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ABSTRACT 

Weight of evidence (WOE) coding of a nominal or discrete variable is widely used when preparing 
predictors for usage in binary logistic regression models. When using WOE coding, an important 
preliminary step is binning of the levels of the predictor to achieve parsimony without giving up predictive 
power. These concepts of WOE and binning are extended to ordinal logistic regression in the case of the 
cumulative logit model. SAS® code to perform binning in the binary case and in the ordinal case is 
discussed. Lastly, guidelines for assignment of degrees of freedom for WOE-coded predictors within a 
fitted logistic model are discussed. The assignment of degrees of freedom bears on the ranking of logistic 
models by SBC (Schwarz Bayes). All computations in this talk are performed by using SAS® and 
SAS/STAT®. 

INTRODUCTION 

Binary logistic regression models are widely used in CRM (customer relationship management) or credit 
risk modeling. In these models it is common to use weight of evidence (WOE) coding of a nominal, 
ordinal, or discrete1 (NOD) variable when preparing predictors for use in a logistic model.  

Ordinal logistic regression refers to logistic models where the target has more than 2 values and these 
values have an ordering. For example, ordinal logistic regression is applied when fitting a model to a 
target which is a satisfaction rating (e.g. good, fair, poor). Here, the scale is inherently non-interval. But in 
other cases the target is a count or a truncated count (e.g. number of children in household: 0, 1, 2, 3+). 

The cumulative logit model is one formulation of the ordinal logistic model.2 In this paper the idea of WOE 
coding of a NOD predictor is extended to the cumulative logit model. Examples are given where WOE 
coding of a predictor is used in the fitting of a cumulative logit model. 

In either case, binary or ordinal, before the WOE coding it is important that the predictor be “binned”. 
Binning is the process of reducing the number of levels of a NOD predictor to achieve parsimony while 
preserving, as much as possible, the predictive power of the predictor. SAS macros for “optimal” binning 
of NOD predictors X are discussed in the paper. 

Finally, the effect of WOE coding on SBC (Schwarz Bayes criterion3) of a model must be considered 
when ranking candidate models by SBC. For example, the following two binary logistic models are 
equivalent (same probabilities): 

(A) PROC LOGISTIC; CLASS X; MODEL Y = X; 

(B) PROC LOGISTIC; MODEL Y = X_woe; 

where X_woe is the weight of evidence transformation of X. 

But Model (B) has smaller SBC than Model (A) because X_woe is counted in PROC LOGISTIC as having 
only 1 degree of freedom.  

A discussion and recommendation for an adjustment to SBC in the case where WOE variables are 
included in a logistic model is given at the end of the paper. 

                                                 
1 A discrete predictor is a numeric predictor with only ”few values”. Often these values are counts. The designation of 
“few” is subjective. It is used here to distinguish discrete from continuous (interval) predictors with “many values”. 
2 An introduction to the cumulative logit model is given by Allison (2012, Chapter 6). See also Agresti (2010) and 
Hosmer, Lemeshow, Sturdivant (2013). Unfortunately, these references do not discuss in any detail a generalization 
of cumulative logit called partial proportional odds (PPO). The PPO model will appear later in this paper. 
3 SBC = -2*Log L + log(n)*K where Log L is log likelihood, n = sample size, and K is count of coefficients in model. 
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TRANSFORMING BY WOE FOR BINARY LOGISTIC REGRESSION 

A NOD predictor C (character or numeric) with L levels can be entered into a binary logistic regression 
model with a CLASS statement or as a collection of dummy variables. 4 Typically, L is 15 or less. 

 PROC LOGISTIC; CLASS C; MODEL Y = C <and other predictors>;  

 or 
 PROC LOGISTIC; MODEL Y = C_dum_<k> where k = 1 to L-1 <and other predictors>; 

These two models produce exactly the same probabilities. 

An alternative to CLASS / DUMMY coding of C is the weight of evidence (WOE) transformation of C.  

It is notationally convenient to use Gk to refer to counts of Y = 1 and Bk to refer to counts of Y = 0 when 
C = Ck. Let G = ∑k Gk. Then gk is defined as gk = Gk / G. Similarly, for bk. For the predictor C and target Y 
of Table 1 the weight of evidence transformation of C is given by the right-most column in the table. 

Table 1. Weight of Evidence Transformation for Binary Logistic Regression 

C 
Y = 0 
“Bk” 

Y = 1 
“Gk” 

Col % Y=0 
“bk” 

Col % Y=1 
“gk” 

WOE= 
Log(gk/bk) 

C1 2 1 0.250 0.125 -0.69315 

C2 1 1 0.125 0.125 0.00000 

C3 5 6 0.625 0.750 0.18232 

The formula for the transformation is: If C = “Ck” then C_woe = log (gk / bk) for k = 1 to L where gk, bk > 0. 
WOE coding is preceded by binning of the levels of predictor C, a topic to be discussed in a later section.  

A Property of a Logistic Model with a Single Weight of Evidence Predictor 

When a single weight of evidence variable C_woe appears in the logistic model: 

PROC LOGISTIC DESCENDING; MODEL Y = C_woe; 

then the slope coefficient equals 1 and the intercept is the log (G/B). This property of a woe-predictor is 
verified by substituting the solution α = log (G/B) and β = 1 into the maximum likelihood equations to show 
that a solution has been found. This solution is the global maximum since the log likelihood function has a 
unique extreme point and this point is a maximum (ignoring the degenerate cases given by data sets 
having quasi-complete and complete separation). See Albert and Anderson (1984, Theorem 3). 

Information Value of C for Target Y 

An often-used measure of the predictive power of predictor C is Information Value (IV). It measures 
predictive power without regard to an ordering of a predictor. The right-most column of Table 2 gives the 
terms that are summed to obtain the IV. The range of IV is the non-negative numbers. 

Table 2. Information Value Example for Binary Logistic Regression 

C 
Y = 0 
“Bk” 

Y = 1 
“Gk” 

Col % Y=0 
“bk” 

Col % Y=1 
“gk” Log(gk/bk) gk - bk 

IV Terms 
(gk - bk) * Log(gk/bk) 

C1 2 1 0.250 0.125 -0.69315 -0.125 0.08664 

C2 1 1 0.125 0.125 0.00000 0 0.00000 

C3 5 6 0.625 0.750 0.18232 0.125 0.02279 

SUM 8 8    IV = 0.10943 

IV can be computed for any predictor provided none of the gk or bk is zero. As a formula, IV is given by:  

IV = ∑k=1
L (gk – bk) * log (gk / bk) 

where L > 2 and where gk and bk > 0 for all k = 1, …, L 

                                                 
4 “CLASS C;” creates a coefficient in the model for each of L-1 of the L levels. The modeler’s choice of “reference 
level coding” determines how the Lth level enters into the calculation of the model scores. See SAS/STAT(R) 14.1 
User's Guide (2015), LOGISTIC procedure, CLASS statement. 
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Note: If two levels of C are collapsed (binned together), the new value of IV is less than or equal to the old 
value. The new IV value is equal to the old IV value if and only if the ratios gr / br and gs / bs are equal for 
levels Cr and Cs that were collapsed together.5 

Predictive Power of IV for Binary Logistic Regression 

Guidelines for interpretation of values of the IV of a predictor in an applied setting are given below. These 
guidelines come from Siddiqi (2006, p.81).6 In logistic modeling applications it is unusual to see IV > 0.5. 

Table 3. Practical Guide to Interpreting IV 

IV Range Interpretation 

IV < 0.02   “Not Predictive” 

IV in [0.02 to 0.1)   “Weak” 

IV in [0.1 to 0.3)   “Medium” 

IV > 0.3   “Strong” 

There is a strong relationship of the IV of predictor C to the Log Likelihood (LL) of the model:  

PROC LOGISTIC; CLASS C; MODEL Y = C;  

For example, if N = 10,000 and L = 5, then a simple linear regression of IV to LL is a good model. Based 
on a simulation (with 500 samples) the R-square is 61%.7 

Before a predictor is converted to WOE coding and is entered into a model, the predictor should undergo 
a binning process to reduce the number of levels in order to achieve parsimony but while maintaining 
predictive power to the fullest extent possible. This important topic is discussed in a later section.  

The next step is to explore the extension of weight of evidence coding and information value to the case 
of ordinal logistic regression and, in particular, to the cumulative logit model. 

CUMULATIVE LOGIT MODEL 

If the target variable in PROC LOGISTIC has more than 2 levels, PROC LOGISTIC regards the 
appropriate model as being the cumulative logit model with the proportional odds property.8 An 
explanation of the cumulative logit model and of the proportional odds property is given in this section. 

A Simplification for This Paper 

In this paper all discussion of the cumulative logit model will assume the target has 3 levels. This reduces 
notational complexity. The concept of weight of evidence for the cumulative logit model does not depend 
on having only 3 levels. But the assumption of 3 levels does provide crucial simplifications when applying 
the weight of evidence approach to examples of fitting cumulative logit models, as will be seen later in the 
paper. 

Definition of the Cumulative Logit Model with the Proportional Odds (PO) Property 

To define the cumulative logit model with PO, the following example is given: Assume the 3 levels for the 
ordered target Y are A, B, C and suppose there are 2 numeric predictors X1 and X2.9  

Let pk,j = probability that the kth observation has the target value j = A, B or C 

Then the cumulative logit model has 4 parameters αA αB βX1 βX2 and is given via 2 response equations: 

Log (pk,A / (pk,B + pk,C)) = αA + βX1*Xk,1 + βX2*Xk,2    … response equation j = A 
Log ((pk,A + pk,B) / pk,C) = αB + βX1*Xk,1 + βX2*Xk,2    … response equation j = B 

The coefficients βX1 and βX2 of predictors X1 and X2 are the same in both response equations.  

                                                 
5 See Lund and Brotherton (2013, p. 17) for a proof. 
6 See Siddiqi (2006) for the usage of WOE and IV in the preparation of predictors for credit risk models 
7 This simulation code is available from the author. See Lund and Brotherton (2013) for more discussion. 
8 Simply run: PROC LOGISTIC; MODEL Y = <X’s>; where Y has more than 2 levels. 
9 If a predictor X is not numeric, then the dummy variables from the coding of the levels of X appear in the right-hand-
side of the response equations for j = A and j = B. 
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The “cumulative logits” are the log of the ratio of the “cumulative probability to j” (in the ordering of the 
target) in the numerator to “one minus the cumulative probability to j” in the denominator.  

Formulas for the probabilities pk,1, pk,2, pk,3 can be derived from the two response equations. To simplify 
the formulas, let Tk and Uk, for the kth observation be defined by the equations below: 

Let Tk = exp (αA + βX1*Xk,1 + βX2*Xk,2) 
Let Uk = exp (αB + βX1*Xk,1 + βX2*Xk,2) 

Then, after algebraic manipulation, these probability equations are found: 

Table 4. Cumulative Logit Model - Equations for Probabilities 

Response Probability Formula 

A pk,A = 1 - 1/(1+Tk) 

B pk,B = 1/(1+Tk) - 1/(1+Uk) 

C pk,C = 1/(1+Uk) 

The parameters for the cumulative logit model are found by maximizing the log likelihood equation in a 
manner similar to the binary case.10 

This cumulative logit model satisfies the following conditions for X1 (and the analogous conditions for X2): 

Let “r” and “s” be two values of X1. Using the probability formulas from Table 4: 

 Log [ 
prA (prB + prC)⁄

psA (psB+ psC)⁄
] = Log (pr,A / (pr,B + pr,C)) - Log (ps,A / (ps,B + ps,C)) = (r -  s) * βX1 … proportional odds 

 Log [ 
(prA + prB) prC⁄

(psA + psB) psC⁄
] = Log ((pr,A + pr,B) / pr,C) - Log ((ps,A + ps,B) / ps,C) = (r -  s) * βX1 … proportional odds 

These equations display the “proportional odds” property. Specifically, the difference of cumulative logits 
at r and s is proportional to the difference (r - s). The proportional odds property for X1 is a by-product of 
assuming that the coefficients of predictor X1 are equal across the cumulative logit response equations. 

EXTENDING WOE TO CUMULATIVE LOGIT MODEL 

There are two defining characteristics of the weight of evidence coding, X_woe, of a predictor X when the 
target is binary and X_woe is the single predictor in a logistic model. These are: 

1. Equality of Model (I) and Model (II): 

(I) PROC LOGISTIC DESCENDING; CLASS X; MODEL Y = X; 

(II) PROC LOGISTIC DESCENDING; MODEL Y = X_woe; 

2. The values of the coefficients for Model (II): Intercept = Log (G / B) and Slope = 1  

GOAL: Find a definition of WOE to extend to the cumulative logit model so that the appropriate 
generalizations of (1) and (2) are true. 

WOE TRANSFORMATIONS FOR THE CUMULATIVE LOGIT MODEL 

After trial and error, when trying to define an extension of weight of evidence coding of X for the 
cumulative logit model, I realized that if Y had L levels, then L-1 WOE transformations were needed.  

The extension of WOE to the cumulative logit model does not require an assumption of proportional odds. 

Consider an ordinal target Y with levels A, B, C and predictor X with levels 1, 2, 3, 4. Here, Y has 3 levels 
and, therefore, 2 weight of evidence transformations are formed. 

The two tables below illustrate the steps to define the weight of evidence transformation for X. The first 
step is to define two sets of column percentages corresponding to the two cumulative logits. 

  

                                                 
10 See Agresti (2010, p 58). 
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Table 5. Defining WEIGHT OF EVIDENCE Predictors for Cumulative Logit Model – STEP 1 

  Y= Col % Col % 

X=i Ai Bi Ci Ai / A (Bi+Ci) / (B+C) (Ai+Bi) / (A+B) Ci / C 

1 2 1 2 0.182 0.176 0.17 0.20 

2 4 3 1 0.36 0.24 0.39 0.10 

3 4 1 2 0.36 0.18 0.28 0.20 

4 1 2 5 0.09 0.41 0.17 0.50 

Total 11 7 10 Where A = ∑ Ai, B = ∑ Bi, C = ∑ Ci 

For the first cumulative logit the value 0.182 in column “A1 / A” is equal to 2 divided by 11. The value 
0.176 in column “(B1+C1) / (B + C)” is equal to 1+2 divided by 7+10. Similarly, the columns for the 
second cumulative logit are computed. 

Now, the second step: 

Table 6. Defining WEIGHT OF EVIDENCE Predictors for Cumulative Logit Model – STEP 2 

 
Y= Col % Col % Ratio of Col % Log (Ratio) 

X=i Ai Bi Ci Ai / A 
(Bi+Ci) / 
(B+C) 

(Ai+Bi) / 
(A+B) 

Ci / C 
A over  
B+C 

A+B 
 over C 

X_WOE1 X_WOE2 

1 2 1 2 0.182 0.176 0.167 0.200 1.034 0.833 0.03 -0.18 

2 4 3 1 0.36 0.24 0.39 0.10 1.55 3.89 0.44 1.36 

3 4 1 2 0.36 0.18 0.28 0.20 2.06 1.39 0.72 0.33 

4 1 2 5 0.09 0.41 0.17 0.50 0.22 0.33 -1.51 -1.10 

Total 11 7 10 Where A = ∑ Ai, B = ∑ Bi, C = ∑ Ci  

The “ratio of column percentages” for the first row of the first cumulative logit is computed by 1.034 = 
0.182 / 0.176. The log of this ratio gives the weight of evidence for the first row of 0.03. Likewise, the first 
row for the second weight of evidence is -0.18. 

As equations: 

 X_WOE1 (X=i) = LOG [(Ai / A) / ((Bi+Ci) / (B+C))] 

 X_WOE2 (X=i) = LOG [((Ai+Bi) / (A+B)) / (Ci / C)] 

Although X in this example is numeric, a character predictor may take the role of X. 

Cumulative Logit Model with Proportional Odds Does Not Support a Generalization of WOE 

Table 6 is converted to the data set EXAMPLE1 in Table 7 for the same predictor X and 3-level ordinal 
target Y. The use of the EXAMPLE1 will show that the cumulative logit PO model does not support the 
required two characteristics for a WOE predictor. 

Table 7. Data Set EXAMPLE1 for Illustrations to Follow 

DATA EXAMPLE1; Input X Y $ @@; Datalines; 

1 A  2 A  3 A  4 B 

1 A  2 A  3 A  4 B 

1 B  2 B  3 A  4 C 

1 C  2 B  3 B  4 C 

1 C  2 B  3 C  4 C 

2 A  2 C  3 C  4 C 

2 A  3 A  4 A  4 C 

; 

To show the failure of the WOE definitions in the cumulative logit PO case, the Models (I) and (II) are 
considered: 

(I) PROC LOGISTIC DATA = EXAMPLE1; CLASS X; MODEL Y = X; 

(II) PROC LOGISTIC DATA = EXAMPLE1; MODEL Y = X_woe1 X_woe2; 

The reader may verify the Models (I) and (II) do not produce the same probabilities. In addition, the 
coefficients of Model (II) do not have the required values. 
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Table 8. Results of MODEL (II) 

Maximum Likelihood Estimates Not Equal to: 

Parameter   Estimate 
  

Intercept A -0.4870 ≠-0.4353 =Log(A/(B+C)) 

Intercept B 0.7067 ≠ 0.5878  =Log((A+B)/C) 

X_Woe1   0.6368 ≠1 
 

X_Woe2   0.2869 ≠1 
 

A generalization of the PO model is needed in order to generalize the idea of weight of evidence coding. 
The next section describes the partial proportional odds (PPO) cumulative logit model and how weight of 
evidence can be generalized to this setting.  

Partial Proportional Odds (PPO) Cumulative Logit Model 

To describe the PPO cumulative logit model, the following simple example is given: Assume there are 3 
levels for the ordered target Y: A, B, C and suppose there are 3 numeric predictors R, S and Z.  

Let pk,j = probability that kth observation has the target value j = A, B or C 

In this case the PPO Model has 6 parameters α1 α2 βR βS βZ1 βZ2 given in 2 equations: 

Log (pk,A / (pk,B + pk,C)) = αA + βR*Rk + βS*Sk + βZ,A*Zk   … j = A 
Log ((pk,A + pk,B) / pk,C) = αB + βR*Rk + βS*Sk + βZ,B*Zk   … j = B 

The coefficients of the predictors βR and βS are the same in the 2 equations but βZj varies with j. There are 
4 β’s in total. 

The formulas for the probabilities pk,A, pk,B, pk,C continue to be given by Table 4 after modifications to the 
definitions of T and U to reflect the PPO model. 

Weight of Evidence in the Setting of PPO Cumulative Logit Model 

Models (I) and (II) are modified to allow the coefficients of the predictors to depend on the cumulative logit 
response function. This is accomplished by adding the UNEQUALSLOPES statement. 

(I) PROC LOGISTIC DATA = EXAMPLE1; CLASS X;  

 MODEL Y = X / unequalslopes = (X); 

(II) PROC LOGISTIC DATA = EXAMPLE1;  

MODEL Y = X_woe1 X_woe2 / unequalslopes = (X_woe1 X_woe2); 

For data set EXAMPLE1, Models (I) and (II) are the same model (produce the same probabilities). 
Model (II) produces coefficients which generalize WOE coefficients from the binary case. Formulas for 
these coefficients are shown below: 

 α1 = log (nA / (nB + nC))   α2 = log ((nA + nB) / nC)  
 βX_woe1,1 = 1, βX_woe1,2 = 0; … (*) 
 βX_woe2,1 = 0, βX_woe2,2 = 1;  

where nA is count of Y = A, nB is count of Y = B, nC is count of Y = C 

The regression results from running Model (II) are given in Table 9. 

Table 9. Results of MODEL (II) 

Maximum Likelihood Estimates Equal to: 

Parameter   Estimate 
  

Intercept A -0.4353 -0.4353 =Log(A/(B+C)) 

Intercept B 0.5878 0.5878  =Log((A+B)/C) 

X_Woe1 A 1.0000 1 
 

X_Woe1 B -127E-12 0 
 

X_Woe2 A 3.2E-10 0  

X_Woe2 B 1.0000 1  
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Conclusion Regarding the Usage of Weight of Evidence Predictors 

Weight of evidence predictors should enter a cumulative logit model with the unequalslopes parameter in 
order to reproduce the 2 defining characteristics of the weight of evidence predictor from the binary case. 

Comments 

There are degenerate {X, Y} data sets where a cumulative logit model has no solution.11 Setting these 
cases aside, I do not have a solid mathematical proof that coefficients, as given by (*), always produce 
the maximum likelihood solution for Model (II) or that Model (I) and Model (II) are always equivalent. I am 
relying on verification by examples. 

Using the parameter values found for Model (II) the probabilities for target levels A, B, and C are obtained 
by substitution into the equations in Table 4. 

 pr,A = Ar / (Ar + Br + Cr) 
pr,B = Br / (Ar + Br + Cr) 
pr,C = Cr / (Ar + Br + Cr) 

where Ar is the count of Y = A when X = r, etc. 

EXAMPLE: BACKACHE DATA, LOG OF AGE, AND SEVERITY WITH THREE LEVELS 

A paper by Bob Derr (2013) at the 2013 SAS Global Forum discussed the cumulative logit PO and PPO 
models. In the paper Derr studied the log transform of the AGE (called LnAGE) of pregnant women who 
have one of 3 levels of SEVERITY of backache in the “BACKACHE IN PREGNANCY” data set from 
Chatfield (1995, Exercise D.2). Using a statistical test called OneUp Derr shows it is reasonable to use 
unequalslopes for LnAGE when predicting SEVERITY. 

There is a data set called BACKACHE in the Appendix with 61 observations which expands to 180 after 
applying a frequency variable. It has AGE and SEVERITY (and a frequency variable _FREQ_) from the 
BACKACHE IN PREGNANCY data set. See this data set for the discussion that follows below. 

The weight of evidence transforms of AGE will be used in a PPO model for SEVERITY and will be 
compared with the results of running a cumulative logit model for LnAGE with unequalslopes.  

The logistic model for SEVERITY with unequalslopes for LnAGE gives the fit statistics in Table 10a and 
Table 10b. 

PROC LOGISTIC DATA = Backache; 

MODEL SEVERITY = LnAGE / unequalslopes = LnAGE; 

Freq _freq_; 

run; 

Table 10a. SEVERITY from Backache Data Predicted by LnAGE with Unequalslopes  

Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 361.104 357.423 

SC 367.490 370.194 

-2 Log L 357.104 349.423 

Table 10b. SEVERITY from Backache Data Predicted by LnAGE with Unequalslopes 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 7.6819 2 0.0215 

Score 7.5053 2 0.0235 

Wald 7.3415 2 0.0255 

Replacing LnAGE by Weight of Evidence 

What improvement in fit might be achieved by replacing LnAGE with AGE_woe1 and AGE_woe2?  

                                                 
11 Agresti (2010 p. 64) 



8 

 

This is explored next.  

The AGE * SEVERITY cells have zero counts when AGE < 19, AGE = 22, and AGE > 32. To eliminate 
these zero cells, AGE levels were collapsed as shown. AGE had 13 levels after this preliminary binning. 

DATA Backache2; Set Backache; 

if AGE < 19 then AGE = 19; 

if AGE = 22 then AGE = 23; 

if AGE > 32 then AGE = 32;  

Next, AGE_woe1 and AGE_woe2 were computed. Before entering AGE_woe1 and AGE_woe2 into the 
MODEL their correlation should be checked. The correlation of AGE_woe1 and AGE_woe2 was found to 
be 58.9% which is suitably low to support the use of both predictors in a model. 

Now the PPO model, shown below, was run; 

PROC LOGISTIC DATA = Backache2; 

MODEL SEVERITY = AGE_woe1 AGE_woe2 / unequalslopes = (AGE_woe1 AGE_woe2); 

Freq _freq_; 

run; 

The fit was improved, as measured by -2 * Log L, from 349.423 to 336.378 as seen in Table 11a. 

 Table 11a. SEVERITY from Backache Data Predicted by WOE recoding of LnAGE with Unequalslopes  

Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 361.104 348.378 

SC 367.490 367.536 

-2 Log L 357.104 336.378 

Penalized Measures of Fit Instead of Log-Likelihood 

But the measures AIC and SC (Schwarz Bayes criterion) of parsimonious fit of 348.378 and 367.536 are 
not correctly computed when weight of evidence predictors appear in a model. The weight of evidence 
predictors should count for a total of 24 degrees of freedom and not the 4 counted by PROC LOGISTIC, 
as shown in the Testing Global Null Hypothesis report, Table 11b. 

Table 11b. SEVERITY from Backache Data Predicted by WOE recoding of LnAGE with Unequalslopes 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 20.7264 4 0.0004 

Score 22.0324 4 0.0002 

Wald 20.2476 4 0.0004 

The penalized measures of fit, AIC and SC should be recomputed to match the Model Fit Statistics for the 
equivalent model with a CLASS statement for AGE shown below in Table 12. 

PROC LOGISTIC DATA = Backache2; 

CLASS AGE; 

MODEL SEVERITY = AGE / unequalslopes = (AGE); 

Freq _freq_; 

run; 

Table 12. Model Fit Statistics with Adjusted Degrees of Freedom 

Model Fit Statistics (adjusted) 

Criterion Intercept Only Intercept and Covariates 

AIC 361.104 388.378 

SC 367.490 471.395 

-2 Log L 357.104 336.378 

The adjusted SC of 471.395 is much higher than the SC of 370.194 from the PPO model with LnAGE. 
Similarly, the adjusted AIC of 388.378 is much higher than the 357.423 from the PPO model with LnAGE.   
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BINNING PREDICTORS FOR CUMULATIVE LOGIT MODELS 

The weight of evidence predictors AGE_WOE1 and AGE_WOE2 use the 13 levels of AGE. Perhaps 
these 13 levels could be binned to a smaller number to achieve parsimony and still retain most of the 
predictive power? 

For logistic models with binary targets there are methods to decide which levels of the predictor to 
collapse together, at each step, so as to maximize the remaining predictive power. These measures 
include: (i) Information Value, (ii) Log Likelihood (equivalent to entropy), (iii) p-value from the chi-square 
measure of independence of X and the target. (The Interactive Grouping Node (IGN) in SAS Enterprise 
Miner provides the user with the choice of either (ii) or (iii) when binning predictors and IGN reports the IV 
for each binning solution.) 

How can these binary methods be generalized to binning decisions for the cumulative logit model? 

For the cumulative logit model, the use of Information Value for binning is complicated because each 
weight of evidence predictor has its own IV. One approach for binning decisions is to compute TOTAL_IV 
by simply summing the individual IV’s. 

A work-in-progress macro called %CUMLOGIT_BIN is being developed to perform binning in the case of 
the cumulative logit model. For this macro the target has L ≥ 2 ordered values and the predictor X may be 
numeric or character. 

Two input parameters for %CUMLOGIT_BIN are:  

 MODE: The user first decides which pairs of levels of the predictor X are eligible for collapsing 
together. The choice is between “any pairs are eligible” or “only adjacent pairs in the ordering of X”. 

 METHOD: This is a criterion for selecting the pair for collapsing. The choices are TOTAL_IV and 
ENTROPY. For TOTAL_IV the two levels of the predictor which give the greatest TOTAL_IV after 
collapsing (versus all other choices) are the levels which are collapsed at that step. A similar 
description applies if ENTROPY is selected. 

%CUMLOGIT_BIN APPLIED TO AGE AND SEVERITY FROM BACKACHE 

TOTAL_IV and adjacent-only collapsing were selected for %CUMLOGIT_BIN and applied to AGE from 
the Backache data set. There were 13 levels for AGE after the initial zero cell consolidation.  

The summary results of the binning are shown in Table 13. 

The AIC and SC columns have been adjusted for degrees of freedom for weight of evidence. If AIC and 
SC are not a concern for predictor variable preparation before modeling, then either a 10-bin or 9-bin 
solution has appeal since TOTAL_IV begins to fall rapidly thereafter. These solutions give -2 * Log L 
values of 336.60 and 336.92 in comparison with 349.423 for LnAGE (Table 10). The correlations between 
AGE_woe1 and AGE_woe2 are moderate for the solutions with 10-bins and 9-bins (63% and 68%). 

Table 13. Binning of AGE vs. SEVERITY from BACKACHE DATA. MODE = ADJACENT, Method = TOTAL_IV  

BINS 
MODEL DF 

With Intercept  -2_LL IV_1 IV_2 Total_IV Adj. AIC Adj SC 

Correlation of 
AGE_woe1 and 

AGE_woe2 

13 26 336.38 0.237 0.489 0.726 388.38 471.39 0.5886 

12 24 336.46 0.236 0.489 0.725 384.46 461.09 0.6309 

11 22 336.51 0.235 0.488 0.723 380.51 450.76 0.6350 

10 20 336.60 0.232 0.487 0.720 376.60 440.46 0.6343 

9 18 336.92 0.229 0.484 0.713 372.92 430.39 0.6804 

8 16 337.44 0.218 0.482 0.700 369.44 420.53 0.7026 

7 14 339.16 0.198 0.472 0.670 367.16 411.86 0.7099 

6 12 340.04 0.178 0.462 0.640 364.04 402.36 0.8082 

5 10 341.54 0.144 0.461 0.604 361.54 393.47 0.8075 

4 8 344.50 0.121 0.443 0.564 360.50 386.04 0.8827 

3 6 345.34 0.108 0.409 0.517 357.34 376.50 0.9996 

2 4 348.01 0.049 0.382 0.430 356.01 368.78 1.0000 
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The selection of either the 10-bin or 9-bin WOE solution, in conjunction with all the other predictors of 
SEVERITY, is likely to provide an improvement in the complete Backache Model versus the usage of 
LnAGE with unequalslopes. 

PREDICTORS WITH EQUAL SLOPES 

For the cumulative logit model example of AGE and SEVERITY the predictor LnAGE was judged to have 
unequal slopes according to the OneUp test. When using 13 bins for AGE the weight of evidence 
variables, AGE_woe1 and AGE_woe2, were only moderately correlated. 

What about the case of “equal slopes“? If a target Y has three levels and a predictor X has equal slopes, 
can X_woe1 and X_woe2 still be used to replace X? The answer is “Yes” unless X_woe1 and X_woe2 
are too highly correlated.  

The DATA Step creates data for a cumulative logit model where the target has 3 levels, the predictor X 
has 8 levels, and X has equal slopes. In the simulation code the slopes of X are set at 0.1 (see the 
statements for T and U). 

DATA EQUAL_SLOPES; 

do i = 1 to 800; 

   X = mod(i,8) + 1; 

   T = exp(0 + 0.1*X + 0.01*rannor(1)); 

   U = exp(1 + 0.1*X + 0.01*rannor(3)); 

   PA = 1 - 1/(1 + T); 

   PB = 1/(1 + T) - 1/(1 + U); 

   PC = 1 - (PA + PB); 

   R = ranuni(5); 

   if R < PA then Y = "A"; 

   else if R < (PA + PB) then Y = "B"; 

   else Y = "C"; 

   output; 

   end; 

run; 

The OneUp test for X has a p-value of 0.56 and the null hypothesis of equal slopes is accepted.  

The results for the cumulative logit PO model for X with target Y are shown in Table 14. The fit is given 
by -2 * Log L = 1463.462 and the estimated slope for X is 0.1012 with Pr > ChiSq = 0.0012. 

PROC LOGISTIC DATA = EQUAL_SLOPES; 

MODEL Y = X; 

run; 

Table 14. The Cumulative Logit PO Model for X and Target Y 

Model Fit Statistics 

Criterion Intercept Only Intercept and Covariates 

AIC 1477.909 1469.462 

SC 1487.279 1483.516 

-2 Log L 1473.909 1463.462 

Analysis of Maximum Likelihood Estimates 

Parameter   DF Estimate Std. Error Wald Chi-Sq Pr > ChiSq 

Intercept A 1 0.0632 0.1549 0.1666 0.6831 

Intercept B 1 0.9798 0.1603 37.3757 <.0001 

X   1 0.1012 0.0314 10.4179 0.0012 

%CUMLOGIT_BIN was run on X from the data set EQUAL_SLOPES to form weight of evidence 
predictors X_woe1 and X_woe2 before any binning (X still has 8 levels).  

The correlation of X_woe1 and X_woe2 at 74.5% is near or at the borderline of being too high for both 
predictors to be entered into the model. 
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Fit statistics for the PPO model with X_woe1 and X_woe2 and for two alternative models are given in 
Table 15. Each of these models has a better value of -2 * Log L than the MODEL Y = X of Table 14 but at 
the cost of increased degrees of freedom.  

But I do not know how to assign the exact degrees of freedom to the bottom two models. 

Table 15. Weight of Evidence Models for X and Target Y 

Model -2 Log L MODEL DF with Intercept 

PPO model with X_woe1 and X_woe2 1450.398 16 

PPO model with X_woe1 1459.349 ? 

PO model with X_woe1 1459.683 ? 

High Correlation of X_woe1 and X_woe2 

Conjecture: If X is a strong predictor, then the correlation of X_woe1 and X_woe2 is high.  

A plausibility argument for this claim is given in the Appendix. In this plausibility argument, the meaning of 
“strong” is left vague.  

The preceding example supports this conjecture since X had a strongly significance chi-square with p-
value of 0.0012 while the correlation of X_woe1 and X_woe2 was high at 74.5%. 

Observation: As the number of bins during the binning process for X approaches 2 the correlation of 
X_woe1 and X_woe2 becomes high. This is based on my empirical observations. For two bins, X_woe1 
and X_woe2 are collinear.  

CUMULATIVE LOGIT MODELS: MORE TO DO 

What We Know about the Case Where the Target has Three Levels 

In the case of a target with 3 levels and predictor X, the usage of X_woe1 and X_woe2 in place of X in a 
PPO model is very likely to provide more predictive power than X or some transform of X. 

The process of binning X can help to achieve parsimony while maintaining predictive power. The 
measurement of correlation between X_woe1 and X_woe2, as the binning process proceeds, can signal 
when these predictors are too highly correlated for both to be entered into the model.  

More to Do, Some Ideas for Further Work 

 Is weight of evidence any better or worse than simply using a CLASS statement? 

 When should all weight of evidence transformations of X be included in a PPO model? 

− For the case where the target has 3 levels a test can be based on the correlation between 
X_woe1 and X_woe2. What is a good cut-off correlation value? 

 If too highly correlated, what is the alternative? A PPO model with X_woe1 or a PO model 
with X_woe1? Or some other approach? 

− For the case where the target has more than 3 levels a correlation technique is needed to decide 
which of X_woe1 to X_woe<L-1> can be used in the model. 

 Is either Stepwise or Best Subsets a useful approach to deciding what WOE variables to include? 

 When Binning: Is TOTAL_IV a good measure of the association of X to the target? What is a good 
value of TOTAL_IV and is there a parallel to the Table 3 in this paper taken from Siddiqi’s book? 

 Does a low IV for X_woe<k> indicate that X_woe<k> should not be included in the model? What is a 
low value? 
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BACK TO BINARY AND BINNING 

Binning of predictors for binary targets has been well developed. In SAS Enterprise Miner the Interactive 
Grouping Node provides extensive functionality.  

For users of SAS / STAT a macro %BEST_COLLAPSE for binning of binary targets was provided by 
Lund and Brotherton (2013). This macro was mentioned in Lund (2015). Recently the macro has been 
enhanced and renamed as %NOD_BIN.  

%NOD_BIN addresses the binning of both an ordered or unordered predictor X. But in the case of 
ordered X with adjacent level binning (in the ordering of X) a complete solution is provided by a new 
macro called %ORDINAL_BIN. 

%ORDINAL_BIN for Binning a Binary Target and an Ordered Predictor 

It is assumed that X is ordered (numeric or character) and only adjacent levels of X are allowed to 
collapse together.  

If X has L levels, then are there 2(L-1) - 1 total solutions: ∑ {number of solutions with k bins}L
k=2  = 2(L-1) - 1 

 If L = 3, then the solutions are: {1,2} {3}, {1} {2,3}, {1} {2} {3},  … 22 - 1 = 3 
 If L = 20, then there are 2(L-1) - 1 = 524,287 total solutions 

%ORDINAL_BIN finds ALL solutions, determines which are monotonic, and computes IV.  

If X has missing values, they may be included in the binning process. A WOE value is computed for 
missing, and IV includes the IV term for missing. The missing level may not collapse with other levels and 
does not affect which solutions are called monotonic.  

Small-bin solutions are not reported (where bin ≤ “x”%).  

WOE SAS statements are provided.  

Running %ORDINAL_BIN when the number of levels of X exceeds 20 involves very long run-times. 
PROC HPBIN can reduce the levels of X to less than or equal to 20 before running %ORDINAL_BIN. 

In the macro program the simple idea behind %ORDINAL_BIN is hidden behind multiple levels of macro 
statements. But the idea can be expressed through a simple example. 

Assume X has 4 ordered levels 1, 2, 3, 4. There is one 4-bin solution consisting of {1}, {2}, {3}, {4}. WOE 
values are computed WOE(1) – WOE(4). By inspection it is determined whether these are monotonic, 
and the associated IV is computed. There are three 3-bin solutions: {1,2}, {3}, {4} and {1}, {2,3}, {4} and 
{1}, {2}, {3,4}. Again WOE’s are computed, monotonicity is determined, and IV’s are computed. Likewise, 
for 2-bin solutions.  

The programming challenge was setting up dynamic macro DO Loops to identify all the adjacent-mode 
solutions. 

The %ORDINAL_BIN was run on the following example of Y and X_Very_Non_Mono: 

Table 15. Data Set with Target Y and X_VERY_NON_MONO 

  X_VERY_NON_MONO 

Y 1 2 3 4 5 6 7 8 9 10 11 12 

0 1393 60090 5083 45190 8319 48410 2689 20900 729 2920 253 2940 

1 218 890 932 1035 2284 1593 1053 872 311 136 120 142 

Total 1611 60980 6015 46225 10603 50003 3742 21772 1040 3056 373 3082 

%ORDINAL_BIN allows the user to control the amount of output that is displayed. In the example below, 
the solutions for 6-bins, 5-bins, and 4-bins were obtained and the best two IV solutions were displayed 
and the (up to) best two monotonic solutions were displayed. 
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There no monotone solution with 6 bins. There is a single monotone solution with 5 bins. The best two IV 
solutions have much higher IV than this monotonic solution. There are multiple 4-bin monotonic solutions 
and the best two are displayed. 

Table 16. %ORDINAL_BIN Applied to X_VERY_NON_MONO (sorted by descending IV) 

BINS Best_IV Best_mono Solution_num IV -2 * LL L1 L2 L3 L4 L5 L6 

6 *   1 0.8174 69778 1+2 3 4 5 6 7+8+9+10+11+12 

6 *   2 0.7964 70128 1 2 3 4 5 6+7+8+9+10+11+12 

 

BINS Best_IV Best_mono Solution_num IV -2 * LL L1 L2 L3 L4 L5 

5 *   1 0.7213 70696 1+2 3 4 5 6+7+8+9+10+11+12 

5 *   2 0.7124 70252 1+2+3+4 5 6 7 8+9+10+11+12 

5 
 

* 117 0.3155 75069 1+2 3+4 5+6 7+8 9+10+11+12 

 

BINS Best_IV Best_mono Solution_num IV -2 * LL L1 L2 L3 L4 

4 *   1 0.5777 71875 1+2+3+4 5 6 7+8+9+10+11+12 

4 *   2 0.5468 72357 1+2 3+4 5 6+7+8+9+10+11+12 

4   * 26 0.3132 75095 1+2 3+4 5+6 7+8+9+10+11+12 

4   * 27 0.3121 75106 1+2 3+4 5+6+7+8 9+10+11+12 

WOE, DEGREES OF FREEDOM, AND SBC 

A common approach to finding and ranking multiple candidate models for logistic regression is to rank the 
models by their Schwarz Bayes criterion (SBC) and select the top several models for further study.12 
Normally, when data are abundant, the candidate models are fit on a training data set, ranked by SBC, 
and the top few models are further evaluated on the validation data set. 

There is, however, a problem with this approach related to the proper calculation of SBC when using 
WOE coded predictors.  

Consider a binary target Y and the following two logistic models: 

(A) PROC LOGISTIC; CLASS C; MODEL Y = C <other X’s>; 

(B) PROC LOGISTIC; MODEL Y = C_woe <other X’s>; 

To PROC LOGISTIC, the predictor C_woe appears to have 1 d.f. But the pre-coding of C_woe used the 
entire C * Y table. All the information about Y and C is reflected in the construction of C_woe and more 
than one degree of freedom needs to be assigned to C_woe. With only 1 d.f. the SBC for Model (B) is 
understated. 

A Recommendation: If Ranking Models by SBC, Include WOE Predictors in a CLASS Statement. 

For the purpose of ranking models by SBC I recommend computing SBC for a model by putting all WOE 
variables (if any) into a CLASS statement. (Once the ranking and selection of models for further study is 
completed, then the selected models are re-run with WOE predictors removed from the CLASS 
statement.) 

This is theoretically correct? The answer is: No.  

I can construct a contrived example where SBC for the model with WOE predictors in a CLASS statement 
is less than the SBC where there is no CLASS statement. That is: 

The SBC for PROC LOGISTIC; CLASS C_woe1 C_woe2; MODEL Y = C_woe1 C_woe2 <other X’s>; 

is less than 

The SBC for PROC LOGISTIC; MODEL Y = C_woe1 C_woe2 <other X’s>; 

In this case the “penalty” from adding degrees of freedom is offset by more “reward” from the added 
flexibility in fitting the dummy coefficients from the CLASS predictors.  

                                                 
12 SAS Institute (2012) Predictive Modeling Using Logistic Regression: Course Notes. See chapter 3 
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But still, something has to be done. This recommendation is a heuristic that works for practical cases.  

Here is some support for this recommendation: 

• If X, Y, and Z are each uncorrelated with C_woe, then -2*LL for model with C_woe is equal to -2*LL 
for the model where C appears in CLASS C and, further, these are the same two models.13 
Therefore, the SBC for the model with C_woe must have an SBC that equals the SBC for the model 
with CLASS C. 

• Usually, the modeler tries to reduce multicollinearity. 

• Often, in the applications I’ve seen, -2*LL with WOE predictors is approximately equal to -2*LL when 
these same predictors appear in a CLASS statement. 

SAS MACROS DISCUSSED IN THIS PAPER 

Contact the author for copies of %NOD_BIN and %ORDINAL_BIN. However, at this time, 
%CUMLOGIT_BIN remains under development. 
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APPENDIX: Data Set BACKACHE 

(A change to raw data has been made: if SEVERITY = 0 then SEVERITY = 1) 

Obs SEVERITY AGE _FREQ_ 

1 1 16 1 

2 1 18 4 

3 1 19 5 

4 1 20 3 

5 1 21 12 

6 1 22 5 

7 1 23 7 

8 1 24 12 

9 1 25 7 

10 1 26 8 

11 1 27 4 

12 1 28 4 

13 1 29 3 

14 1 30 3 

15 1 31 1 

16 1 32 3 

17 1 33 2 

18 1 34 2 

19 1 35 1 

20 1 37 1 

21 1 39 1 

22 1 42 4 

23 2 17 1 

24 2 18 3 

25 2 19 1 

26 2 20 3 

27 2 21 3 

28 2 22 6 

29 2 23 3 

30 2 24 5 

31 2 25 3 

32 2 26 10 

33 2 27 3 

34 2 28 4 

35 2 29 3 

36 2 30 4 

37 2 31 2 

38 2 32 3 

39 2 35 1 

40 2 36 1 

41 2 37 1 

42 3 15 1 

43 3 19 1 

44 3 20 1 

45 3 21 1 

46 3 23 2 

47 3 24 1 

48 3 25 2 

49 3 26 2 

50 3 27 1 

51 3 28 1 

52 3 29 1 

53 3 30 2 

54 3 31 1 

55 3 32 2 

56 3 33 1 

57 3 34 1 

58 3 35 2 

59 3 36 1 

60 3 38 1 

61 3 39 2 
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APPENDIX: CORRELATION OF WOE PREDICTORS FOR X WHEN X IS A STRONG 
PREDICTOR OF TARGET Y WITH 3 LEVELS 

Assume numeric predictor X is a strong predictor of target Y where “strong” will not be given an 
operational definition. Then the two WOE transformations of X have high correlation. 

Here is a plausibility argument:  

Consider the case of three levels A, B, C for target Y. If X is a strong predictor of Y, then the probabilities 
of A, B, C can be approximated by the empirical probabilities as shown: 

 Prob (Y = A | X = x) = px,A ~ Ax / (Ax + Bx + Cx)  

… and likewise for B and C. 

where Ax gives the count of occurrences of A when X = x and similarly for Bx and Cx 

I do not have a way to quantify this approximating relationship in terms of some measure of the “strength” 
of X. But accepting that this relationship exists for a strong predictor, then for the PPO model: 

Log [pr,A (pr,B +  pr,C)⁄ ] - Log [ps,A (ps,B +  ps,C)⁄ ] = (r -  s) * βX,1 … from response equation 1 

 Log [(pr,A +  pr,B) pr,C⁄ ] - Log [(ps,A +  ps,B) ps,C⁄ ] = (r -  s) * βX,2 … from response equation 2 

and via substitution of the approximations for px,A, px,B, px,C: 

X_woe1(X=r) - X_woe1(X=s) = Log [Ar / (Br + Cr)] - Log [As / (Bs + Cs)] ~  

Log [pr,A (pr,B +  pr,C)⁄ ] - Log [ps,A (ps,B +  ps,C)⁄ ] = (r -  s) * βX,1 

X_woe2(X=r) - X_woe2(X=s) = Log [(Ar + Br) / Cr] - Log [(As + Bs) / Cs] ~ 

Log [(pr,A +  pr,B) pr,C⁄ ] - Log [(ps,A +  ps,B) ps,C⁄ ] = (r -  s) * βX,2 

Fixing the value of s, these equations above imply that X_woe1(X=r) and X_woe2(X=r) are approximately 
collinear as functions of X. 


