
1 
 

MWSUG 2016 - Paper AA05 

Hybrid recommendation system to provide suggestions  
based on user reviews 

Ravi Shankar Subramanian, Oklahoma State University 
Shanmugavel Gnanasekar, Oklahoma State University 

ABSTRACT 

If you have ever shopped on Amazon, Pandora or Netflix, you would have probably experienced 

recommendation systems in action. These systems analyze the historical buying behavior of their 

customers and make real time recommendations to them. The back end of these systems contain data 

mining models that make predictions about the product relevant to you. We plan to build a similar hybrid 

recommender system to suggest restaurants. We intend to combine content from Yelp reviews, users 

profile, and their ratings/reviews for each restaurant visited, restaurant details and tips provided by the 

user. 

To implement our idea, we downloaded 2.2M reviews and 591K tips by 552,000 users from the Yelp® 

website. The dataset for 77,000 restaurants contain information such as user profile information. 

Traditional systems utilize only user’s ratings to recommend new restaurants. However, the system we 

propose will use both user’s reviews or content and ratings to provide recommendations. The content 

based system is modeled by identifying the preferences for each user and associating them with key 

words such as cuisine, inexpensive, cleanliness and so on by constructing concept links and association 

rules based on their past reviews. The collaborative based system is modeled through clustering by 

aggregating a particular user with other peer users based on the ratings provided for restaurants. 

INTRODUCTION 

The objective of the paper is to build a recommender system that identifies the preferences of a user to 

provide individualized suggestions that make their experience enjoyable. Recommender systems are an 

integral part of social platforms such as Facebook and LinkedIn as well as a part of Ecommerce websites 

such as Amazon and EBay. The traditional recommender system uses only the ratings to understand the 

preferences of the user. With the availability of abundant user reviews describing their experience with a 

particular business, we tried to leverage the reviews along with the user ratings to provide effective 

recommendations. To build the recommendation engine, we used the data from Yelp - the popular search 

and review service about local businesses.  

RECOMMENDATION TECHNIQUES 

Recommender systems are majorly developed based on the two techniques: Content-based filtering and 

Collaborative-filtering.  

CONTENT-BASED FILTERING TECHNIQUE 

With the content-based filtering technique, the user profile is analyzed to generate the recommendations. 

For example, if a user prefers restaurant that serve wine and also provide valet parking service, then the 

recommendation engine provides searches for restaurants with similar attributes such as wine serving 

and valet parking, from the database and provide those businesses to the user. 

COLLABORATIVE-FILTERING TECHNIQUE 

The collaborative-filtering systems recommend items based on similarity measures between users and/or 

items. The items recommended to a user are those preferred by similar users. If a user has given a 

particular rating to a restaurant, the user will get suggestions based on the preferences of other users 

who have given same rating to that particular restaurant.  

https://en.wikipedia.org/wiki/Crowd-sourced
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DATA PREPARATION 

1. The data for our recommender system comes from yelp website. For the purpose of this paper, 

we have filtered restaurants in Las Vegas and used them in building the model. 

2. Data for restaurants were provided in JSON format. Python script was used to convert the data to 

csv, filter restaurants in Las Vegas and imported into SAS®. 

3. Base SAS code was used in data exploration and data understanding. Variables like 

“full_address, latitude, longitude, attributes, neighborhoods, state, city” were analyzed. 

a. Latitude and longitude details are ignored as we consider only the restaurants that are 

located in Las Vegas. Since the restaurants are within city limit, we ignored distance 

between the customer and the hotel. 

b. Variables like “Saturday”, “Sunday” containing the opening and closing timings of the 

restaurants. In this project, we are not going to match restaurants without considering if it 

is open or not. Our motive is not to make recommendation system perform in real time 

instead our goal is to model recommender system with the existing rating data and 

enhance it by mining text reviews. Therefore, we do not take opening and closing times 

under consideration. In the future, we could use our framework and model it to consider 

restaurants open hours and customer search time to give real predictions. 

c. Full Address variable is not useful as such. We only need that variable for providing the 

location details in the output and thus we have removed it from dataset during initial data 

preparation. 

d. Attributes, categories are nested variables, i.e., it has different attributes variables. These 

variables are extracted as separate variable, therefore this is a redundant column and 

has been dropped. 

e. State and city variables are dropped as their values are Las Vegas and NV respectively 

for the entire subset and they did not contribute any valuable information to the model. 

4. Boolean variables are coded as integer values. For example, FALSE is coded as 0 and TRUE is 

coded as 1. 

5. Nested Variables like ambience and Hipster are removed from the dataset. 

 
Various parameters inside these nested variables are extracted into separate variable as shown 

below. 

 
6. Attributes which are TRUE for all restaurants or FALSE for all the restaurants are removed from 

datasets. And any redundant or duplicate variables in the dataset was cleaned as well. 

CONTENT RECOMMENDER SYSTEM 

We followed below flow to build our Content Recommendation system.  
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CONTENT-BASED FILTERING TECHNIQUE 

The process starts with data preparation, then a user profile is built based on their ratings to different 

restaurants. After building the user profile, we can suggest restaurants that match their tastes using the 

formula provided below. We recommend top 10 restaurants that match with user’s taste.  

 

 

Next, we have to decide on the weights for each attribute and have used TF-IDF(inverse document 

frequency) for this purpose. The IDF is used as a way to assign weights for the attributes, so that 

common attributes are given less importance, while rare attributes are given high importance. 

Steps 

Data Preparation 

a. We transformed the rating scale of 1 star – 5 stars to 0 and 1. This transformation 

resulted in an interesting behavior (i.e.) It forces user to have only two choices, he can 

like it or dislike it. This simplifies some of the calculation in the later steps. For simplicity 

sake, if the user has rated a restaurant with less than 3 stars, then we consider it as 

negative experience or in other words we can say he dislikes it. Rating that is greater 

than 3 are considered as positive and equal to 3 as Neutral. This is implemented in SAS 

as shown below, where rating less than 3 as negative, rating equal to 3 as 0 and greater 

than 3 as positive. 

PROC SQL; 

 select *, case ratings  

   when ratings < 3 then -1 

   when ratings > 3 then 1 

   else 0 

   end from yelp.review; 

quit; 

b. The data provided contains multiple attributes for each restaurant. The attributes are in 

Boolean format and we have used it as it is in the model, so this implementation ignores 

the quality of the attributes. For example, if a reputed restaurant theme is local culture 

and provides rich immersive cultural experience, it is represented as 1 in “Cultural” 

attribute. In contrast let us consider a boutique restaurant which also has cultural theme 

and provides limited cultural experience. The attribute for both the restaurant is 

represented as 1, and there is no way in our model that accounts for the level or quality 

of the attribute. If the hotel has particular attribute, then it is 1, else 0.  

Attribute Weights 

a. Next step in the process is to calculate IDF for each attribute. This is calculated as given in 

below equation. The maximum in the formulae is to account for an unusual case. Suppose an 

attribute has 0 for all restaurants, then denominator becomes 0 and IDF goes to infinity. To 

prevent such scenarios, maximum function is introduced in the formulae. 

𝐼𝐷𝐹 =  
1

max (𝑛𝑜. 𝑜𝑓 ℎ𝑜𝑡𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 1)
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/*Calculate IDF*/ 

%macro idf(); 

 

 PROC SQL; 

  create table idf as 

   select %do i = 1 %to &cnt; %IF &I > 1 %THEN ,; 

1/MAX(sum(&&col&i),1) as idf_%substr(&&col&i,1,10) %end AS COLNAME;  

    from business ;  

 quit; 

 

%mend; 

%idf(); 

b. Next step in the flow is to build a user’s profile. If user has previously rated any restaurants, 

we use that knowledge to build the user’s profile. If user has rated a restaurant positively, 

then we increment all the attributes associated with the restaurant in the user’s profile by 1 or 

if a user has negatively rated the restaurant, then we decrement all the attributes associated 

with the restaurant in the user’s profile by 1 using the below mentioned macro. 

/*Create User Profile*/ 

%macro userprofiles(); 

data yelp.userprofiles_v1(KEEP=USER_ID BUSINESS_ID RATING 

 %DO i = 1 %TO &CNT; &&COL&I %END; 

       ); 

 set yelp.userprofiles_v1; 

 %do i=1 %to &cnt; 

  &&col&i = rating * &&col&i ; 

 %end; 

run; 

PROC SQL; 

 create table userprofiles_v2 as 

  select user_id %do i = 1 %to &cnt; 

   ,sum(&&col&i) as sum_%substr(&&col&i,1,10) 

   %end; from yelp.userprofiles_v1 group by user_id; 

 quit; 

%mend; 

 

%userprofiles(); 

 

Score Prediction 

c. After building IDF and user’s profile, we calculated the similarity between the user’s taste and 

restaurants profile as shown below. To do this we use two pieces of SAS code. First piece of 

code transposes the IDF into a single column. The second part of the code uses the 

transposed IDF and user profile to compute prediction as shown below. 

PROC TRANSPOSE data=idf out=idf_v2;  

run; 

 

%macro buildRecommendations(usrid="9A2-wSoBUxlMd3LwmlGrrQ"); 

/*Extract the given user’s profile*/ 

 data user_profile1; 

 set business; 

 if _n_ = 1 then do; 

  set idf; 

  set userprofiles_v2(where=(user_id=&usrid)); 

 end;  
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 run; 

  

 PROC SQL;  

  SELECT COUNT(NAME) INTO :CNT FROM DICTIONARY.COLUMNS WHERE 

memname='USERPROFILES_V1' and libname="YELP"  

    and type="num"; 

  SELECT NAME INTO :COL1 - FROM DICTIONARY.COLUMNS WHERE 

memname='USERPROFILES_V1' and libname="YELP"  

    and type="num"; 

 quit; 

/*Calculate predicted rating*/ 

 data user_recommendation; 

  set user_profile1; 

  %do i=1 %to &cnt; 

   rat_%substr(&&col&i,1,10)= max(sum_%substr(&&col&i,1,10),0) * 

max(&&col&i,0) * idf_%substr(&&col&i,1,10) ; 

  %end; 

   score = 0 

  %do i = 1 %to &cnt; 

   + max(rat_%substr(&&col&i,1,10),0) 

  %end; 

 ; 

 run; 

 

 %mend; 

 

%buildRecommendations(usrid="9A2-wSoBUxlMd3LwmlGrrQ"); 

Recommend Top 10 items 

d. After calculating the score, we return the top 10 restaurants that match the user profile using 

the below code. 

/*Give Me Top 10 Recommendations*/ 

PROC SQL outobs=10; 

 select user_id, score, rating from user_recommendation order by score 

desc; 

quit; 

 

COLLABORATIVE-FILTERING SYSTEM 

In the collaborative system, to recommend a restaurant to user, we use other users with similar taste 

(a.k.a neighbors) and make recommendations based on the feedback provided by others users. For 

example, it is very common to get recommendation from your friends and family who has similar taste for 

suggestions to find new restaurants. Collaborative recommender system works in a similar fashion. 

 

 

 

To build Collaborative recommender system, we first decide on number of neighbors for a user. We have 

used 18 neighbors in our model and this number can be decided based on domain knowledge. After 

determining the number of neighbors, we use correlation method to find 18 closest neighbors. We also 

decide on a threshold and if any user is farther than the distance decided by threshold, then we don’t 

Data 

Preparation 
Find Neighbors 

Compute 

Predicted score 

for each hotel in 

list based on 

Provide Top 10 

Recommendation
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include him as our neighbor. After selecting neighbors, we compute the predicted score for each 

restaurant by using below formula and recommending top 10 restaurants from our recommendation. 

 

In the above formula, u index represents user for whom we’re giving recommendations and u’ are user’s 

neighbor. s(u,u’) – is the similarity co-efficient that is calculated using neighbors distance. If neighbors 

taste is very close to user’s taste, then similarity co-efficient is high and if the neighbors taste is further 

from user’s taste then similarity co-efficient is low. In above formulae, we calculate weighted average of 

neighbors rating to predict user’s rating. 

𝑠(𝑢, 𝑢′) =  
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

1. In data preparation stage, we build a user profile similar to one built in content based 

recommendation system. 

2. Then we compute predicted score based on the formulae given above 

%MACRO PREDICTSCORE(USRCNT=15); 

%DO I = 1 %TO &USRCNT; 

 PROC SQL; 

  CREATE TABLE USERUSERPREDICTION&I AS 

   SELECT BUSINESS_ID, USER_ID, &&RU&I AS RU,  

     "&&USER&I" AS USER, CASE USER_ID 

     %DO J = 1 %TO &&NCNT_&I; 

      WHEN "&&&&NNAME&I._&J." THEN 

&&&&NEIGHBOR&I._&J. * (STARS - &&RN_&I._&J) 

     %END; 

     END AS WEIGHTEDSCORE, 

     CASE USER_ID  

     %DO J=1 %TO &&NCNT_&I; 

      WHEN "&&&&NNAME&I._&J." THEN &&NEIGHBOR&I._&J.  

     %END; 

     END AS W 

      FROM YELP.USER_PROFILE_V1 WHERE 

     USER_ID IN ( 

       %DO J = 1 %TO &&NCNT_&I; 

        "&&&NNAME&I._&J" %IF &J<&USRCNT 

%THEN ,; 

       %END; 

         ); 

 QUIT; 

 PROC SQL OUTOBS=10; 

   SELECT BUSINESS_ID, SUM(WEIGHTEDSCORE)/SUM(W) + RU AS PREDSCORE 

FROM USERUSERPREDICTION&I GROUP BY BUSINESS_ID, RU ORDER BY PREDSCORE DESC ; 

 QUIT; 

%END; 

%MEND; 

 

%PREDICTSCORE(); 
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3. After computing ratings for all restaurants, we then output top recommendations to the user. 

  

RECOMMENDATION BASED ON USER REVIEW 

The Yelp dataset contains reviews given by a user for various restaurants that can be analyzed to find the 

preferences of the user. The User profile dataset contains reviews for all types of businesses such as 

food chains,grocery, and clothes stores. We narrowed our scope to only the restaurant business places 

and took only the reviews corresponding to the restaurants for consideration.  

 

TEXT MINING THE USER REVIEWS 

The filtered user review dataset is fed as an input to the text mining model created using SAS Enterprise 

Miner 14.1. The review is fed into a text parsing node where the some of the common data cleaning 

techniques such as filtering the common words such as the,an,I,be etc were removed from the data using 

the SAS default Stop List. Stemming of the words is carried out to group different words with same origin 

together. Certain parts of speech namely conjuction,preposition, and auxillary verbs that are not going to 

provide valuable information were removed from the reviews. 

 

After parsing the user review, the output of the text parsing node is fed as an input to the Text Filter Node 

where the importance terms were filtered based on Inverse document frequency (IDF). Reviews are 

prone to spelling errors hence the spell-check was appied on the review text using a custom english 

dictionary. 
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Term Association 

Text filter node helps in identifying the terms associated with the key terms. For example, the term friendly 

is associated with various terms as show below. This will help in content based filtering to provide 

recommendations. 

 

 

 

 

 

 

 

 

 

After filtering the reviews, the output of the text filter node is fed as an input to the text topic node to 

classify the reviews as positive and negative based on their sentiment. The default user topic table 

provided by SAS is used to calculate the sentiment probability for each review. 

Clustering the similar users based on review 

Clustering similar users based on their preference is essential to build a collaborative-filter 

recommendation engine. The Text cluster node helps in decomposing the term document matrix and 

create cluster based on the distance between each term. Expectation-Maximization algorithm is used to 

cluster terms. The goal of the clustering algorithm is to maximize the overall probability or likelihood of the 

data, given the final clusters. By doing this, similar users are grouped under same cluster.  

Below are the clusters created as a result of text clustering in SAS EM. 

Cluster Descriptive Terms Frequency

1 always+beer+cheese+Crust+good+order+pepperoni+pizza+place+salad+sauce+slice+taste+thin 8192

2 Appetizer+happy hour+beer+bar+great+half+night+roll+price+special 6055

3 back+bread+cheese+chicken+delicious+french+line+long+lunch+minute+night+order 19853

4 beef+chicken+chinese+dis+egg+food+fry+good+lunch+noodle+pork+portion 24855

5 buffet+desert+diner+potato+sauce+meal 70604

6 bacon+breakfast+coffee+egg+french+friendly+hash+pancake+place 20222

8 burger+bar+beer+cheese+chicken+fry+lunch+potato+place+order 29425

9 bar+beer+back+dinner+drink+experience+great+food+meal+man+look 86368

10 bar+eat+fish+fresh+mexican+love+roll+salsa+spicy+sushi+taco 22874
 

Friendly 

Service 

bartender Wait staff 

Staff 

Atmosphere 

Place Smile 
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The above graph shows the population distribution of users across each clusters. Users in same clusters 

are assumed to have similar preferences. Hence the recommendation based on collaborative filtering can 

be done by providing the suggestions to a user based on the neighboring users in same cluster. 

FIT STATISTICS 

 

The fit of our model is calculated using the two metrics namely RMSE (Root Mean Square Error)  and 

MAE (Mean Absolute Error). Those metrics for the top 10 recommendations were calculated using 

formulae given below 

 

 

The RMSE and MAE for both content based recommender system with and without review is 0.447 and 

0.2. The RMSE and MAE for collaborative based recommender system with and without review is 0.316 

and 0.1. 

The new method (including the review along with the rating for recommendation) we proposed did not 

add any significant improvement on RMSE and MAE rating. But we calculated RMSE and MAE on only 

10 users. If we automate calculation of RMSE and MAE using macros and calculate for a larger holdout 

sample, then we would likely get a better honest assessment. 

CONCLUSIONS  

 The new method we proposed did not improve our chosen fit statistic, RMSE and MAE. 

Secondly, we calculated RMSE and MAE on only 10 users. Therefore calculating RMSE and 

MAE on large population will be a better assessment of the model. 
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 With certain improvements, this method could be used as an alternative way to build a 

recommender system in SAS other than the usual way of using PROC RECOMMEND which 

requires LASR server. 
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