
1

MWSUG 2016 - Paper AA05

Hybrid recommendation system to provide suggestions
based on user reviews

Ravi Shankar Subramanian, Oklahoma State University
Shanmugavel Gnanasekar, Oklahoma State University

ABSTRACT

If you have ever shopped on Amazon, Pandora or Netflix, you would have probably experienced

recommendation systems in action. These systems analyze the historical buying behavior of their

customers and make real time recommendations to them. The back end of these systems contain data

mining models that make predictions about the product relevant to you. We plan to build a similar hybrid

recommender system to suggest restaurants. We intend to combine content from Yelp reviews, users

profile, and their ratings/reviews for each restaurant visited, restaurant details and tips provided by the

user.

To implement our idea, we downloaded 2.2M reviews and 591K tips by 552,000 users from the Yelp®

website. The dataset for 77,000 restaurants contain information such as user profile information.

Traditional systems utilize only user’s ratings to recommend new restaurants. However, the system we

propose will use both user’s reviews or content and ratings to provide recommendations. The content

based system is modeled by identifying the preferences for each user and associating them with key

words such as cuisine, inexpensive, cleanliness and so on by constructing concept links and association

rules based on their past reviews. The collaborative based system is modeled through clustering by

aggregating a particular user with other peer users based on the ratings provided for restaurants.

INTRODUCTION

The objective of the paper is to build a recommender system that identifies the preferences of a user to

provide individualized suggestions that make their experience enjoyable. Recommender systems are an

integral part of social platforms such as Facebook and LinkedIn as well as a part of Ecommerce websites

such as Amazon and EBay. The traditional recommender system uses only the ratings to understand the

preferences of the user. With the availability of abundant user reviews describing their experience with a

particular business, we tried to leverage the reviews along with the user ratings to provide effective

recommendations. To build the recommendation engine, we used the data from Yelp - the popular search

and review service about local businesses.

RECOMMENDATION TECHNIQUES

Recommender systems are majorly developed based on the two techniques: Content-based filtering and

Collaborative-filtering.

CONTENT-BASED FILTERING TECHNIQUE

With the content-based filtering technique, the user profile is analyzed to generate the recommendations.

For example, if a user prefers restaurant that serve wine and also provide valet parking service, then the

recommendation engine provides searches for restaurants with similar attributes such as wine serving

and valet parking, from the database and provide those businesses to the user.

COLLABORATIVE-FILTERING TECHNIQUE

The collaborative-filtering systems recommend items based on similarity measures between users and/or

items. The items recommended to a user are those preferred by similar users. If a user has given a

particular rating to a restaurant, the user will get suggestions based on the preferences of other users

who have given same rating to that particular restaurant.

https://en.wikipedia.org/wiki/Crowd-sourced

2

DATA PREPARATION

1. The data for our recommender system comes from yelp website. For the purpose of this paper,

we have filtered restaurants in Las Vegas and used them in building the model.

2. Data for restaurants were provided in JSON format. Python script was used to convert the data to

csv, filter restaurants in Las Vegas and imported into SAS®.

3. Base SAS code was used in data exploration and data understanding. Variables like

“full_address, latitude, longitude, attributes, neighborhoods, state, city” were analyzed.

a. Latitude and longitude details are ignored as we consider only the restaurants that are

located in Las Vegas. Since the restaurants are within city limit, we ignored distance

between the customer and the hotel.

b. Variables like “Saturday”, “Sunday” containing the opening and closing timings of the

restaurants. In this project, we are not going to match restaurants without considering if it

is open or not. Our motive is not to make recommendation system perform in real time

instead our goal is to model recommender system with the existing rating data and

enhance it by mining text reviews. Therefore, we do not take opening and closing times

under consideration. In the future, we could use our framework and model it to consider

restaurants open hours and customer search time to give real predictions.

c. Full Address variable is not useful as such. We only need that variable for providing the

location details in the output and thus we have removed it from dataset during initial data

preparation.

d. Attributes, categories are nested variables, i.e., it has different attributes variables. These

variables are extracted as separate variable, therefore this is a redundant column and

has been dropped.

e. State and city variables are dropped as their values are Las Vegas and NV respectively

for the entire subset and they did not contribute any valuable information to the model.

4. Boolean variables are coded as integer values. For example, FALSE is coded as 0 and TRUE is

coded as 1.

5. Nested Variables like ambience and Hipster are removed from the dataset.

Various parameters inside these nested variables are extracted into separate variable as shown

below.

6. Attributes which are TRUE for all restaurants or FALSE for all the restaurants are removed from

datasets. And any redundant or duplicate variables in the dataset was cleaned as well.

CONTENT RECOMMENDER SYSTEM

We followed below flow to build our Content Recommendation system.

3

CONTENT-BASED FILTERING TECHNIQUE

The process starts with data preparation, then a user profile is built based on their ratings to different

restaurants. After building the user profile, we can suggest restaurants that match their tastes using the

formula provided below. We recommend top 10 restaurants that match with user’s taste.

Next, we have to decide on the weights for each attribute and have used TF-IDF(inverse document

frequency) for this purpose. The IDF is used as a way to assign weights for the attributes, so that

common attributes are given less importance, while rare attributes are given high importance.

Steps

Data Preparation

a. We transformed the rating scale of 1 star – 5 stars to 0 and 1. This transformation

resulted in an interesting behavior (i.e.) It forces user to have only two choices, he can

like it or dislike it. This simplifies some of the calculation in the later steps. For simplicity

sake, if the user has rated a restaurant with less than 3 stars, then we consider it as

negative experience or in other words we can say he dislikes it. Rating that is greater

than 3 are considered as positive and equal to 3 as Neutral. This is implemented in SAS

as shown below, where rating less than 3 as negative, rating equal to 3 as 0 and greater

than 3 as positive.

PROC SQL;

 select *, case ratings

 when ratings < 3 then -1

 when ratings > 3 then 1

 else 0

 end from yelp.review;

quit;

b. The data provided contains multiple attributes for each restaurant. The attributes are in

Boolean format and we have used it as it is in the model, so this implementation ignores

the quality of the attributes. For example, if a reputed restaurant theme is local culture

and provides rich immersive cultural experience, it is represented as 1 in “Cultural”

attribute. In contrast let us consider a boutique restaurant which also has cultural theme

and provides limited cultural experience. The attribute for both the restaurant is

represented as 1, and there is no way in our model that accounts for the level or quality

of the attribute. If the hotel has particular attribute, then it is 1, else 0.

Attribute Weights

a. Next step in the process is to calculate IDF for each attribute. This is calculated as given in

below equation. The maximum in the formulae is to account for an unusual case. Suppose an

attribute has 0 for all restaurants, then denominator becomes 0 and IDF goes to infinity. To

prevent such scenarios, maximum function is introduced in the formulae.

𝐼𝐷𝐹 =
1

max (𝑛𝑜. 𝑜𝑓 ℎ𝑜𝑡𝑒𝑙𝑠 𝑡ℎ𝑎𝑡 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒, 1)

4

/*Calculate IDF*/

%macro idf();

 PROC SQL;

 create table idf as

 select %do i = 1 %to &cnt; %IF &I > 1 %THEN ,;

1/MAX(sum(&&col&i),1) as idf_%substr(&&col&i,1,10) %end AS COLNAME;

 from business ;

 quit;

%mend;

%idf();

b. Next step in the flow is to build a user’s profile. If user has previously rated any restaurants,

we use that knowledge to build the user’s profile. If user has rated a restaurant positively,

then we increment all the attributes associated with the restaurant in the user’s profile by 1 or

if a user has negatively rated the restaurant, then we decrement all the attributes associated

with the restaurant in the user’s profile by 1 using the below mentioned macro.

/*Create User Profile*/

%macro userprofiles();

data yelp.userprofiles_v1(KEEP=USER_ID BUSINESS_ID RATING

 %DO i = 1 %TO &CNT; &&COL&I %END;

);

 set yelp.userprofiles_v1;

 %do i=1 %to &cnt;

 &&col&i = rating * &&col&i ;

 %end;

run;

PROC SQL;

 create table userprofiles_v2 as

 select user_id %do i = 1 %to &cnt;

 ,sum(&&col&i) as sum_%substr(&&col&i,1,10)

 %end; from yelp.userprofiles_v1 group by user_id;

 quit;

%mend;

%userprofiles();

Score Prediction

c. After building IDF and user’s profile, we calculated the similarity between the user’s taste and

restaurants profile as shown below. To do this we use two pieces of SAS code. First piece of

code transposes the IDF into a single column. The second part of the code uses the

transposed IDF and user profile to compute prediction as shown below.

PROC TRANSPOSE data=idf out=idf_v2;

run;

%macro buildRecommendations(usrid="9A2-wSoBUxlMd3LwmlGrrQ");

/*Extract the given user’s profile*/

 data user_profile1;

 set business;

 if _n_ = 1 then do;

 set idf;

 set userprofiles_v2(where=(user_id=&usrid));

 end;

5

 run;

 PROC SQL;

 SELECT COUNT(NAME) INTO :CNT FROM DICTIONARY.COLUMNS WHERE

memname='USERPROFILES_V1' and libname="YELP"

 and type="num";

 SELECT NAME INTO :COL1 - FROM DICTIONARY.COLUMNS WHERE

memname='USERPROFILES_V1' and libname="YELP"

 and type="num";

 quit;

/*Calculate predicted rating*/

 data user_recommendation;

 set user_profile1;

 %do i=1 %to &cnt;

 rat_%substr(&&col&i,1,10)= max(sum_%substr(&&col&i,1,10),0) *

max(&&col&i,0) * idf_%substr(&&col&i,1,10) ;

 %end;

 score = 0

 %do i = 1 %to &cnt;

 + max(rat_%substr(&&col&i,1,10),0)

 %end;

 ;

 run;

 %mend;

%buildRecommendations(usrid="9A2-wSoBUxlMd3LwmlGrrQ");

Recommend Top 10 items

d. After calculating the score, we return the top 10 restaurants that match the user profile using

the below code.

/*Give Me Top 10 Recommendations*/

PROC SQL outobs=10;

 select user_id, score, rating from user_recommendation order by score

desc;

quit;

COLLABORATIVE-FILTERING SYSTEM

In the collaborative system, to recommend a restaurant to user, we use other users with similar taste

(a.k.a neighbors) and make recommendations based on the feedback provided by others users. For

example, it is very common to get recommendation from your friends and family who has similar taste for

suggestions to find new restaurants. Collaborative recommender system works in a similar fashion.

To build Collaborative recommender system, we first decide on number of neighbors for a user. We have

used 18 neighbors in our model and this number can be decided based on domain knowledge. After

determining the number of neighbors, we use correlation method to find 18 closest neighbors. We also

decide on a threshold and if any user is farther than the distance decided by threshold, then we don’t

Data

Preparation
Find Neighbors

Compute

Predicted score

for each hotel in

list based on

Provide Top 10

Recommendation

s

6

include him as our neighbor. After selecting neighbors, we compute the predicted score for each

restaurant by using below formula and recommending top 10 restaurants from our recommendation.

In the above formula, u index represents user for whom we’re giving recommendations and u’ are user’s

neighbor. s(u,u’) – is the similarity co-efficient that is calculated using neighbors distance. If neighbors

taste is very close to user’s taste, then similarity co-efficient is high and if the neighbors taste is further

from user’s taste then similarity co-efficient is low. In above formulae, we calculate weighted average of

neighbors rating to predict user’s rating.

𝑠(𝑢, 𝑢′) =
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒

1. In data preparation stage, we build a user profile similar to one built in content based

recommendation system.

2. Then we compute predicted score based on the formulae given above

%MACRO PREDICTSCORE(USRCNT=15);

%DO I = 1 %TO &USRCNT;

 PROC SQL;

 CREATE TABLE USERUSERPREDICTION&I AS

 SELECT BUSINESS_ID, USER_ID, &&RU&I AS RU,

 "&&USER&I" AS USER, CASE USER_ID

 %DO J = 1 %TO &&NCNT_&I;

 WHEN "&&&&NNAME&I._&J." THEN

&&&&NEIGHBOR&I._&J. * (STARS - &&RN_&I._&J)

 %END;

 END AS WEIGHTEDSCORE,

 CASE USER_ID

 %DO J=1 %TO &&NCNT_&I;

 WHEN "&&&&NNAME&I._&J." THEN &&NEIGHBOR&I._&J.

 %END;

 END AS W

 FROM YELP.USER_PROFILE_V1 WHERE

 USER_ID IN (

 %DO J = 1 %TO &&NCNT_&I;

 "&&&NNAME&I._&J" %IF &J<&USRCNT

%THEN ,;

 %END;

);

 QUIT;

 PROC SQL OUTOBS=10;

 SELECT BUSINESS_ID, SUM(WEIGHTEDSCORE)/SUM(W) + RU AS PREDSCORE

FROM USERUSERPREDICTION&I GROUP BY BUSINESS_ID, RU ORDER BY PREDSCORE DESC ;

 QUIT;

%END;

%MEND;

%PREDICTSCORE();

7

3. After computing ratings for all restaurants, we then output top recommendations to the user.

RECOMMENDATION BASED ON USER REVIEW

The Yelp dataset contains reviews given by a user for various restaurants that can be analyzed to find the

preferences of the user. The User profile dataset contains reviews for all types of businesses such as

food chains,grocery, and clothes stores. We narrowed our scope to only the restaurant business places

and took only the reviews corresponding to the restaurants for consideration.

TEXT MINING THE USER REVIEWS

The filtered user review dataset is fed as an input to the text mining model created using SAS Enterprise

Miner 14.1. The review is fed into a text parsing node where the some of the common data cleaning

techniques such as filtering the common words such as the,an,I,be etc were removed from the data using

the SAS default Stop List. Stemming of the words is carried out to group different words with same origin

together. Certain parts of speech namely conjuction,preposition, and auxillary verbs that are not going to

provide valuable information were removed from the reviews.

After parsing the user review, the output of the text parsing node is fed as an input to the Text Filter Node

where the importance terms were filtered based on Inverse document frequency (IDF). Reviews are

prone to spelling errors hence the spell-check was appied on the review text using a custom english

dictionary.

8

Term Association

Text filter node helps in identifying the terms associated with the key terms. For example, the term friendly

is associated with various terms as show below. This will help in content based filtering to provide

recommendations.

After filtering the reviews, the output of the text filter node is fed as an input to the text topic node to

classify the reviews as positive and negative based on their sentiment. The default user topic table

provided by SAS is used to calculate the sentiment probability for each review.

Clustering the similar users based on review

Clustering similar users based on their preference is essential to build a collaborative-filter

recommendation engine. The Text cluster node helps in decomposing the term document matrix and

create cluster based on the distance between each term. Expectation-Maximization algorithm is used to

cluster terms. The goal of the clustering algorithm is to maximize the overall probability or likelihood of the

data, given the final clusters. By doing this, similar users are grouped under same cluster.

Below are the clusters created as a result of text clustering in SAS EM.

Cluster Descriptive Terms Frequency

1 always+beer+cheese+Crust+good+order+pepperoni+pizza+place+salad+sauce+slice+taste+thin 8192

2 Appetizer+happy hour+beer+bar+great+half+night+roll+price+special 6055

3 back+bread+cheese+chicken+delicious+french+line+long+lunch+minute+night+order 19853

4 beef+chicken+chinese+dis+egg+food+fry+good+lunch+noodle+pork+portion 24855

5 buffet+desert+diner+potato+sauce+meal 70604

6 bacon+breakfast+coffee+egg+french+friendly+hash+pancake+place 20222

8 burger+bar+beer+cheese+chicken+fry+lunch+potato+place+order 29425

9 bar+beer+back+dinner+drink+experience+great+food+meal+man+look 86368

10 bar+eat+fish+fresh+mexican+love+roll+salsa+spicy+sushi+taco 22874

Friendly

Service

bartender Wait staff

Staff

Atmosphere

Place Smile

9

The above graph shows the population distribution of users across each clusters. Users in same clusters

are assumed to have similar preferences. Hence the recommendation based on collaborative filtering can

be done by providing the suggestions to a user based on the neighboring users in same cluster.

FIT STATISTICS

The fit of our model is calculated using the two metrics namely RMSE (Root Mean Square Error) and

MAE (Mean Absolute Error). Those metrics for the top 10 recommendations were calculated using

formulae given below

The RMSE and MAE for both content based recommender system with and without review is 0.447 and

0.2. The RMSE and MAE for collaborative based recommender system with and without review is 0.316

and 0.1.

The new method (including the review along with the rating for recommendation) we proposed did not

add any significant improvement on RMSE and MAE rating. But we calculated RMSE and MAE on only

10 users. If we automate calculation of RMSE and MAE using macros and calculate for a larger holdout

sample, then we would likely get a better honest assessment.

CONCLUSIONS

 The new method we proposed did not improve our chosen fit statistic, RMSE and MAE.

Secondly, we calculated RMSE and MAE on only 10 users. Therefore calculating RMSE and

MAE on large population will be a better assessment of the model.

10

 With certain improvements, this method could be used as an alternative way to build a

recommender system in SAS other than the usual way of using PROC RECOMMEND which

requires LASR server.

REFERENCE

• The Use of Machine Learning Algorithms in Recommender Systems: A Systematic Review, Ivens

Portugal.

• Kamba, T., Bharat, K., & Albers, M. C. (n.d.). The Krakatoa Chronicle - An Interactive,

Personalized, Newspaper on the Web. Retrieved from

http://www.w3.org/Conferences/WWW4/Papers/93/

• Ekstrand, M. D., Riedl, J., & Konstan, J. (2011). Collaborative filtering recommender systems.

Hanover, MA: Now.

• "Discounted Cumulative Gain." Wikipedia. Wikimedia Foundation, n.d. Web. 26 July 2016.

ACKNOWLEDGEMENTS

• We thank Dr. Goutam Chakraborty, Director, Master of Science in Business Analytics –

Oklahoma State University and Dr. Miriam Mcgaugh – Oklahoma State University for their

continuous support throughout our research.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

Ravi Shankar Subramanian
Oklahoma State University
405-762-3625
Ravishankar.subramanian@okstate.edu

Shanmugavel Gnanasekar
Oklahoma State University
813-810-5630
Shanmugavel.gnanasekar@okstate.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

