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ABSTRACT  
This paper is about some new PROCs for modeling using penalized variable selection and some PROCS 
for building models that are a richer description of your data than OLS.  The four PROCS we will cover 
are: Reg, GLMSelect, QuantReg and QuantSelect. The paper explains theory and gives examples of 
SAS® code and output for four PROCS. 

 
Figure 1 

INTRODUCTION  
A major goal of regression analysis in has been to determine, from ONE data set, the ONE model that 
best describes the relationship between the dependent and independent variables for future data. This 
process created ONE line (predicting the conditional mean response).  Much of the work involved the use 
of maximum likelihood estimation (MLE). Recent advances in computer power allow us to expand this 
goal in three ways: First: Model averaging lets us create models with more external validity. Secondly, 
penalized regression methods allow us to solve some of the problems of MLE.  Finally, quantile 
regression creates multiple, not one, conditional estimates of Y. 

Maximum likelihood estimation has three major problems: 

Collinearity:  When the independent variables are collinear, the β values are unstable. 

Overfitting: When the sample size (N) is not much larger than the number of variables (p) resulting 
models will be over fit and will not generalize well to new data. 

Parsimony:  Einstein said that the goal should be to make everything “as simple as possible, but not 
simpler”. Much of model building has focused on the attaining the ideal degree of parsimony. However, 
the older methods (e.g. bivariate screening, stepwise selection, forward selection) are flawed.   Statistics 
given in the output from regression (p values, parameter estimates, R2 and so on)  were developed for 
testing one specific model and are not justified when used multiple times as they are in stepwise. 
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HOW DID THIS PAPER HAPPEN  
This paper started out as a much smaller topic and grew and grew. It started out as a talk about only 
PROC  QuantReg.  QuantReg works fine on its own, if there is a single model that we wish to test and it is 
specified a priori.  However; if we want to use model selection methods with a QuantReg, we need to 
understand PROC QuantSelect.   

But PROC QuantSelect requires an understanding of penalized regression techniques like: Ridge, 
LASSO, LAR, Weighted LASSO, Elastic Net and Grouped LASSO. These methods are easier to 
understand in the more familiar environment of ordinary regression, which led us to PROC GLMSelect, 
which is similar to PROC QuantSelect.  We suggest a study all four PROCS, and theory, is better than 
studying one PROC. PROC GLMSelect can also be used to select variables for PROC GLM and PROC 
Mixed but we will not show examples of these in this paper. 

Figure 1 one shows the products we examined in creating this paper and some of the advanced, machine 
learning, options one can request from the PROCs. 

BACKGROUND  
Model selection is a difficult and important topic in statistics. Stepwise methods have long been known to 
have problems but were used and taught because analysts lacked alternatives for the automatic creation 
of parsimonious models.  

Model selection, establishing the relationship between Y and elements of a set of X variables, is difficult 
for several reasons. A nonlinear relationship between Y and several X is might not show up in the 
marginal plot of Y versus X – even in a partial regression plot.  Scatterplots show the marginal 
relationship between Y and the X variables and cannot show anything about relationships between Y and 
several Xs (although co-plots and scatterplot matrices can help).  A strong relationship between Y and 
one X may be outperformed by a relationship between Y and a group of X variables that are, individually, 
poor predictors. A lack of a marginal relationship between Y and an X variable does not mean that it the X 
variable is not useful in the model. The X variable might be needed as a moderator, or mediator, in a 
model that includes other X variables.  In addition, theory often suggests some variables “should” be 
related to the dependent variable. In these cases, finding a weak relationship is interesting. 

Most unsettlingly, nearly all the results of regression (F and chi-square tests, parameter estimates, p 
values and so on), assume that the model is specified beforehand and that is not the case with stepwise 
methods.  Results are known to be incorrect when stepwise, or other similar methods, are used. 

Stepwise algorithms are fast because they are greedy.  They make the best choice at each step, 
regardless of the effects of future X variables and this is often not the way to find “TRUTH”.   

All-Subsets regression examines all subsets of the X variables for each particular number of X variables 
(best 1 X-variable model, best 2 X-variable model etc.). An advantage of all subsets is that the best set of 
two predictors need not include the X variable that was the best one predictor model. However the biases 
of all-subsets β values are much, much greater than in stepwise. All-Subsets examines 2p cases, so, for 
only a relatively small model with 10 independent variables, there are over 1000 models to examine (and 
adjust for).  The chance of an alpha error is large for that many tests. 

The new penalized methods that are discussed in this paper help, only help, find a parsimonious model. 
They help by using algorithms that are more stable, continuous and computationally efficient than 
stepwise methods. However; thought is still required for three reasons.  Firstly; output is still complex.  
Secondly; some penalized penalties are more appropriate in a particular situation than others.  Thirdly, 
any automatic method will be inadequate because (as noted above) there are considerations other than 
simple “model fit” to consider. Automatic methods cannot substitute for substantive knowledge and 
thought. 

Figure 2 starts a story.  Hopefully, that story explains some of the logic behind, and steps in, Ridge 
regression. We know that OLS can, if the number of variables is large or if the X variables are collinear, 
produce highly unstable β estimates and this slide starts an illustration of that problem. 
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In the white box on the left, a data step creates two variables, that are highly correlated, and a Y variable 
that is created by the formula Y = 4 + 1X1 + 1X2 + error.  A PROC GPlot shows the extreme correlation 
between X1 and X2.  Finally a PROC Reg builds a model using these two highly correlated X variables. 
(It should be noted that correlation and collinearity are not the same and that there can be collinearity 
among a set of variables none of which are have a high individual correlation with Y. However, in our 
example case, with only 2 independent variables, a high degree of correlation does imply a high degree 
of collinearity.  A good method for detecting collinearity is condition indexes, available in PROC REG.  

The results of the model are shown on the right of Figure 2. In the top box you can see that the model 
predicts very well. In the bottom box you can see that neither the X1 nor the X2 variable are significant. 
This is a very common occurrence in regression when X variables are correlated.  Notice, in the formula 
that creates the variable true_Y, that the βs for X1 and X2 sum to two ( 1 + 1 = 2 ).  In the parameter 
estimates box on the right-hand side the βs also sum approximately to two (24.78 + -22.88), though the 
values are very different from the β in the formula for true_Y. 

Pause for a minute and consider this.  If the X’X matrix has problems, SAS uses a generalized inverse 
and the βs become unstable.  If X1 and X2 are as highly correlated as the plot shows, then we can say 
(practically) that X1 IS X2.  Since X1 contains the same information as X2, we could re-write the formula 
as Y= 2*X1 + 0 X2.  We could also re-write the formula as Y= 0X1 + 2*X2. 

INTRODUCTION TO THE PROBLEM  

 
Figure 2 
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Figure 3 

 

The code in Figure 3 manually calculates sum squared error for many different “models”. A characteristic 
of all the models is that the values of β1+ β2 sum to two ( -10 + 12 =2 and 4 - 2 =2, etc.).  Since X1 and 
X2 are so correlated, X1 and X2 are really the “same” variable. So, any combination of X1 and X2 where 
the βs add up to the number two should give the same answer. The squared residual number in red 
(11.86) is from the SAS PROC Reg.  The calculations in Figure 3 (differing only because of rounding) are 
approximately the same number. A key conclusion is: in the presence of very high correlations, many 
combinations of β values will give the same answer.  

Since we get the same model result from many different models we have to ask “how do we choose a 
model (choose a set of beta values)” from the many models (sets of βs) that predict equally well. 

The logic for answering the question is simple.  Consider that if these two models predict about as well: 
      Y = 4 +     1 X1 +1 X2 
and  
      Y = 4 + 101 X1 - 99 X2 
Occam’s razor can be used to select a model. Occam’s razor suggests that we pick a simpler model and, 
in this case, Occam’s razor suggests that we should pick models with small β values. Unless there is 
evidence to the contrary, it is more likely that Y = 4 + 1 X1 +1 X2 than Y = 4 + 101 X1 -99 X2.  Applying 
Occam’s razor, models with small β values, models with few βs and models with lower exponents on the 
Xs, are considered simpler and more likely.  

We now have a rule for picking models when X variables are correlated and the β values are unstable. 
When multicollinearity is present, we prefer small βs. This is an underlying logical reason for Ridge 
regression. In the presence of multicoliniarity, we want to shrink β values and Ridge will be our method.   

As a small digression, it does not make sense to shrink the intercept towards zero and none of the Ridge 
stat packages will shrink β0. Additionally, because X variables often have greatly different units of 
measure, all of the packages will standardize the X variables so that shrinkage is applied equally 
regardless of the natural units on the X variables. Packages also un-standardize for user convenience. 
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A FRIENDLY STORY ABOUT RIDGE  

 

Figure 4 

 
Once upon a time a young statistician was confronted with the problems of multicollinearity as she was 
building a model. She knew the regression formula was β = (X’X)-1 X’ Y and that (X’X) was the sums of 
squares and cross products matrix.   “Good” regression problems had (X’X) matrices where the off 
diagonal values were small. She knew that when the X variables were highly correlated the (X’X) matrix 
had off diagonal values that were large compared to the values on the diagonal. 

The common way of describing the multicollinearity problem was “we want small covariates” in (X’X).  She 
had the idea of rephrasing the problem. She rephrased the problem to “I want variances that are a large 
compared to the covariates”.   

She tried using (X’X  + λI) to add to the diagonal values.  Adding λI made the diagonal values larger 
relative to the off-diagonal values. This greatly improved the solution, even for small values of λ. With her 
technique the numbers on the diagonals were larger than the numbers on the off-diagonals.  

It is now time to make a useful, though slightly tortured, analogy concerning inverses. 

Think of two values 5 and 10.  10 is bigger than 5.  The inverse of 10 is 1/10 and is smaller than the 
inverse of 5 (1/5).  As numbers get bigger, their inverses get smaller and note that (X’X) -1 is an inverse. 

I will torture this analogy because the inverse of a matrix is not a number but another matrix.  If λ is greater than 
zero (X’X  + λI)   is “larger than” (X’X) and so (X’X  + λI) -1  is smaller than (X’X) -1.   As λ gets larger,     
(X’X  + λI) -1  gets “smaller” because it is an inverse (sorry about that).   

Since the β = (X’X  + λI) -1 X’Y , we are multiplying an inverse by a fixed amount (the X’Y). As λ gets large 
the βs get small.  We have found a way to shrink βs towards zero and to implement Occam’s razor in 
selecting coefficients. 

But, nothing is free and there is a complication for this technique. The variances of the βs can be 
calculated using:  var(β-hat) = σ2 (X’X) -1 …. where  σ2 is unknown but can be calculated by RSS(β-hat) / 
(N-P) RSS(β-hat) .  P is the number of X variables and N is the number of observations. 

As λ gets larger the inverse decreases and the variance of the βs decreases – but only for a while.  There 
is a hidden upward pressure on the variance that is exerted through the σ2 term.  As λ gets large it will 
affect the formula for the βs and make the βs move away from the “min. SSE” βs.  As βs move away from 
the “min. SSE” βs, predicted values of Y become less accurate and RSS goes up.  As the βs move away 
from their best value, RSS gets large because the model no longer predicts as well. Eventually the effect 
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of poor predicting on σ2 overwhelms the effect of λ on the inverting of the (X’X) and σ2 (X’X) -1 increases. 
The link between the formulas produces a characteristic U-shaped curve as λ increases.  

Let us do two thought experiments about the formula (X’X  + λI) -1.  As λ gets close to zero our λI term 
disappears and we are left with OLS regression. As λ gets large it makes the diagonal of (X’X  + λI) -1  
matrix get large, the inverse small.  In the general case, the βs go to zero because (X’X  + λI) is large and 
the inverse term in β = (X’X  + λI) -1 X’Y is small. However, it is possible for individual β to increase or 
decrease or even change sign if λ increases but is less than infinity.  

There is another way to think about the effect of increasing λ.  Points, from correlated X variables, can be 
thought of as forming a “cylinder” in the hyperspace defined by the X variables. Points from independent 
X variables are spread out and form a “dispersed swarm of bees” in the hyperspace defined by the X 
variables. The fitted hyperplane, from your model, rests on the observed points in X-space.  

If the points form a narrow cylinder, then small changes in observations can allow the plane to tilt. Think 
of trying to balance a dinner plate on a rolling pin. However, if the points are spread out in hyperspace then 
the hyperplane rest on points that are spread widely apart and the hyperplane is more stable. Think of the 
data swarm as supporting the hyperplane in a manner similar to a plate resting on a table. The λI term 
can be thought of as spreading out the points in X-space and providing better support for the hyperplane.  

In summary; Ridge implements Occam’s razor when it shrinks βs. 

 

ANOTHER VIEW OF RIDGE  
Mathematically, β = (X’X  + λI) -1 X’ Y can be converted to  
 𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆 (𝛽𝛽) =  ∑ (𝑌𝑌𝑖𝑖 −  ∑ 𝑋𝑋𝑖𝑖𝑖𝑖   𝛽𝛽𝑖𝑖

𝑝𝑝−1
𝑖𝑖=1 )2 + 𝝀𝝀∑ (𝜷𝜷𝒋𝒋)𝟐𝟐

𝒑𝒑−𝟏𝟏
𝒋𝒋=𝟏𝟏  𝑛𝑛

𝑖𝑖=1     which is like the  OLS formula with a penalty (blue 
term) for having large (or for having many) βs.  The second power penalty is easy to optimize using 
calculus. The Ridge penalty is often called an L2  penalty because of the second power in the exponent of 
the penalty term.  λ is often called the shrinkage parameter. Large β values, or models with more β 
values, are interpreted as more complex models and, according to Occam, less likely to occur in nature.  
Models with large βs, and models many βs, are both penalized by the Ridge technique. 

LASSO (LEAST ABSOLUTE VALUES SHRINKAGE AND SELECTION)  
The penalty for LASSO is very similar to the penalty formula for Ridge. The LASSO penalty term is the 
absolute value of the βs raised to the first power.  The LASSO penalty is often called an L1 penalty 
because of the first power in the penalty term. 

𝑆𝑆𝑆𝑆𝑆𝑆𝜆𝜆 (𝛽𝛽) =  �(𝑌𝑌𝑖𝑖 −  �𝑋𝑋𝑖𝑖𝑖𝑖   𝛽𝛽𝑖𝑖
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𝑖𝑖=1

)2 + 𝝀𝝀� |𝜷𝜷𝒋𝒋|𝟏𝟏
𝒑𝒑−𝟏𝟏

𝒋𝒋=𝟏𝟏

𝑛𝑛

𝑖𝑖=1

 

 

Since LASSO has an absolute value penalty, it cannot be easily differentiated. LASSO optimization is 
done by operations research techniques (simplex, etc.) and the original algorithms were fairly slow.  

Comparing the shrinkage of Ridge to LASSO you can see a few important differences.  β values in a 
Ridge never reach exactly zero (until λ= infinity) while LASSO can quickly shrink β values to exactly zero..   

Some people like LASSO because the β values go to exactly zero and are, in LASSO, removed from the 
model. These people claim the fact that LASSO sets β values to exactly zero is a positive characteristic 
for LASSO and these people use LASSO as a replacement for stepwise.  

Some people like Ridge regression because, in Ridge, β values do NOT go to zero.  These people say 
that there is an over-emphasis on the P value in much of statistics. People in this camp feel that the true 
purpose of statistics is to estimate an “effect size” and they like Ridge regression because Ridge will 
leave relatively unimportant variables in the model with a small β values (small effect sizes).   
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Figure 5 

 

Ridge shrinks the coefficients for large β values, the important variables, more than it does small β 
values. This is correct when the problem is collinearity, since one problem with collinearity is that some 
parameter estimates are much too large. However, when the problem is overfitting, this is not the case.  
Thus, LASSO is designed to deal with overfitting, (and does not deal that well with collinearity) and Ridge 
is designed to deal with collinearity (and does not solve problems of overfitting). 

Figure 5 illustrates the difference between β plots for Ridge and LASSO and shows how easy it is to code 
these two techniques. As λ increases, the β values change – in both Ridge and LASSO. In a Ridge the 
values change smoothly and will asymptotically approach zero. In Ridge, unstable β values can cross 
zero and remain in the model. 

LASSO plots are really a series of points connected by lines – where the lines just make the relationship 
among the points easier to see. You only interpret LASSO plots at the points where an X variable enters 
or leaves the model. As you can see the LASSO plot for age goes exactly to zero. In LASSO, when a β 
value is zero, the variable has been removed from the model.   

ADAPTIVE LASSO  
Ridge regression shrinks β values for important variables more than it shrinks βs for unimportant 
variables. Lasso shrinks all β values by the same amount.  The idea of Adaptive LASSO is to shrink the 
βs for important variables less than the β values for unimportant variables – keeping important variables 
in the model “longer”.  

Adaptive LASSO is a two-step process because it needs a starting point for the βs.  An OLS regression is 
often the starting point for β values for Adaptive LASSO (and may therefore be incorrect when there is 
collinearity).  Shrinkage values are created based on variable importance and final model selection still 
takes some skill. 
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ELASTIC NET  

 
Figure 6 

Elastic Net, as you can see in Figure 6, has both of the L1 and L2 penalties.  

The L1 part of the formula allows Elastic Net to create a model with few variables – a sparse model. The 
L2 part of the formula allows Elastic Net to be used when the number of variables is greater than the 
number of observations. This allows Elastic Net to be used in situations, like biological testing, where 
there might be thousands of variables and only a few hundred observation. 

Elastic Net also overcomes the issue that LASSO has with correlated “groups of X variables”. If your data 
set has a group of X variables that are highly correlated (height, weight, shoe size, glove size, etc.),  
LASSO will only select one X variable from the group of highly correlated X variables. Elastic Net can 
bring several of those correlated X variables into the model and keep them there longer. The L2 
parameter also stabilizes the path of the β values. 

However, Elastic Net has a problem because it has two penalties. Since the Elastic Net has two 
penalties, that it applies, a β must overcome two penalties as it enters.  Some modelers like the mixture of 
the two penalty types but think that applying two penalties is too harsh.  SAS has an option that lets you 
request a scaling correction to reduce the double penalty but keep many of the positive characteristics of 
Elastic Net. 

 

FOREWARD STAGEWISE  
Forward Stagewise was important in algorithm development, but is now used only infrequently.  Forward 
Stagewise picks the same initial X variable as forward stepwise, but it only changes the β value by a 
small amount and then calculates residuals. If Stepwise said the some beta should be 2, Foreward 
stagewise might bring the variable into the model with a β of .5.  Foreword Stagewise then picks the X 
variable with the highest correlation to the residuals (might be the same variable as previous) and makes 
a small change in the β for that variable – then calculates residuals. Forward Stagewise takes many steps 
to reach a solution.  Variables can be added and removed.   
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LAR (LEAST ANGLE REGRESSION)  
 

LAR is an improvement on Forward Stagewise and is so fast that it is used, with modifications, as an 
algorithm for other techniques. LAR does not take small steps towards a solution but makes a big jump in 
a β value.  LAR has a speed advantage, because variables are only added to, and not removed from, the 
model.   

When you are stopping short of a fully saturated model (assume you have 200 X variables in your data 
set and you might only want to consider a model a maximum of 50 X variables ) LAR has a definite speed 
advantage. Limiting the number of X variables in a model is often done because business people do not 
have resources to deal with a 200 variable model.   Often, there are a few practical advantages to a 
model containing hundreds of variables over a model containing 50 variables. Details of LAR are shown 
in Figure 7. 

 
Figure 7 

 

EXTERNAL VALIDITY: MAKING ONE DATA SET LOOK LIKE MANY  
It is common knowledge that a model performs best on the data set that was used to create the model. 
This means that measures of goodness of fit, like r- squared, are biased upwards on the data set that was 
used to create the model. On new data, a model will likely predict less well. There are techniques that will 
allow a modeler, with only one data set, to create a model that better generalizes to new data. 

If the original data set is large it can be split it into two or three parts. The parts are called: train, test, 
validate, if there are three parts. If there are two parts, the data sets are usually call train and test.  

The idea is to create a model using the training data and see how well it would generalize by predicting a 
data set containing new observations. This works well if the original data set is large enough to split into 
two or three parts. If it is not large enough to split, another technique must be used. 

A K-fold validation is one technique that is useful for moderately sized data sets.  A “fold” is another term 
for a “split” and most modelers use a five or 10 split– though there is no great reason for selecting any 
number. The idea is to take different subsets of the data, build multiple models and then average the 
models.  

Each model will develop the model using K-1 parts of the data use one Kth of the data as a test and. 
Results of the K different models are averaged (many averaging algorithms exist) to produce a result that 
is more generalizable than a model built on the whole data set. 
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Think a bit more about the issue of small N.  If N is moderate (say N=200 observations) a fivefold split will 
create a training set with 160 observations and the training set is likely to approximate the next data set 
encountered. However a K=5 split produces a test data set that only has 40 observations.  It is likely that 
this test set can differ from the data to which you wish to generalize.  Forty is likely to be too small to be a 
good test set.  

If N is small (N = 50 observations) a fivefold split will send forty observations to the training data set and ten 
observations to the test data set.  It is likely that neither of these is sufficiently large to be representative– 
even after averaging many different models. There is some theoretical basis for saying a fivefold or a 
tenfold split produces models that contain excess numbers of X variables. 

Another technique is bootstrapping. There seem to have been many different techniques developed 
under the general heading of bootstrap, but descriptions, when given, seem to point to a very similar 
algorithm in use.   

Most commonly, people talk about the algorithm that follows. Start with a data set with N observations 
and pick a sample of size N – allowing replacements.  The bootstrap sample will have the same number 
of observations as the original data but, on average, only 63.2% of the observations in the raw data will 
be in any particular bootstrap sample. Some observations will not be in the sample and some 
observations will be in the sample multiple times. 

The bootstrap sample is not a better representation of the data than your original data and cannot be 
used as a replacement data source for building one model. What is done is to take many bootstrap 
samples, build a model on each of the bootstrap samples, and then average the results of the models.  
You can create many bootstrap samples from one moderately sized data set. 

The next “step up” is to create models that predict use either different parts of the data or different 
methods.  These are called ensemble techniques.  Common ensemble techniques are bagging and 
boosting and the “bucket of models” method. This line of model building is described as ensemble 
techniques.  An ensemble is defined as a group of items viewed as a whole rather than individually.   

Ensemble methods are a change from our historical practice of building one best model on a data set. 

Figure 8 is a graphic representing an ensemble modeling process. The process of building multiple 
models is not as much of a problem today, as it had been in the past, because of the prevalence of 
multiple CPU machines.  Now models can be created in parallel.  Figure 8 shows a bunch of tables 
labeled “subsets of observations”.  There are a great many methods to take subsets of the master data. 
Some techniques will take a subset of the observations and some techniques will take a subset of the 
observations and also a subset of the X variables.   

 
Figure 8 
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Models are built on each of the subsets and then combined. It is important that the models be as 
independent as possible.  By “Independent models”, researchers mean that the models misclassify 
different observations. If the models all misclassify the same observations, then averaging will not help 
model accuracy. 

There are many methods used to combine the predictions and some combining algorithms will feed back, 
into the model building process, information about how accurate that model had been. 

If Y is continuous it is possible to predict a Y using each of the models and then average the Y values. It 
is also possible the average the β values from the individual models and use the averaged β values to 
predict Y.  

If the Y value is categorical (yes, no or High, Med, Low) you can just allow each model to “vote” and pick 
the classification that has the greatest number of votes. As a general principle, the more models you 
average the better your prediction, especially if the models misclassify different observations. 

BAGGING (BOOTSTRAP AGGREGATION)  
Bagging is a two-step process, invented in 1996.  It is a very common way of creating, and then 
combining, models.  It is a general term describing resampling and averaging of predictions over a 
collection of bootstrap samples and will reduce prediction variation.  

A general description of Bagging (Bootstrap Aggregation) is: 
1. Start with a training set S, with N observations, is made up of observations (x1,y1, …XnYn) 
2. Create NS bootstrap samples 
For each of the NS samples, fit a model and get an equation that predicts Y from the X vector 
Average the predictions from each of the NS bootstrap models. 

There are many averaging methods and they can be complex.  Two major philosophical schools are: 
Bayesian averaging and Frequentist averaging.  There are multiple methods within each major 
philosophy. 

In the past, research into new modeling techniques was primarily statistical.  Researchers still must 
consider the statistics and also consider the coding and efficiencies of the algorithm they propose as part 
of their solution. 

QUANTILE REGRESSION  
We are now in the second part of the talk.  We have finished with section on model selection theory and 
will see some examples. 

As Figure 9 mentions, OLS minimizes the squared deviation from a fitted line and often uses maximum 
likelihood to find β coefficients that minimize the summed squared deviation.  Quantile regression 
minimizes the weighted sum of the signs of the deviation from the fitted line and the β are calculated 
using algorithms from operations research. 

The plot on the lower left corner of Figure 9, illustrate a 10% quantile calculation. If a point is above the 
line, it has a weight of 1.  If a point is below the line, it has a weight of -9. In our example we have 10 
points at each level of X but this is not a requirement in real life. The red points below the line, are 
multiplied by their weights (-9) and the black points above the line are multiplied by their rates (+1).  An 
operations research technique is used to set the slope of the line to minimize the sum of the weighted 
deviation.   

You can see that the summed weights of the black points, for any particular X, sum to positive nine and 
the sum of the weights for the red points below the line, for any particular X, sum to -9.  The blue line, in 
this picture, minimizes the weighted sums from the line.  The sum of the weighted deviations is zero in 
this plot. 
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Figure 9 

On the lower right-hand part of Figure 9 we see plot for a 20% quantile regression. The data set is the 
same as on the left. The difference between a 10th percentile quartile calculation and a 20th percentile 
quartile calculation is the weights.  In the 20th percentile calculation, if a point is below the fitted line 
weight is -8 if a point is above the fitted line the weight is +2.  An O.R. algorithm is used to find β values 
that will minimize the sum of the weights. 

Looking at Figure 9, we see we can use the same data set to calculate lines for as many percentiles as 
we want.  You can also see that Quantile regression is not sensitive to outliers, though it is sensitive to 
high leverage points. 

Figure 10 shows a “compare and contrast” between correct quantile logic and a common 
misunderstanding of quantile logic. Focus on the white box in the center.  In that box, someone has taken 
the bottom 20% of the MARGINAL Y values, put them into a data set, and then done a regression on that 
subset of observations. A regression line on a subset based on the marginal Y values is NOT a Quantile 
regression. Fitting a regression line to the bottom 20% of the marginal Y values is a mistake. Quantile 
regression fits a line bottom 20% of the conditional values of Y and results will be different. 

 
Figure 10 
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EXAMPLES OF THE FOUR PROCS  
This paper will now focus on four procedures that allow us to use the techniques we have been 
discussing above (Reg,  GLMSelect, QuantReg and QuantSelect).  These techniques are run in pairs.   
As an example, modelers run PROC GLMSelect then any of the following: PROC Reg, PROC GLM or 
PROC Mixed. We will use SASHelp.cars as our data set. 

 
Figure 11 

MODELERS RUN PROC GLMSELECT  PROC REG  
                        OR PROC QUANTREG QUANTREG  
          –WE WILL REVERSE THE ORDER FOR TEACHING PURPOSES  
The procedures with “select” in the name implement penalized regression techniques but do not have 
very good diagnostics. Modelers use PROC Reg, PROC Mixed, PROC GLM and PROC QuantReg for 
diagnostics and for creating plots. 

The workflow to be used, in practice, is to run one of the “select” procedures to identify an interesting 
model, or models, and then to rerun those models using PROC Reg, PROC GLM, PROC Mixed or PROC  
QuantReg in order to get diagnostics. 

This paper will discuss these PROCS in “reverse use” order because we think it might be easier to 
understand the PROCs in this order: PROC Reg, then  PROC GLMSelect --- PROC QuantReg and finally 
PROC QuantSelect. 

SASHelp.cars, will be used in all examples. However, variables used in models will differ in the different 
examples.  As you can see in the red rectangles in Figure 10, this data has problems (that we will ignore 
today).  In actuality, the techniques discussed in this paper cannot be used without data cleaning and 
thought. 
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PROC REG: RIDGE REGRESSION 
PROC Reg does Ridge regression 
and the syntax required is very 
simple.    

There is option in PROC Reg 
statement that creates Ridge 
regression.  It is shown in red to the 
right. A plot option produces useful 
output.  This model statement has 
eight variables from SASHelp.cars. 
We will use these variables many 
times in many examples. 

Proc Reg Data=sashelp.cars  

       Plots(maxpoints=100 5000)  

       OutEst=Needed4RidgePlot 

       ridge=0 to .02 by .002 ; 

  Model Invoice = EngineSize  Cylinders Horsepower  

                MPG_City MPG_Highway 

                Weight Wheelbase length 

                /lackfit ; 

run;quit; 

 

Figure 12 

A quick examination of names of variables in Figure 12 suggests that several the variables are collinear 
and, as expected, some of these variables are not significant. 

 

Figure 13 
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In Figure 13, the X variables are a mixture of predicting and non-predicting and there are gaps between 
the two types of variables.  

When variables in the model statement are a mixture of “strongly significant” and “really insignificant 
variables”, Ridge regression can produce Ridge plots, with gaps, like the one in Figure 13.  This model is 
a mixture of significant variables and variables that have no predictive power (plots close to zero). The 
Ridge plots suggest that some of these variables can be removed in our efforts to make a parsimonious 
model.  The usual modeling process is PROC GLMSelect followed by PROC Reg because we want to 
take advantage of the diagnostics in PROC Reg. 

PROC GLMSELECT  

 

Figure 19 

 

Figure 19 is a different summary of the 100 models that were produced - a model importance chart. This 
is a model summary, as opposed to the variable summary in Figure 18.  

In Figure 19, we see the “seven variable model”, in red text, was selected fifty-four percent of the time. 
This means that from SASHelp.cars, when observations were selected randomly, this model was 
determined most of the time as the model that best described the data. This model is relatively insensitive 
to outliers in the data. 

Figure 19 does not show all of the models that were created, there is not enough space on a PowerPoint 
slide for that. However, with this truncated output, you can see that horsepower was selected in all of the 
models that we can see. This is consistent with horsepower being selected in all models in the chart in 
Figure 18.   “Miles per gallon city” (shown in green) appears relatively infrequently this is also consistent 
with Figure 18. 



16 

 
Figure 20 

Figure 20 shows the distribution of the β values for the hundred models built.  

 
Figure 21 

 

Figure 21 shows the coefficient progression for variables entering the model. This example uses model 
averaging and the LASSO technique, so SAS produced a LASSO plot.  Parameters should only be read 
where variables enter/leave the model (red lines) and not at points between (red international no sign). 

The chart on the right compares the error in the training and validate data sets.  Where the plots for the 
training and test data sets start to diverge is common indication of best model. 
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QUANTILE REGRESSION S 
It is relatively easy to get SAS to produce a 
Quantile Regression as can be seen at right.  

Quantile is an option on the model statement and 
all you have to do is list the quantiles you want. 
Here, we request a 10th percentile, a 50th 
percentile and a 90th percentile. 

Figure 22 shows that some of these variables are 
not significant for any quantile.  The figure also 
shows that the models produced by quantile regression 
are very different for the different quantiles.  

Proc QuantReg Data=sashelp.cars    
  Algorithm=interior  

              Plots=all   

              CI=resampling; 

  Model Invoice = EngineSize  Cylinders             
                  Horsepower MPG_City  
                  MPG_Highway Weight                          
                  Wheelbase length 

                  /quantile = .1 .5 .9 

                  ; 

run;quit; 

 

Horsepower is significant and its β value changes by a factor of two between quantile .1 and .9.  
Wheelbase is significant and its β value changes by a factor of two. “Miles per gallon highway”, while not 
significant, has β values that vary greatly.  Change in βs for “MPG Highway” and “MPG City” could be 
caused by either, or both, of two reasons.  The change could be caused by the parameter estimates 
being different for the different quantiles or because the two MPG figures are highly collinear and, 
therefore, parameter estimates are inherently unstable.  In a “real” analysis only one of these variables 
would be used, unless there was interest in the effect of one, conditioned on the other. In that case, one 
might use the difference between them as a predictor. 

 
Figure 22 

 

The idea that makes Quantile Regression so attractive is that the different Quantiles can represent 
different types of people - different market segments.  

The exciting idea is that Quantile Regression, on sales data set, could let us produce equations for 
people who buy very little of our product (10th percentile buyers) and people who buy a lot of our product 
(90th percentile buyers).  This can help in creating more effective marketing campaigns. Additionally, this 
technique is not limited to business and can be applied a number of scientific disciplines. 

Z  
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Figure 23 

The table in Figure 22 is difficult to interpret.  There are a lot of numbers to read and the numbers are 
spread over several pages. 

SAS created the output in Figure 23 to make it easier on modelers.  Figure 23 shows plots of the β (Y 
axis) values by Quantile (X axis). Remember, the model only requested three quartiles and modelers are 
only allowed to look at points, on the plot, immediately above the quantile “mark” on the X axis (see red 
rectangles).  Our code requested three quantiles and there are only three points to be read on each of 
these plots.  

If the β values are all equal, if the plots are flat, the effect of the X variable on the Y variable is the same 
for all Quantiles. A modeler does not need to do quantile analysis if the plots are flat over all the quantiles. 

This paper does not show much in the way of diagnostics on this model and the model has non-
significant variables so this example is presented as a teaching tool.  It is not presented as an example of 
best practice in modeling. It only allows us to discuss features of these plots.  

Many of these variables seem to have constantly increasing βs. Looking at cylinders (left most plot – 
bottom left section), it seems that cylinders is associated with increasing invoice price across all quantiles. 
It seems that people buying expensive cars are willing to pay more for having more cylinders. People 
buying inexpensive cars do not care about the number of cylinders. These plots provide a great amount 
of information. 

As was mentioned before, the 
“select” procedures do not 
have an abundance of 
diagnostics. 

A modeler must run PROC 
GLM, PROC Reg, PROC 
QuantReg or PROC Mixed in 
order to get diagnostics.  

 

This slide shows some of the 
existing diagnostics for PROC 
QuantReg. 

 
Figure 24 
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PROC QUANTREG FOR ONE X VARIABLE  
This is a second example for PROC QuanttReg 
and it uses only one X variable, though that X 
variable is raised to the first, second and third 
power. 

 

Figure 25 shows, the βs differ substantially among 
the three quantiles.  Also notice the truncation 
effect caused by a SAS option being ignored by 
the author.  As you create interactions the labels 
for the interaction that longer and there is an 
option that lets you set the length of the variable. 
Truncation occurred automatically. 

Proc QuantReg data=Sashelp.cars 
plots=all; 

model  

    Invoice  
     = Horsepower  

       Horsepower*Horsepower  

       Horsepower*Horsepower*Horsepower  

      /quantile = .2 .5 .8; 

      ;run; quit; 

 

 

Figure 25 
 

  

Figure 26  

Figure 26 shows some diagnostics that can come out of PROC QuantReg and also the profile plots.   

If there is only one X variable PROC QuantReg will automatically create a profile plot, (Figure 27).  Similar 
plots can be produced for models with more than one X variable but require coding and SAS graphics. 
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Figure 27 

PROC QUANTSELECT  
This example uses QuantSelect and the LASSO 
penalization method to create Quantile models 
with eleven X variables. 

Figure 28 shows that the 10th percentile and 50th 
percentile models do not look very much like the 
90th percentile model.  

This slide, and output like it from other data sets, 
has raised doubts about the ability of an OLS 
model, with just one equation, to effectively model 
how X variables affect a Y variable.  We can see that 
the number of X-variables differs for different 
quartiles and this suggests that OLS models with 
just “one line” might not be the most informative 
models. 

Proc QuantSelect Data=sashelp.cars 
Plots=all ; 

  partition fraction(Validate=0.3) ; 

  Class origin  DriveTrain type /split;  

  Model Invoice =  
          Origin DriveTrain Type  

          EngineSize  Cylinders              
          Horsepower  

          MPG_City MPG_Highway 

          Weight Wheelbase length 

          /quantile = .1 .5 .9 

          Selection=LASSO  ; 
run; %put _user_; 
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Figure 28 

  

Figure 29  

 

Figure 29 (left) shows the β values for the different quantiles and we can see that the coefficient for 
horsepower is fairly different for the three quantiles. 

Figure 29 (Right) gives a very high level view of some of the charts that are produced in PROC 
QuantSelect. While these pictures are small, you can see that the charts are not very similar. This 
supports the idea that modeling the mean response to an X vector, using OLS, might not adequately 
describe the underlying process in the data. 
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Figure 30 

 

Modelers will want to avoid typing by having PROC QuantSelect “communicate” the selected model 
structure to other PROCs. SAS allows this “communication between PROCs” via automatically created 
Macro variables. Figure 30 shows a list of the variables that were created in this example. These are 
created to allow a programmer to use PROC QuantSelect to create a number of models and then store 
the model structure (variables) in macro variables.  

As a second step, a SAS programmer would use macro programs, to loop over all of these macro 
variables, and use other PROC to create diagnostics for each model.  The programming will be a bit tricky 
but doing this can reduce typing and errors. . 

 
Figure 31 

 

Figure 31 shows the code for a second example of PROC QuantSelect. It has the same options as the 
previous example but has fewer (only 5) X variables.   
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s  

Figure 32 

 

Figure 32 shows the “selection summary” tables for the three different quantiles.  

You can see, from the summary tables, that the modeling process differs for the three different quantiles. 
In this example, the process for creating a model for the 10th percentile is more complicated than the 
process for the 50th or the 90th percentile.  

The fact that different processes are used to create models for different quantiles lends support to the idea 
that OLS, with only one model equation that predicts ONE conditional mean response, is not rich enough 
to describe the true relationship between a set of X variables and Y. 

  
Figure 33  

In Figure 33, the left-hand slide shows how the profile plots differ along the three requested quartiles and 
the right-hand chart shows how the β values differ among the quartiles 

 

CONCLUSION  
This is been an overview of penalized regression in SAS. These new techniques are exciting and have 
potential to improve modeling efforts with relatively little additional coding work. It is expected that there 
will be a need for more skilled analysts to implement these techniques. 
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This paper is intended to show how several different statistical procedures are related to each other and 
how they might be used. The idea is that a modeler uses a select procedure to find a parsimonious model 
and then a follow-up procedure to produce diagnostics. 

We plan that this paper is the leadoff paper, and an overview paper, for a small series of papers on penalized 
regression and Quantile regression. If you like this paper you might want to look for others in the series. 
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