID, both the vehicle file and the person file have a VEH NO 
ID which will allow us to match up a driver to his vehicle.  In order to keep an accurate record of observations 
comings and goings, I will first join the vehicle and driver tables and then join the resulting table with the accident 
table. Figure 12 on the next page shows both the SAS code for joining the tables and the updated tree diagram. 
  

Figure 10: DATA Steps to Load FARS Tables 

Figure 11: Data Tree Diagram #1 
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When joining tables in SAS, I always use the MERGE statement and the IN= option.  This allows me to keep track of 
which data sets are contributing to the new combined data set.  In the first DATA step in Figure 12, I am joining the 
vehicle and person table.  Only records with 
both a vehicle and matching driver make it 
into my case file.  You can see from the 
notes that there were 203 cases where we 
had a vehicle with no driver.  All driver 
records had a corresponding vehicle 
record. 

Now we are at a cross-road.  I can either let 
the 203 vehicles drop on the floor; or, I can 
re-write the join to keep them (in which 
case I would add an indicator variable to 
the output data set reflecting that the 
person record was missing).  Since the 
volume is so low, I will let them drop on the 
floor for this exercise. 

The second Data Step in Figure 12 shows 
the results of joining the combined file from 
the vehicle and person file with the accident 
file.  Every vehicle-driver combination has a 
corresponding accident record; however, 
there were 81 accident records that did not 
have a vehicle-driver combination.  If I were 
doing a real study, I would bump the 81 
accident records up against the 203 vehicle 
records which did not have a driver record 
for completeness. 

Figure 13 shows an updated tree diagram with the results from the two joins described in Figure 12.  Included is a 
new bubble showing the results from joining the vehicle and person files and one showing the result of bringing the 
accident file into the mix.  In addition, I capture the number of observations lost at each stage with a brief description 
as to why they were dropped.  Note that the counts in the tree diagram merely summarize the same information 
found in the SAS notes; however, I find it more convenient as all of the information is pulled together in one location. 

 

 

                     Figure 13: Data Tree Diagram #2 

 
  

Figure 12: Joining the Primary SAS Tables 
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In the previous step, we joined the accident, vehicle, and driver records to form a potential study set.  However, as is, 
it includes all accidents, vehicle types (car, trucks, motorcycles, etc.) and drivers.  Our requirements were to study 
teenagers involved in a fatal crash that occurred between 11:00 p.m. and 3:00 a.m. who were driving a passenger 
car.  Hence we need to filter our data based on these variables.  In keeping with the philosophy of maximum visibility 
to dropped observations, I applied each filter in a separate DATA Step as shown in Figure 14.  Although not shown, I 
checked the number of missing values for 
each variable.  As the volume was 
relatively small for each, I let them drop on 
the floor for this exercise.  The PROC 
FREQs between the DATA Steps allow 
me to double check that I am dropping the 
correct number of records.  (I removed the 
PROC FREQ for “body type” to save 
space.) 

Figure 15 shows the final tree diagram 
that results from our 3 data filter steps.  As 
always, it keeps track of the number of 
records moving forward after each step as 
well as the number dropped along the 
way. 

Although there is some extra work in 
separating the filters into multiple joins 
and data steps and documenting the data 
flow; it is a powerful tool in determining if 
you have solid data for an analysis.  In the 
Introduction Section, I described a life-
changing experience I had early in my 
career.  As previously stated, the error 
actually occurred in the other study, not 
ours.  The interesting part of the story is 
that we were able to determine the issue 
with the other folk’s SAS code for them 
without ever seeing their code. 

By sheer coincidence, we had just 
recently published a paper on motorcycle 
helmet effectiveness; hence, I had a tree 
diagram for the corresponding data filters 
from that study.  It turns out that when we 
compared frequency counts between the 
two seat belt studies, they had a much 
larger number of deaths for unbelted 
passengers in the rear-left seat of the 
cars.  The difference struck a chord with 
me and turned out to be very close to the 
number of dead motorcycle passengers 
we had observed – which coincidentally 
end up being coded in FARS as rear-left 
seat, unbelted passenger (helmet use is a 
different value than seat belt use.)  
Ultimately, it was shown that motorcycle 
occupants had inadvertently not been 
filtered out of the other seat belt study. 

 

 

 
  

Figure 14: DATA Step Filtering 

Figure 15: Data Tree Diagram #3 
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SAS AS AN ITERATIVE PLATFORM 

I will show my age a second time here.  At last count, I have written code in 25 different languages (not counting 
database access software, graphics libraries, etc.).  They range from old fashioned assembled code (I even got to 
write and enter machine code with binary switches on the front panel of the machine) to newer compilers with 
interactive debuggers.  I can truthfully say that I have yet to code in another piece of software that is as useful as I 
found SAS the first time I used it in 1982. 

As you have seen, my programming model is to write small chunks of code, test them, and then move on.  Certainly, 
this iterative technique can be implemented in other environments; but it is the combination of on demand runs with 
easily obtained frequency counts and invaluable “notes” that makes SAS stand out in my mind.  And despite what 
many of my IT colleagues have told me over the years, I have yet to run into an IT problem that I cannot solve in 
SAS.  Not saying they aren’t out there, but the types of problems I have worked on over the years have all been 
solvable in SAS.  I have used other software over the years to be sure, but that is primarily due to a lack of SAS 
software at customer locations. 

I once developed a prototype for a manufacturing company that analyzed recent sales history for a market and 
recommended stocking levels to local distributors.  There were 10 modules – all SAS.  Prior to the system being 
placed into production, the IT department re-coded all 10 modules in PL/I (yes – this was a few years ago).  Despite 
having a working prototype and a staff of programmers, it took them longer to recode the system then it did for me to 
write it in the first place.  Why?  Not skill level.  I had worked with this team before and had a high opinion of them.  I 
believe the difference was SAS versus PL/I.  Since SAS and PL/I syntax are very similar, I submit the difference is 
the programming environment. 

At the end of the day, access to a full-featured programming language and built in functions with superb interface 
(PROCS) coupled with the ability to write software iteratively make the SAS software system an ideal choice to 
prepare data for subsequent statistical analysis.  Oh yeah, you get great statistical functions in the same package. 

SUMMARY 

In this paper, I have demonstrated techniques that I have used over the last 30 years aimed at “Getting the Code 
Right the First Time.”  In summary, I would like to leave you with the following thoughts: 

1. Do not write more code at one time prior to testing than you can visualize in your “mind’s eye.”  It will save 
time in the long run. 

2. Keep your code as simple as possible.  Style points do not count in production code. 
3. Be ferocious in tracking down why observations enter/leave your analysis data set.  More times than not, 

coding errors will manifest themselves as erroneous data gain/loss. 
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