MWSUG 2016 - Paper AA24

An Animated Guide: Penalized variable selection techniques in SAS® and Quantile Regression

Russ Lavery, Bryn Mawr, PA Peter Flom, NYC, NY

ABSTRACT

This paper is about some new PROCs for modeling using penalized variable selection and some PROCS for building models that are a richer description of your data than OLS. The four PROCS we will cover are: Reg, GLMSelect, QuantReg and QuantSelect. The paper explains theory and gives examples of SAS® code and output for four PROCS.

Figure 1

INTRODUCTION

A major goal of regression analysis in has been to determine, from ONE data set, the ONE model that best describes the relationship between the dependent and independent variables for future data. This process created ONE line (predicting the conditional mean response). Much of the work involved the use of maximum likelihood estimation (MLE). Recent advances in computer power allow us to expand this goal in three ways: First: Model averaging lets us create models with more external validity. Secondly, penalized regression methods allow us to solve some of the problems of MLE. Finally, quantile regression creates multiple, not one, conditional estimates of Y.

Maximum likelihood estimation has three major problems:

Collinearity: When the independent variables are collinear, the β values are unstable.

Overfitting: When the sample size (N) is not much larger than the number of variables (p) resulting models will be over fit and will not generalize well to new data.

Parsimony: Einstein said that the goal should be to make everything "as simple as possible, but not simpler". Much of model building has focused on the attaining the ideal degree of parsimony. However, the older methods (e.g. bivariate screening, stepwise selection, forward selection) are flawed. Statistics given in the output from regression (p values, parameter estimates, R² and so on) were developed for testing one specific model and are not justified when used multiple times as they are in stepwise.

HOW DID THIS PAPER HAPPEN

This paper started out as a much smaller topic and grew and grew. It started out as a talk about only PROC QuantReg. QuantReg works fine on its own, if there is a single model that we wish to test and it is specified a priori. However; if we want to use model selection methods with a QuantReg, we need to understand PROC QuantSelect.

But PROC QuantSelect requires an understanding of penalized regression techniques like: Ridge, LASSO, LAR, Weighted LASSO, Elastic Net and Grouped LASSO. These methods are easier to understand in the more familiar environment of ordinary regression, which led us to PROC GLMSelect, which is similar to PROC QuantSelect. We suggest a study all four PROCS, and theory, is better than studying one PROC. PROC GLMSelect can also be used to select variables for PROC GLM and PROC Mixed but we will not show examples of these in this paper.

Figure 1 one shows the products we examined in creating this paper and some of the advanced, machine learning, options one can request from the PROCs.

BACKGROUND

Model selection is a difficult and important topic in statistics. Stepwise methods have long been known to have problems but were used and taught because analysts lacked alternatives for the automatic creation of parsimonious models.

Model selection, establishing the relationship between Y and elements of a set of X variables, is difficult for several reasons. A nonlinear relationship between Y and several X is might not show up in the marginal plot of Y versus X – even in a partial regression plot. Scatterplots show the marginal relationship between Y and the X variables and cannot show anything about relationships between Y and several Xs (although co-plots and scatterplot matrices can help). A strong relationship between Y and one X may be outperformed by a relationship between Y and a group of X variables that are, individually, poor predictors. A lack of a marginal relationship between Y and an X variable does not mean that it the X variable is not useful in the model. The X variable might be needed as a moderator, or mediator, in a model that includes other X variables. In addition, theory often suggests some variables "should" be related to the dependent variable. In these cases, finding a weak relationship is interesting.

Most unsettlingly, nearly all the results of regression (F and chi-square tests, parameter estimates, p values and so on), assume that the model is specified beforehand and that is not the case with stepwise methods. Results are known to be incorrect when stepwise, or other similar methods, are used.

Stepwise algorithms are fast because they are greedy. They make the best choice at each step, regardless of the effects of future X variables and this is often not the way to find "TRUTH".

All-Subsets regression examines all subsets of the X variables for each particular number of X variables (best 1 X-variable model, best 2 X-variable model etc.). An advantage of all subsets is that the best set of two predictors need not include the X variable that was the best one predictor model. However the biases of all-subsets β values are much, much greater than in stepwise. All-Subsets examines 2^p cases, so, for only a relatively small model with 10 independent variables, there are over 1000 models to examine (and adjust for). The chance of an alpha error is large for that many tests.

The new penalized methods that are discussed in this paper help, only help, find a parsimonious model. They help by using algorithms that are more stable, continuous and computationally efficient than stepwise methods. However; thought is still required for three reasons. Firstly; output is still complex. Secondly; some penalized penalties are more appropriate in a particular situation than others. Thirdly, any automatic method will be inadequate because (as noted above) there are considerations other than simple "model fit" to consider. Automatic methods cannot substitute for substantive knowledge and thought.

Figure 2 starts a story. Hopefully, that story explains some of the logic behind, and steps in, Ridge regression. We know that OLS can, if the number of variables is large or if the X variables are collinear, produce highly unstable β estimates and this slide starts an illustration of that problem.

In the white box on the left, a data step creates two variables, that are highly correlated, and a Y variable that is created by the formula Y = 4 + 1X1 + 1X2 + error. A PROC GPlot shows the extreme correlation between X1 and X2. Finally a PROC Reg builds a model using these two highly correlated X variables. (It should be noted that correlation and collinearity are not the same and that there can be collinearity among a set of variables none of which are have a high individual correlation with Y. However, in our example case, with only 2 independent variables, a high degree of correlation does imply a high degree of collinearity. A good method for detecting collinearity is condition indexes, available in PROC REG.

The results of the model are shown on the right of Figure 2. In the top box you can see that the model predicts very well. In the bottom box you can see that neither the X1 nor the X2 variable are significant. This is a very common occurrence in regression when X variables are correlated. Notice, in the formula that creates the variable true_Y, that the β s for X1 and X2 sum to two (1 + 1 = 2). In the parameter estimates box on the right-hand side the β s also sum approximately to two (24.78 + -22.88), though the values are very different from the β in the formula for true_Y.

Pause for a minute and consider this. If the X'X matrix has problems, SAS uses a generalized inverse and the β s become unstable. If X1 and X2 are as highly correlated as the plot shows, then we can say (practically) that X1 *IS* X2. Since X1 contains the same information as X2, we could re-write the formula as Y= 2*X1 + 0 X2. We could also re-write the formula as Y= 0X1 + 2*X2.

INTRODUCTION TO THE PROBLEM

Penalized Regression – Introduction to the pro	oblem TRUE Formula is Y= 4	+ X1 + X2
The problem is that the X variables are correlated	Variable	Sum
/*Any pair of coefficients that sum to 2 will give approx	Y_W_error	73.1791843
same SSE*/	Model A02 pred	73.1791843
<pre>proc sql; create tableA03_Manually_Show_same_SSE as</pre>	Model_A02_ Residuals	2.75E-14
<pre>select A02.* ,Model_A02_Residuals_Squared ,Y_W_error - (4 + X1 + X2) as Resid_True_Coeff ,(Y_W_error - (4 + X1 + X2))**2 as Resid_True_Coeff Squared</pre>	Model_A02_ Residuals_Squared	11.8605532
,(Y_W_error - (3.86743 + -22.88253*X1 + 24.78529*X2))**2 as	Resid_True_Coeff	-1.8177144
Resid_Fitted_Coeff_Squared ANY β1 AND β2 THAT SUM /*True coeff with_diff of 2*/ TO 2 WILL PREDICT ~WELL	Resid_ True_Coeff_ Squared	12.916622
<pre>, (Y_W_error - (4+(-10*x1)+(12 *x2)))**2 as Resid_m10_12 , (Y_W_error - (4+(4 *x1)+(-2 *x2)))**2 as Resid_4 m2</pre>	Resid_ Fitted_Coeff _Squared	11.8605532
(Y_W_error - (4+(40 *X1)+(-38 *X2)))**2 as Resid_40_m38 /*Fitted B0 (3.86743) with fitted diff of 1.90276*/	Resid _minus10_and_12	12.3706858
, (Y W error-(3.86743+(-10*x1)+(11.902*6*x2)))**2 as FRes A	Resid _4_and_minus_2	13.1324077
(Y_W_error-(3.86743+(4*x1) +(-2.092 6*x2)))**2 as FResid_ (Y_W_error-(3.86743+(4*x1) +(-38.0972*x2)))**2 as FResid_ from 802 data plus as AD2:	Resid 40_and_minus_38	17.9580083
	FResid_A	12.1248819
<pre>proc means data=A03_Manually_Show_same_SSE n min max sum;</pre>	FResid_B	13.0080205
run;	FResid_C	18.1584202

The code in Figure 3 manually calculates sum squared error for many different "models". A characteristic of all the models is that the values of β 1+ β 2 sum to two (-10 + 12 = 2 and 4 - 2 = 2, etc.). Since X1 and X2 are so correlated, X1 and X2 are really the "same" variable. So, any combination of X1 and X2 where the β s add up to the number two should give the same answer. The squared residual number in red (11.86) is from the SAS PROC Reg. The calculations in Figure 3 (differing only because of rounding) are approximately the same number. A key conclusion is: in the presence of very high correlations, many combinations of β values will give the same answer.

Since we get the same model result from many different models we have to ask "how do we choose a model (choose a set of beta values)" from the many models (sets of β s) that predict equally well.

The logic for answering the question is simple. Consider that if these two models predict about as well: Y = 4 + 1 X1 + 1 X2

and

Y = 4 + 101 X1 - 99 X2

Occam's razor can be used to select a model. Occam's razor suggests that we pick a simpler model and, in this case, <u>Occam's razor suggests that we should pick models with small β values</u>. Unless there is evidence to the contrary, it is more likely that Y = 4 + 1 X1 +1 X2 than Y = 4 + 101 X1 -99 X2. Applying Occam's razor, models with small β values, models with few β s and models with lower exponents on the Xs, are considered simpler and more likely.

We now have a rule for picking models when X variables are correlated and the β values are unstable. When multicollinearity is present, we prefer small β s. This is an underlying logical reason for Ridge regression. In the presence of multicoliniarity, we want to shrink β values and Ridge will be our method.

As a small digression, it does not make sense to shrink the intercept towards zero and none of the Ridge stat packages will shrink β_0 . Additionally, because X variables often have greatly different units of measure, all of the packages will standardize the X variables so that shrinkage is applied equally regardless of the natural units on the X variables. Packages also un-standardize for user convenience.

A FRIENDLY STORY ABOUT RIDGE

Figure 4

Once upon a time a young statistician was confronted with the problems of multicollinearity as she was building a model. She knew the regression formula was $\beta = (X'X)^{-1} X' Y$ and that (X'X) was the sums of squares and cross products matrix. "Good" regression problems had (X'X) matrices where the off diagonal values were small. She knew that when the X variables were highly correlated the (X'X) matrix had off diagonal values that were large compared to the values on the diagonal.

The common way of describing the multicollinearity problem was "we want small covariates" in (X'X). She had the idea of rephrasing the problem. She rephrased the problem to "I want variances that are a large compared to the covariates".

She tried using $(X'X + \lambda I)$ to add to the diagonal values. Adding λI made the diagonal values larger relative to the off-diagonal values. This greatly improved the solution, even for small values of λ . With her technique the numbers on the diagonals were larger than the numbers on the off-diagonals.

It is now time to make a useful, though slightly tortured, analogy concerning inverses.

Think of two values 5 and 10. 10 is bigger than 5. The inverse of 10 is 1/10 and is smaller than the inverse of 5 (1/5). As numbers get bigger, their inverses get smaller and note that (X'X) ⁻¹ is an inverse.

I will torture this analogy because the inverse of a matrix is not a number but another matrix. If λ is greater than zero (X'X + λ I) is "larger than" (X'X) and so (X'X + λ I)⁻¹ is smaller than (X'X)⁻¹. As λ gets larger, (X'X + λ I)⁻¹ gets "smaller" because it is an inverse (sorry about that).

Since the $\beta = (X'X + \lambda I)^{-1} X'Y$, we are multiplying an inverse by a fixed amount (the X'Y). As λ gets large the β s get small. We have found a way to shrink β s towards zero and to implement Occam's razor in selecting coefficients.

But, nothing is free and there is a complication for this technique. The variances of the β s can be calculated using: var(β -hat) = σ^2 (X'X)⁻¹ where σ^2 is unknown but can be calculated by RSS(β -hat) / (N-P) RSS(β -hat). P is the number of X variables and N is the number of observations.

As λ gets larger the inverse decreases and the variance of the β s decreases – but only for a while. There is a hidden upward pressure on the variance that is exerted through the σ^2 term. As λ gets large it will affect the formula for the β s and make the β s move away from the "min. SSE" β s. As β s move away from the "min. SSE" β s, predicted values of Y become less accurate and RSS goes up. As the β s move away from their best value, RSS gets large because the model no longer predicts as well. Eventually the effect

of poor predicting on σ^2 overwhelms the effect of λ on the inverting of the (X'X) and σ^2 (X'X) ⁻¹ increases. The link between the formulas produces a characteristic U-shaped curve as λ increases.

Let us do two thought experiments about the formula $(X'X + \lambda I)^{-1}$. As λ gets close to zero our λI term disappears and we are left with OLS regression. As λ gets large it makes the diagonal of $(X'X + \lambda I)^{-1}$ matrix get large, the inverse small. In the general case, the β s go to zero because $(X'X + \lambda I)$ is large and the inverse term in $\beta = (X'X + \lambda I)^{-1} X'Y$ is small. However, it is possible for individual β to increase or decrease or even change sign if λ increases but is less than infinity.

There is another way to think about the effect of increasing λ . Points, from correlated X variables, can be thought of as forming a "cylinder" in the hyperspace defined by the X variables. Points from independent X variables are spread out and form a "dispersed swarm of bees" in the hyperspace defined by the X variables. The fitted hyperplane, from your model, rests on the observed points in X-space.

If the points form a narrow cylinder, then small changes in observations can allow the plane to tilt. Think of trying to balance a dinner plate on a rolling pin. However, if the points are spread out in hyperspace then the hyperplane rest on points that are spread widely apart and the hyperplane is more stable. Think of the data swarm as supporting the hyperplane in a manner similar to a plate resting on a table. The λ I term can be thought of as spreading out the points in X-space and providing better support for the hyperplane.

In summary; Ridge implements Occam's razor when it shrinks βs.

ANOTHER VIEW OF RIDGE

Mathematically, $\beta = (X'X + \lambda I)^{-1} X' Y$ can be converted to

 $SSE_{\lambda}(\beta) = \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p-1} X_{ij} \beta_j)^2 + \lambda \sum_{j=1}^{p-1} (\beta_j)^2$ which is like the OLS formula with a penalty (blue term) for having large (or for having many) β s. The second power penalty is easy to optimize using calculus. The Ridge penalty is often called an L₂ penalty because of the second power in the exponent of the penalty term. λ is often called the shrinkage parameter. Large β values, or models with more β values, are interpreted as more complex models and, according to Occam, less likely to occur in nature. Models with large β s, and models many β s, are both penalized by the Ridge technique.

LASSO (LEAST ABSOLUTE VALUES SHRINKAGE AND SELECTION)

The penalty for LASSO is very similar to the penalty formula for Ridge. The LASSO penalty term is the absolute value of the β s raised to the first power. The LASSO penalty is often called an L₁ penalty because of the first power in the penalty term.

$$SSE_{\lambda}(\beta) = \sum_{i=1}^{n} (Y_i - \sum_{j=1}^{p-1} X_{ij} \ \beta_j)^2 + \lambda \sum_{j=1}^{p-1} |\beta_j|^1$$

Since LASSO has an absolute value penalty, it cannot be easily differentiated. LASSO optimization is done by operations research techniques (simplex, etc.) and the original algorithms were fairly slow.

Comparing the shrinkage of Ridge to LASSO you can see a few important differences. β values in a Ridge never reach exactly zero (until λ = infinity) while LASSO can quickly shrink β values to exactly zero...

Some people like LASSO because the β values go to exactly zero and are, in LASSO, removed from the model. These people claim the fact that LASSO sets β values to exactly zero is a positive characteristic for LASSO and these people use LASSO as a replacement for stepwise.

Some people like Ridge regression because, in Ridge, β values do NOT go to zero. These people say that there is an over-emphasis on the P value in much of statistics. People in this camp feel that the true purpose of statistics is to estimate an "effect size" and they like Ridge regression because Ridge will leave relatively unimportant variables in the model with a small β values (small effect sizes).

Figure 5

Ridge shrinks the coefficients for large β values, the *important* variables, more than it does small β values. This is correct when the problem is collinearity, since one problem with collinearity is that some parameter estimates are much too large. However, when the problem is overfitting, this is not the case. Thus, LASSO is designed to deal with overfitting, (and does not deal that well with collinearity) and Ridge is designed to deal with collinearity (and does not solve problems of overfitting).

Figure 5 illustrates the difference between β plots for Ridge and LASSO and shows how easy it is to code these two techniques. As λ increases, the β values change – in both Ridge and LASSO. In a Ridge the values change smoothly and will asymptotically approach zero. In Ridge, unstable β values can cross zero and remain in the model.

LASSO plots are really a series of points connected by lines – where the lines just make the relationship among the points easier to see. You only interpret LASSO plots at the points where an X variable enters or leaves the model. As you can see the LASSO plot for age goes exactly to zero. In LASSO, when a β value is zero, the variable has been removed from the model.

ADAPTIVE LASSO

Ridge regression shrinks β values for important variables more than it shrinks β s for unimportant variables. Lasso shrinks all β values by the same amount. The idea of Adaptive LASSO is to shrink the β s for important variables less than the β values for unimportant variables – keeping important variables in the model "longer".

Adaptive LASSO is a two-step process because it needs a starting point for the β s. An OLS regression is often the starting point for β values for Adaptive LASSO (and may therefore be incorrect when there is collinearity). Shrinkage values are created based on variable importance and final model selection still takes some skill.

ELASTIC NET

Figure 6

Elastic Net, as you can see in Figure 6, has both of the L₁ and L₂ penalties.

The L_1 part of the formula allows Elastic Net to create a model with few variables – a sparse model. The L_2 part of the formula allows Elastic Net to be used when the number of variables is greater than the number of observations. This allows Elastic Net to be used in situations, like biological testing, where there might be thousands of variables and only a few hundred observation.

Elastic Net also overcomes the issue that LASSO has with correlated "groups of X variables". If your data set has a group of X variables that are highly correlated (height, weight, shoe size, glove size, etc.), LASSO will only select one X variable from the group of highly correlated X variables. Elastic Net can bring several of those correlated X variables into the model and keep them there longer. The L_2 parameter also stabilizes the path of the β values.

However, Elastic Net has a problem because it has two penalties. Since the Elastic Net has two penalties, that it applies, a β must overcome two penalties as it enters. Some modelers like the mixture of the two penalty types but think that applying two penalties is too harsh. SAS has an option that lets you request a scaling correction to reduce the double penalty but keep many of the positive characteristics of Elastic Net.

FOREWARD STAGEWISE

Forward Stagewise was important in algorithm development, but is now used only infrequently. Forward Stagewise picks the same initial X variable as forward stepwise, but it only changes the β value by a small amount and then calculates residuals. If Stepwise said the some beta should be 2, Foreward stagewise might bring the variable into the model with a β of .5. Foreword Stagewise then picks the X variable with the highest correlation to the residuals (might be the same variable as previous) and makes a small change in the β for that variable – then calculates residuals. Forward Stagewise takes many steps to reach a solution. Variables can be added and removed.

LAR (LEAST ANGLE REGRESSION)

LAR is an improvement on Forward Stagewise and is so fast that it is used, with modifications, as an algorithm for other techniques. LAR does not take small steps towards a solution but makes a big jump in a β value. LAR has a speed advantage, because variables are only added to, and not removed from, the model.

When you are stopping short of a fully saturated model (assume you have 200 X variables in your data set and you might only want to consider a model a maximum of 50 X variables) LAR has a definite speed advantage. Limiting the number of X variables in a model is often done because business people do not have resources to deal with a 200 variable model. Often, there are a few practical advantages to a model containing hundreds of variables over a model containing 50 variables. Details of LAR are shown in Figure 7.

Penalized Regression – Ridge and LASSO and Adaptive Lasso and Elastic Net and LAR
The LAR algorithm exploits the special structure of the lasso problem. There is a geometric underpinning to LAR and people talk about moving in the space of X.
LAR = Least Angle Regression algorithm: 1) LAR starts with all the β coefficients set to zero as the initial state.
2) LAR finds the X-variable with the highest single variable correlation with Y
3) LAR changes that variable's $\boldsymbol{\beta}$ value in the direction of the sign of the correlation with Y.
4) Repeatedly, LAR changes the β and calculates residuals after each β increase. LAR stops when new some X-variable has as high a correlation with the residuals as the X that has been being changed.
5) LAR increases βs for both variables in a way that keeps them equality correlated with thre residuals, until a new X-variable has as much correlation with the residuals.
6) Variables are added until all X-variables are in the model (or it reaches a programmed max # of variables)
With one modification, this procedure gives the entire path of LASSO β values and this is useful for graphing. If a non-zero coefficient hits zero, LAR will remove it from the set of x variables and the re-solution to the theorem is a set of the term.

EXTERNAL VALIDITY: MAKING ONE DATA SET LOOK LIKE MANY

It is common knowledge that a model performs best on the data set that was used to create the model. This means that measures of goodness of fit, like r- squared, are biased upwards on the data set that was used to create the model. On new data, a model will likely predict less well. There are techniques that will allow a modeler, with only one data set, to create a model that better generalizes to new data.

If the original data set is large it can be split it into two or three parts. The parts are called: train, test, validate, if there are three parts. If there are two parts, the data sets are usually call train and test.

The idea is to create a model using the training data and see how well it would generalize by predicting a data set containing new observations. This works well if the original data set is large enough to split into two or three parts. If it is not large enough to split, another technique must be used.

A K-fold validation is one technique that is useful for moderately sized data sets. A "fold" is another term for a "split" and most modelers use a five or 10 split– though there is no great reason for selecting any number. The idea is to take different subsets of the data, build multiple models and then average the models.

Each model will develop the model using K-1 parts of the data use one Kth of the data as a test and. Results of the K different models are averaged (many averaging algorithms exist) to produce a result that is more generalizable than a model built on the whole data set. Think a bit more about the issue of small N. If N is moderate (say N=200 observations) a fivefold split will create a training set with 160 observations and the training set is likely to approximate the next data set encountered. However a K=5 split produces a *test* data set that only has 40 observations. It is likely that this test set can differ from the data to which you wish to generalize. Forty is likely to be too small to be a good test set.

If N is small (N = 50 observations) a fivefold split will send forty observations to the training data set and ten observations to the test data set. It is likely that neither of these is sufficiently large to be representative– even after averaging many different models. There is some theoretical basis for saying a fivefold or a tenfold split produces models that contain excess numbers of X variables.

Another technique is bootstrapping. There seem to have been many different techniques developed under the general heading of bootstrap, but descriptions, when given, seem to point to a very similar algorithm in use.

Most commonly, people talk about the algorithm that follows. Start with a data set with N observations and pick a sample of size N – allowing replacements. The bootstrap sample will have the same number of observations as the original data but, on average, only 63.2% of the observations in the raw data will be in any particular bootstrap sample. Some observations will not be in the sample and some observations will be in the sample multiple times.

The bootstrap sample is not a better representation of the data than your original data and cannot be used as a replacement data source for building one model. What is done is to take many bootstrap samples, build a model on each of the bootstrap samples, and then average the results of the models. You can create many bootstrap samples from one moderately sized data set.

The next "step up" is to create models that predict use either different parts of the data or different methods. These are called ensemble techniques. Common ensemble techniques are bagging and boosting and the "bucket of models" method. This line of model building is described as ensemble techniques. An ensemble is defined as a group of items viewed as a whole rather than individually.

Ensemble methods are a change from our historical practice of building one best model on a data set.

Figure 8 is a graphic representing an ensemble modeling process. The process of building multiple models is not as much of a problem today, as it had been in the past, because of the prevalence of multiple CPU machines. Now models can be created in parallel. Figure 8 shows a bunch of tables labeled "subsets of observations". There are a great many methods to take subsets of the master data. Some techniques will take a subset of the observations and some techniques will take a subset of the observations and some techniques will take a subset of the X variables.

Figure 8

Models are built on each of the subsets and then combined. It is important that the models be as independent as possible. By "Independent models", researchers mean that the models *misclassify different observations*. If the models all misclassify the same observations, then averaging will not help model accuracy.

There are many methods used to combine the predictions and some combining algorithms will feed back, into the model building process, information about how accurate that model had been.

If Y is continuous it is possible to predict a Y using each of the models and then average the Y values. It is also possible the average the β values from the individual models and use the averaged β values to predict Y.

If the Y value is categorical (yes, no or High, Med, Low) you can just allow each model to "vote" and pick the classification that has the greatest number of votes. As a general principle, the more models you average the better your prediction, especially if the models misclassify different observations.

BAGGING (BOOTSTRAP AGGREGATION)

Bagging is a two-step process, invented in 1996. It is a very common way of creating, and then combining, models. It is a general term describing resampling and averaging of predictions over a collection of bootstrap samples and will reduce prediction variation.

A general description of Bagging (Bootstrap Aggregation) is:

- 1. Start with a training set S, with N observations, is made up of observations (x1,y1, ...XnYn)
- 2. Create NS bootstrap samples

For each of the NS samples, fit a model and get an equation that predicts Y from the X vector Average the predictions from each of the NS bootstrap models.

There are many averaging methods and they can be complex. Two major philosophical schools are: Bayesian averaging and Frequentist averaging. There are multiple methods within each major philosophy.

In the past, research into new modeling techniques was primarily statistical. Researchers still must consider the statistics and also consider the coding and efficiencies of the algorithm they propose as part of their solution.

QUANTILE REGRESSION

We are now in the second part of the talk. We have finished with section on model selection theory and will see some examples.

As Figure 9 mentions, OLS minimizes the squared deviation from a fitted line and often uses maximum likelihood to find β coefficients that minimize the summed squared deviation. Quantile regression minimizes the weighted sum of the signs of the deviation from the fitted line and the β are calculated using algorithms from operations research.

The plot on the lower left corner of Figure 9, illustrate a 10% quantile calculation. If a point is above the line, it has a weight of 1. If a point is below the line, it has a weight of -9. In our example we have 10 points at each level of X but this is not a requirement in real life. The red points below the line, are multiplied by their weights (-9) and the black points above the line are multiplied by their rates (+1). An operations research technique is used to set the slope of the line to minimize the sum of the weighted deviation.

You can see that the summed weights of the black points, for any particular X, sum to positive nine and the sum of the weights for the red points below the line, for any particular X, sum to -9. The blue line, in this picture, minimizes the weighted sums from the line. The sum of the weighted deviations is zero in this plot.

Figure 9

On the lower right-hand part of Figure 9 we see plot for a 20% quantile regression. The data set is the same as on the left. The difference between a 10th percentile quartile calculation and a 20th percentile quartile calculation is the weights. In the 20th percentile calculation, if a point is below the fitted line weight is -8 if a point is above the fitted line the weight is +2. An O.R. algorithm is used to find β values that will minimize the sum of the weights.

Looking at Figure 9, we see we can use the same data set to calculate lines for as many percentiles as we want. You can also see that Quantile regression is not sensitive to outliers, though it is sensitive to high leverage points.

Figure 10 shows a "compare and contrast" between correct quantile logic and a common misunderstanding of quantile logic. Focus on the white box in the center. In that box, someone has taken the bottom 20% of the MARGINAL Y values, put them into a data set, and then done a regression on that subset of observations. A regression line on a subset <u>based on the marginal Y values</u> is NOT a Quantile regression. Fitting a regression line to the bottom 20% of the marginal Y values is a mistake. Quantile regression fits a line bottom 20% of the *conditional* values of Y and results will be different.

EXAMPLES OF THE FOUR PROCS

This paper will now focus on four procedures that allow us to use the techniques we have been discussing above (Reg, GLMSelect, QuantReg and QuantSelect). These techniques are run in pairs. As an example, modelers run PROC GLMSelect then any of the following: PROC Reg, PROC GLM or PROC Mixed. We will use SASHelp.cars as our data set.

Examples of 4 P	rocs –Re	g GLI	MSele	ct Q	uantR	leg (Quar	itSe	ect	
M o O a d D k e 5 e l 1 Acura MDX 2 Acura RSX Type S 2dr 3 Acura TSX 4dr 4 Acura TL 4dr 5 Acura 3.5 RL 4dr 5 Acura 3.5 RL 4dr 6 Acura 3.5 RL 4dr 6 Acura 3.5 RL w/Navigation 7 Acura NSX coupe 2dr manual 8 Audi A4 1.8T 4dr 9 Audi A4 3.0 4dr	0 T i Y g P i Sedan Asia Sedan Asia Sedan Asia Sedan Asia Sedan Asia Sedan Asia Sedan Euroj 2dr Sedan Euroj Sedan Euroj	D r i v e T r a i Front Front Front Front Front Front e e Front w Front	H 8 8 9 526,945 523,820 526,945 546,945 546,100 546,100 546,100 549,755 545,940 535,940 535,940	I n v i c 6 833,337 \$21,761 \$24,647 \$30,299 \$39,014 \$41,100 \$79,978 \$23,508 \$22,506 \$22,506 \$28,846	E n C y y 1 1 n i e n S d i e z r e s 2.0 4 2.4 4 3.5 6 2.0 4 2.4 4 3.5 6 2.1 4 2.5 6 2.1 4 2.1 1 1.1 1.1 1.1 1.1 1.1 1.1 1.1	H 0 r W 8 9 0 0 0 0 1 0 0 1 0 2 0 1 0 2 1 0 2 1 0 2 1 2 2 0 2 2 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2	M P G H i g n w a y 23 44 31 27 29 32 24 38 24 38 24 38 24 31 31 32 30 36 30 36 30 36 30 34	W e e 1 j b g a h s t e 51 106 75 108 53 105 53 105 53 100 52 104 52 104 52 104 52 104	L e n 189 189 188 197 197 197 197 197 197 174 179 180	
Type Frequency	Origin Fr	equency	Dr	ive	Enoquer		Cylin	iders	Frequency	
Hybrid 3 SUV 60 Sedan 262	Asia Europe	158 123 147	Al	1	9 22	2 6	F	3 4 5	2 1 136 7	
Sports 49 Truck 24 Wagon 30		.47	Re	ar	11	ō	_	6 8 10	190 87 2	1

Figure 11

MODELERS RUN PROC GLMSELECT → PROC REG OR PROC QUANTREG →QUANTREG -WE WILL REVERSE THE ORDER FOR TEACHING PURPOSES

The procedures with "select" in the name implement penalized regression techniques but do not have very good diagnostics. Modelers use PROC Reg, PROC Mixed, PROC GLM and PROC QuantReg for diagnostics and for creating plots.

The workflow to be used, in practice, is to run one of the "select" procedures to identify an interesting model, or models, and then to rerun those models using PROC Reg, PROC GLM, PROC Mixed or PROC QuantReg in order to get diagnostics.

This paper will discuss these PROCS in "reverse use" order because we think it might be easier to understand the PROCs in this order: PROC Reg, then PROC GLMSelect --- PROC QuantReg and finally PROC QuantSelect.

SASHelp.cars, will be used in all examples. However, variables used in models will differ in the different examples. As you can see in the red rectangles in Figure 10, this data has problems (that we will ignore today). In actuality, the techniques discussed in this paper cannot be used without data cleaning and thought.

PROC REG: RIDGE REGRESSION

PROC Reg does Ridge regression and the syntax required is very simple.

There is option in PROC Reg statement that creates Ridge regression. It is shown in red to the right. A plot option produces useful output. This model statement has eight variables from SASHelp.cars. We will use these variables many times in many examples.

```
Proc Reg Data=sashelp.cars
    Plots(maxpoints=100 5000)
    OutEst=Needed4RidgePlot
    ridge=0 to .02 by .002 ;
Model Invoice = EngineSize Cylinders Horsepower
        MPG_City MPG_Highway
        Weight Wheelbase length
        /lackfit ;
run;quit;
```

Examples of 4 Procs -Reg (8) GLMSelect QuantReg QuantSelect

Parameter Esti	mates						
Variable	Label	DF	B Est.	Standard Error	t Value	Pr > t	
Intercept	Intercept	1	3148.60	9241.60	0.34	0.7335	
EngineSize	Engine Size (L)	1	-4702.50	1168.91	-4.02	<.0001	
Cylinders		1	2662.93	726.98	3.66	0.0003	
Horsepower		1	223.52	11.64	19.20	<.0001	
MPG_City	MPG (City)	1	-107.36	277.76	-0.39	0.6993	Non-Sig.
MPG_Highway	MPG (Highway)	1	622.62	272.34	2.29	0.0227	
Weight	Weight (LBS)	1	6.036	1.41495	4.27	<.0001	
Wheelbase	Wheelbase (IN)	1	-542.116	134.32	-4.04	<.0001	
Length	Length (IN)	1	3.79871	73.73	0.05	0.9589	Non-Sig.

Figure 12

A quick examination of names of variables in Figure 12 suggests that several the variables are collinear and, as expected, some of these variables are not significant.

In Figure 13, the X variables are a mixture of predicting and non-predicting and there are gaps between the two types of variables.

When variables in the model statement are a mixture of "strongly significant" and "really insignificant variables", Ridge regression can produce Ridge plots, with gaps, like the one in Figure 13. This model is a mixture of significant variables and variables that have no predictive power (plots close to zero). The Ridge plots suggest that some of these variables can be removed in our efforts to make a parsimonious model. The usual modeling process is PROC GLMSelect followed by PROC Reg because we want to take advantage of the diagnostics in PROC Reg.

PROC GLMSELECT

Model Se	election Free	uency 🔨	Num	nber of times a	a model was	selected					
Times Selected	Selection Percentage	Number of Effects	Frequency Effects in Model Score								
54	54.00	7	54.90	Intercept MPG_Highway	EngineSize Weight	Cylinders Wheelbase	Horsepower				
5	5.00	3	5.99	Intercept Horsep	ower Wheelba	se					
5	5.00	5	5.94	Intercept Horsep	ower MPG_Hig	hway Weight	Wheelbase				
5	5.00	8	5.81	Intercept Engines Weight Wheelbas	Size Cylinders e Length	Horsepower	MPG_Highway				
4	4.00	6	4.92	Intercept Engines Wheelbase	Size Horsepow	er MPG_High	way Weight				
3	3.00	6	3.92	Intercept Cylinde Wheelbase	rs Horsepowe	r MPG_Highw	ay Weight				
3	3.00	8	3.80	Intercept Engines MPG_Highway We	Size Cylinders eight Wheelbas	Horsepower Se	MPG_City				
3	3.00	9	3.73	Intercept Engines MPG_Highway We	Size Cylinders eight Wheelbas	Horsepower se Length	MPG_City				

Figure 19

Figure 19 is a different summary of the 100 models that were produced - a <u>model</u> importance chart. This is a model summary, as opposed to the variable summary in Figure 18.

In Figure 19, we see the "seven variable model", in red text, was selected fifty-four percent of the time. This means that from SASHelp.cars, when observations were selected randomly, this model was determined most of the time as the model that best described the data. This model is relatively insensitive to outliers in the data.

Figure 19 does not show all of the models that were created, there is not enough space on a PowerPoint slide for that. However, with this truncated output, you can see that horsepower was selected in all of the models *that we can see*. This is consistent with horsepower being selected in all models in the chart in Figure 18. "Miles per gallon city" (shown in green) appears relatively infrequently this is also consistent with Figure 18.

Figure 20 shows the distribution of the β values for the hundred models built.

Figure 21 shows the coefficient progression for variables entering the model. This example uses model averaging and the LASSO technique, so SAS produced a LASSO plot. Parameters should only be read where variables enter/leave the model (red lines) and not at points between (red international no sign).

The chart on the right compares the error in the training and validate data sets. Where the plots for the training and test data sets start to diverge is common indication of best model.

QUANTILE REGRESSION S

It is relatively easy to get SAS to produce a Quantile Regression as can be seen at right.

Quantile is an option on the model statement and all you have to do is list the quantiles you want. Here, we request a 10th percentile, a 50th percentile and a 90th percentile.

Figure 22 shows that some of these variables are not significant for any quantile. The figure also shows that the models produced by quantile regression are very different for the different quantiles.

Proc QuantReg Data Algorithm=interi	=sashelp.cars .or
Plot	s=all
CI=r	esampling;
Model Invoice =	EngineSize Cylinders Horsepower MPG_City MPG_Highway Weight Wheelbase length
	<pre>/quantile = .1 .5 .9</pre>
	;
run;quit;	

Horsepower is significant and its β value changes by a factor of two between quantile .1 and .9. Wheelbase is significant and its β value changes by a factor of two. "Miles per gallon highway", while not significant, has β values that vary greatly. Change in β s for "MPG Highway" and "MPG City" could be caused by either, or both, of two reasons. The change could be caused by the parameter estimates being different for the different quantiles or because the two MPG figures are highly collinear and, therefore, parameter estimates are inherently unstable. In a "real" analysis only one of these variables would be used, unless there was interest in the effect of one, conditioned on the other. In that case, one might use the difference between them as a predictor.

Exam	ble	s of 4	Proc	S-Reg (GLI	// Selec	et Qua	ntReg (8	Q	uantS	elect
			We use C	DuantReg bec by	QL	QuantReg Iantile	g has T &	P values			
L			B valu	es for diffe	rent	Quantile	s are dif	ferent:			
Parameter E	stima	ates Quantil	e=.1	Parameter Es	stima	tes Quantile	=.5	Parameter Es	timat	es Quantile	9.=
Parameter	DF	Estimate	Pr > t	Parameter	DF	Estimate	Pr > t	Parameter	DF	Estimate	Pr > t
Intercept	1	751.5983	0.9168	Intercept	1	-302.685	0.9620	Intercept	1	11310.57	0.3449
EngineSize	1	-2491.69	0.0279	EngineSize	1	-4585.34	<.0001	EngineSize	1	-3244.67	0.1597
Cylinders	1	1582.503	0.0193	Cylinders	1	2249.790	<.0001	Cylinders	1	3307.171	0.0016
Horsepower	1	110.2486	<.0001	Horsepower	1	169.8368	<.0001	Horsepower	1	241.7681	<.0001
MPG_City	1	-324.288	0.2573	MPG_City	1	-88.5550	0.5857	MPG_City	1	269.8456	0.4901
MPG_HWay	1	566.3684	0.0150	MPG_HWay	1	441.8109	0.0026	MPG_HWay	1	272.7960	0.4152
Weight	1	5.0636	0.0002	Weight	1	6.5756	<.0001	Weight	1	8.1504	<.0001
Wheelbase	1	-205.891	0.0587	Wheelbase	1	-293.968	0.0019	Wheelbase	1	-445.094	0.0013
Length	1	-43.8742	0.4381	Length	1	-44.1013	0.3018	Length	1	-138.519	0.1250

Figure 22

The idea that makes Quantile Regression so attractive is that the different Quantiles *can* represent different types of people - different market segments.

The exciting idea is that Quantile Regression, on sales data set, could let us produce equations for people who buy very little of our product (10th percentile buyers) and people who buy a lot of our product (90th percentile buyers). This can help in creating more effective marketing campaigns. Additionally, this technique is not limited to business and can be applied a number of scientific disciplines.

Figure 23

The table in Figure 22 is difficult to interpret. There are a lot of numbers to read and the numbers are spread over several pages.

SAS created the output in Figure 23 to make it easier on modelers. Figure 23 shows plots of the β (Y axis) values by Quantile (X axis). Remember, the model only requested three quartiles and modelers are only allowed to look at points, on the plot, immediately above the quantile "mark" on the X axis (see red rectangles). Our code requested three quantiles and there are <u>only three points to be read</u> on each of these plots.

If the β values are all equal, if the plots are flat, the effect of the X variable on the Y variable is the same for all Quantiles. <u>A modeler does not need to do quantile analysis if the plots are flat over all the quantiles</u>.

This paper does not show much in the way of diagnostics on this model and the model has nonsignificant variables so this example is presented as a teaching tool. It is not presented as an example of best practice in modeling. It only allows us to discuss features of these plots.

Many of these variables seem to have constantly increasing β s. Looking at cylinders (left most plot – bottom left section), it seems that cylinders is associated with increasing invoice price across all quantiles. It seems that people buying expensive cars are willing to pay more for having more cylinders. People buying inexpensive cars do not care about the number of cylinders. These plots provide a great amount of information.

As was mentioned before, the "select" procedures do not have an abundance of diagnostics.

A modeler must run PROC GLM, PROC Reg, PROC QuantReg or PROC Mixed in order to get diagnostics.

This slide shows some of the existing diagnostics for PROC QuantReg.

Figure 24

PROC QUANTREG FOR ONE X VARIABLE

This is a second example for PROC QuanttReg and it uses only one X variable, though that X variable is raised to the first, second and third power.

Figure 25 shows, the β s differ substantially among the three quantiles. Also notice the truncation effect caused by a SAS option being ignored by the author. As you create interactions the labels for the interaction that longer and there is an option that lets you set the length of the variable. Truncation occurred automatically.

Examples of 4 Proc	s ·	-Reg	GLM Se	elec	t Quant	leg (1) QuantS	elect	
Parameter Estimates Quantile=	.2			E	xample	#3			
Parameter	DF	Estir	nate	95%	95% Confidence Limits				
Intercept neation	1	-549	6.62	-221	08.04	1127	.7037		
Horsepower Trunce	1	204.85		37.2	2019	557.	9058		
Horsepowe*Horsepower	1	-	0.6312	-2.1	522	0.41	35		
Horsep*Horsep*Horsep	1		0.0013	-0.0	003	0.00	30		
Parameter Estimates Qua	ntile	=.5							
Parameter		DF	Estimate		95% Confid	ence L	imits		
Intercept	-	1	-8383.68		-22234.25		-3237.565		
Horsepower	ion	1	238.10		150.6738		528.6331		
Horsepowe*H. epower		1	-0.62		-1.5808		-0.1827		
Horsep*Horsep*Horsep		1	0.0013		-0.0004		0.0024		
Parameter Estimates Quantile=	.8								
Parameter	DF	Estir	nate	95%	Confidence	Limits			
Intercept	1	9487	.819	-110	48.58	3981	4.257		
Horsepower	1	-20	.7372	-351	.2926	280.	1296		
Horsepowe*Horsepower	inci	ation	7678	-1.8	874	2.30	78		
Horsep*Horsep*Horsep	1	-0	.0005	-0.00	020	0.00	18		

Figure 25

Figure 26

Figure 26 shows some diagnostics that can come out of PROC QuantReg and also the profile plots.

If there is only one X variable PROC QuantReg will automatically create a profile plot, (Figure 27). Similar plots can be produced for models with more than one X variable but require coding and SAS graphics.

PROC QUANTSELECT

This example uses QuantSelect and the LASSO penalization method to create Quantile models with eleven X variables.

Figure 28 shows that the 10th percentile and 50th percentile models do not look very much like the 90th percentile model.

This slide, and output like it from other data sets, has raised doubts about the ability of an OLS model, with just one equation, to effectively model how X variables affect a Y variable. We can see that the number of X-variables differs for different quartiles and this suggests that OLS models with just "one line" might not be the most informative models.

```
Proc QuantSelect Data=sashelp.cars
Plots=all ;
partition fraction(Validate=0.3) ;
Class origin DriveTrain type /split;
Model Invoice =
    Origin DriveTrain Type
    EngineSize Cylinders
    Horsepower
    MPG_City MPG_Highway
    Weight Wheelbase length
    /quantile = .1 .5 .9
    Selection=LASSO ;
run; %put_user_;
```

961	ection	Sur	nma	ry Qi	uantile	e.1	LAS	50	Sele	ction	Sum	mary	Quar	tile=	.5	
cep.	Effect Entered	Number Effects In	AIC	AICC	990	Validation AGL	Adjusted Rt		6rieg	Effect Entered	Number Effects In	AN	A300	580	Validation ACL	Adjusted
	Internept	1	4812,4180	411.00	4918,1284	1738.8004	0.000		•	Intercept	_	10.3848	8318.3680	2110.0011	8487.0121	6.0000
	MPG_CHy	4β	S	4247.8740	4274.8847	103.017	0.3172		•	Haraqueor	3βs	45.4638	4449-2028	-	2176.4939	6.00
	Noget Norsepower		4108.5087*	4108.7014	+3+6.53+0 + 4205.4084*	1002.0170*	0.4179*			Grigin Bar	3	122.1015	4722.1882	0.07386.	2002.2020	0.8997*
piimal Va	law Of Critisrian								* Optimal Val	e Of Criterian						
						_										
M	odels a	are		Sele	ction	Summ	ary Qua	tile=.9								
V	ERY			Step	Effect		Number	AIC		AICC	ş	SBC	Va	lidation	Adju	isted
di	fferent	t:			Entered		Effects						AC)L	R1	
_							In									
D	ifferen	t		0	Intercept	t	1	5000.	04	5000.0	5 5	5003.75	42	95.40	0.00	00
Q	uantile	s		1	Horsepo	wer	2	4543.8	39	4543.9	3 4	1551.31	17	93.93	0.53	3
ha	ave:						0.0-									
				2	Origin E	ur	o ps	4444.3	38	4444.4	6 4	1455.51	17	57.21	0.60	D
1)	differ	ent		3	DriveTra	in	4	4428.0	34	4428.9	8 4	443.69	17	35.79	0.6	1
Va	ariable	S		4	Type Sp	ort	5	4396.3	32	4396.5	2 4	414.87	16	99.89	0.6	3
	diffor	ont		5	Type Hy	hri	6	4376	5.4	4376.9	2 4	1308.80	* 16	28.40	0.6	4
21	unier	ent			туре пу		-	4370.3		4570.0	~ *	1000.00	10	55.40	0.0	•
2)	umbore			-	Origin 11	E 0.	7	4378	50	4378 8	8 4	1404 48	16	33 73	0.64	4
2) ni	umbers	5 01		6	Ungin U	SA	1	4070.		1010.0	-			00.70	0.0	-

Figure 28

Figure 29

Figure 29 (left) shows the β values for the different quantiles and we can see that the coefficient for horsepower is fairly different for the three quantiles.

Figure 29 (Right) gives a very high level view of some of the charts that are produced in PROC QuantSelect. While these pictures are small, you can see that the charts are not very similar. This supports the idea that modeling the mean response to an X vector, using OLS, might not adequately describe the underlying process in the data.

Examples of 4 Procs -Reg GLM Select QuantReg Qua	ntSelect (11)
LASSO 13 %put _user_; GLOBAL _QRSNUMBYS 1 # of By groups GLOBAL _QRSNUMBYTAUS 3 # of By groups * Number of GLOBAL _QRSIND111 GLOBAL _QRSIND1 Weight Horsepower GLOBAL _QRSIND112 Horsepower Origin_Europe Cylinders	of quantiles
GLOBAL _QRSIND1T3 Horsepower Origin_Europe DriveTrain_Rear Type_Hybrid Type_S GLOBAL SYSRANDOM 21502001 GLOBAL _QRSNUMTAUS 3 GLOBAL _QRSMODT1 Weight Horsepower GLOBAL _QRSMODT2 Horsepower Origin_Europe Cylinders GLOBAL _QRSMODT2 Horsepower Origin_Europe DriveTrain Rear Type Hybrid Type S	ports QR_SIND=QRSIND1 if there are no by groups
GLOBAL_QRSBY1NUMTAUS 3 GLOBAL_QRSNUMMACROBYS 1 GLOBAL_QRSINDT1 Weight Horsepower GLOBAL_QRSINDT2 Horsepower Origin_Europe Cylinders GLOBAL_QRSINDT3 Horsepower Origin_Europe DriveTrain_Rear Type_Hybrid Type_S	roup ports
GLOBAL _QRSMOD1T1 Weight Horsepower GLOBAL _QRSMOD1 Weight Horsepower GLOBAL _QRSMOD Weight Horsepower GLOBAL _QRSMOD1T2 Horsepower Origin_Europe Cylinders GLOBAL _QRSMOD1T3 Horsepower Origin_Europe DriveTrain_Rear Type_Hybrid Type_S	Sports

Modelers will want to avoid typing by having PROC QuantSelect "communicate" the selected model structure to other PROCs. SAS allows this "communication between PROCs" via automatically created Macro variables. Figure 30 shows a list of the variables that were created in this example. These are created to allow a programmer to use PROC QuantSelect to create a number of models and then store the model structure (variables) in macro variables.

As a second step, a SAS programmer would use macro programs, to loop over all of these macro variables, and use other PROC to create diagnostics for each model. The programming will be a bit tricky but doing this can reduce typing and errors.

Figure 31

Figure 31 shows the code for a second example of PROC QuantSelect. It has the same options as the previous example but has fewer (only 5) X variables.

Sele	ction Summa	ry Quantil	e = .1			Selec	tion \$	Summary	Quantile	= .5		
Step	Effect Entered	Effect Removed	# Effects In	AIC	Validati on ACL	Step	Effe Ente	ct ered	# Effects In	AIC	Validatio ACL	n
0	Intercept		1	4473.10	1699.47	o	Inte	rcept	1	5200.25	4988.78	
1	Weight 🔺		2	4319.46	1245.06	1	Hor	sepower	2	4820.61	3024.03*	
						* Opt	imal \	Value Of (Criterion			
2	Horsepower		3	4168.83	974.01	Selec	tion S	Summary	Quantile			
3		Weight	2	4167.60	969.63	Step	Effe	ct red	# Effec	ts AIC	Valida ACL	tion
4	Wheelbase		3	4146.37	951.40	0	Inter	cept	1	5028.0	9 2993.	6
5	Weight		4	4146.44	908.66*	1	Hors	epower	2	4494.5	5* 1810.2	23*
-						* Onti	imal V	/alue Of (riterion			
* Op	timal Value C	of Criterion	1			Ορι	inan v		interion			
	Selectio ocal mi /alidatio	on stoj nimun on AC	pped n of t L crit	at a the terion				Model (are V	s for dif Quantile: ERY diff	ferent s erent:		

Figure 32 shows the "selection summary" tables for the three different quantiles.

You can see, from the summary tables, that the modeling process differs for the three different quantiles. In this example, the process for creating a model for the 10th percentile is more complicated than the process for the 50th or the 90th percentile.

The fact that different processes are used to create models for different quantiles lends support to the idea that OLS, with only one model equation that predicts ONE conditional mean response, is not rich enough to describe the true relationship between a set of X variables and Y.

Examples of 4 Procs	-Reg GLM Select Quan	tReg QuantSelect (5)	Examples of	f 4 Pro	ocs–Reg (GLM Select O	QuantReg QuantSele
Coefficient Progression for Involu-	Coefficient Progressian for Invalue	Coefficient Programmins for Invasion	Parameter Estim	nates Qu	antile = .1		
a / .			Parameter	DF		Estimate	Std. Estimate
		1.	Intercept	1	Models for	17944	0
3 independent variables	- Only 1 Variable	- Only 1 Variable	Horsepower	1	different	114.14	0.449310
			Weight	1	are VERY	1.41	0.056379
	2 mm million integrate	2 miles	Wheelbase	1	different:	-239.86	-0.104540
Bellopeus	the topolo	Local and	Parameter Estim	ates Qua	ntile = .5		
Programming of Average Check Lesses by Role for Involve	Programmics of Asserage Check Lesses by Role for Invoice	Programming of Asserage Chards Lossen by Role for investor and the second seco	Parameter	DF		Estimate	Std. Estimate
	-	-	Intercept	1		-8002.58	0
3	1-	1-	Horsepower	1		168.39	0.662850
			Parameter Estim	nates Qua	ntile = .9		
-	-	-	Parameter	DF		Estimate	Std. Estimate
maket votage propagate brings somethins brings	THE CONTRACT OF STREET	Industry Distributions	Intercept	1		-16744	0
The Topper	med legans 		Horsepower	1		270.71	1.065601

Figure 33

In Figure 33, the left-hand slide shows how the profile plots differ along the three requested quartiles and the right-hand chart shows how the β values differ among the quartiles

CONCLUSION

This is been an overview of penalized regression in SAS. These new techniques are exciting and have potential to improve modeling efforts with relatively little additional coding work. It is expected that there will be a need for more skilled analysts to implement these techniques.

This paper is intended to show how several different statistical procedures are related to each other and how they might be used. The idea is that a modeler uses a select procedure to find a parsimonious model and then a follow-up procedure to produce diagnostics.

We plan that this paper is the leadoff paper, and an overview paper, for a small series of papers on penalized regression and Quantile regression. If you like this paper you might want to look for others in the series.

ACKNOWLEDGMENTS

Thanks to all the great folks at SAS technical support.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Russ Lavery russ.lavery@verizon.net

Peter Flom Peter Flom Consulting @mindspring.co

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.