
1

MWSUG 2016 - Paper BB18

SAS Advanced Programming with Efficiency in Mind: A Real Case Study

Lingqun Liu, University of Michigan, Ann Arbor, MI

ABSTRACT

This paper uses a real work example to demonstrate the concept and some basic tips of SAS programming

efficiency. The first section of the paper introduces the background of a SAS application and its

performance metrics. The second section analyzes the structure and features of the SAS application.

The third section analyzes the log of the application to identify efficiency issues. In addition, in this

section a log analysis utility is introduced. The fourth section provides a re-developed version of the

application with performance improved to reduce 99.6% of its runtime. The last section tries to raise

awareness of SAS programming efficiency and suggests some basic tips. The application discussed in the

paper has been tested with SAS 9.2, 9.3 and 9.4 on Windows machines. The target audience includes SAS

programmers from beginner to advanced level.

INTRODUCTION

Did you ever have any SAS applications that took longer than you expected to run? It could be hours, or

even days long. Most of us find it frustrating when things like that happened, especially when you had a

tight deadline to meet, or you had to run the job many times within a limit of time. Many programmers

might think it is caused by the nature of their SAS application, such as big data sets, complex process, and

limitation of computing power and resources, etc. Moreover, it was not uncommon that many SAS

application developers/programmers did not realize that there usually were efficiency issues. This paper

uses an example to raise the awareness of SAS programming efficiency, introduce a log analysis utility,

and provide some basic tips.

I.1 BACKGROUND

UM-KECC is a multidisciplinary research center within the UM School of Public Health (SPH). UM-

KECC was formed in 1993 and its mission is “to promote health, improve clinical practice and

patient outcomes, optimize resource utilization, and inform public policy regarding organ failure

and organ transplantation.” UM-KECC pursues this mission “through high quality research,

advances in biostatistics, and post-graduate education and training.” (www.kecc.sph.umich.edu).

UM-KECC has been working with CMS to develop quality measures of ESRD patient care for years.

Each quarter, as one tiny part of the large efforts, UM-KECC produces lists of ESRD patients included in

the dialysis facility compare (QDFC) measures for more than 6,000 Medicare dialysis facilities

nationwide. There are five measures: M1, M2, M3, M4, and M5. In each quarter, there are more than

21.7K patient list files (21,870 for 201607, 21,702 for 201604) created. This whole process consists of

five similar SAS jobs, one for each measure.

M1_DFC_Patient_Lists.sas

M2_DFC_Patient_Lists.sas

M3_DFC_Patient_Lists.sas

M4_DFC_Patient_Lists.sas

M5_DFC_Patient_Lists.sas

http://www.kecc.sph.umich.edu/

2

I.2 PROCESS TIME

The process time varies for the jobs. The M5 job took about 10 hours. (And it could occasionally even

take longer than 69 hours for some reason in reality. It was the worst case we had!) The rest took from 18

seconds to around 16 hours. The total process times for the last two quarters were about 19.4 hours and

33.4 hours.

Jobs 201604 201607

Real time CPU time Real time CPU time

M1_DFC_Patient_Lists.sas 4:16:02.04 4:04:10.54 4:11:53.18 4:04:35.88

M2_DFC_Patient_Lists.sas 16:30.83 13:40.53 1:48:09.24 15:27.02

M3_DFC_Patient_Lists.sas 1:39.45 18.93 2:30.09 22.88

M4_DFC_Patient_Lists.sas 4:49:30.74 4:42:13.26 16:17:07.14 7:34:12.81

M5_DFC_Patient_Lists.sas 10:02:30.96 9:49:39.17 11:02:17.87 10:22:32.44

total 19:26:14.02 17:08:55.50 33:21:57.52 22:17:11.03

II. CODE ANALYSIS

You may wonder why some of these simple jobs can take more than 10 hours. Moreover, 19 to 33 hours

of total runtime of the production is way too long. Are there any efficiency issues? Can the application

be improved? Let us start with examining the SAS code, in order to see what the issues could be and

identify how to fix them. In the following sections, our analysis and redevelopment will use M5 job as an

example. The rest of these jobs are identical in terms of the code design, structure, functionality, and

issues, etc. Please see Figure 1.1 and Figure 1.2 for the code listings.

Figure 1.1 Original Code Snapshot One

3

CODE LOGIC

It is a simple job and it has two requirements:

1. Create data: Put facility information (6,499 observations), patient information (2,819,069

observation) and measure results (6,423,888 observations) together to create a patient-measure

level data set containing information for patients included in the measure for all facilities. Also,

perform a few data manipulations.

2. Print data: Print patient-measure information by facility in plain text format with file

extension .txt.

Figure 1.2 Original Code Snapshot Two

CODE DESIGN AND STRUCTURE

This code has two parts, one for each subtask. The first part consists of PROCs and DATA steps.

The second subtask is implemented with a %MACRO %do loop that creates and prints out one

data set for each facility. As a result, there are more than 6,000 DATA steps and PROCs

generated by the %MACRO/%DO loop at runtime.

1. Create data: Four PROC SORTs, two DATA MERGEs.

2. Print data: Two PROC SQLs, one DATA _NULL_, one %MACRO %do loop of 1 DATA step

and ODS/PROC PRINT.

SAS FEATURES

There are many SAS features, including some advanced ones, in this SAS application.

4

 DATA STEP MERGE, PROC SQL, PROC SORT;

 %MACRO, &&VAR&N, CALL SYMPUT, INTO:, %Do loop; DATA _NULL_;

 Data type conversion (+0), function COMPRESS(), STRIP(), TRIM();

 ODS LISTING, Dynamic titles, PROC PRINT options, etc.

 System options: LS, NODATE, NONUMBER, NOCENTER, ERRORS, SOURCE2, MPRINT.

CRITICAL THINKING

Does it need to be so complicated (using so many steps and features)? Is %macro really needed? (Can

the %macro be avoided?) Which features/steps did take most of the runtime? Would the large number of

small DATA steps and PROCs be an efficiency issue? Or is the long runtime due to the large size of the

input SAS data sets? To answer these questions, I inspected the log files of the job along with the SAS

code.

III.1 LOG ANALYSIS: OBSERVATION & ESTIMATION

The log file is lengthy. It has more than 45,000 lines. We need to search for the key words ‘real time’ to

see how long each step took. First, let us look at the runtime for task one -- the creation of measure-

patient data set. The facility info data has about 6,600 records. The measure data has about 6.5 million

observations. The patient info data set has about 2.5 million records. The DATA step and PROC SORT

processed these data sets within a few minutes. It is fast to create the measure-patient data set. Since SAS

is so powerful, the sizes of the data sets in this application are not the issue (Please see Figure 2.1 and

Figure 2.2 for details.)

Figure 2.1 Log Snapshot One

Figure 2.2 Log Snapshot Two

Now let us look at the runtime for task two – the creation of the facility specific patient list files. Every

time a list file was created, one small DATA step and one PROC PRINT were executed. After scanning

the log file, we noticed that the process only used about 5.3 seconds or so per facility.

However, since there were more than 6,000 facilities, the total runtime ended up as about 10 hours. The

stop value of the %DO loop was 6,375 for this case. Therefore, the total run time was about

5.28*6375/(60*60) seconds = 9.35 hours. (Please see Figure 2.3 and Figure 2.4 for details)

5

Figure 2.3 Log Snapshot Three

Figure 2.4 Log Snapshot Four

III.2 LOG ANALYSIS: STATISTICS

To get the statistics of the runtime of the SAS application, I developed a simple SAS utility to analyze the

full lengthy SAS log file (457,581 lines in this case). The log analysis utility consists of two

small %macros: %log_io_search(), %log_io_data() and a PROC MEANS. (Please see Figure 3.1 for

details.)

Figure 3.1 Log Analysis code

6

The first macro %log_io_search() uses a DATA _NULL_ step to search through the log file, extract the

key information for each step, and write out them into a txt file. (Figure 3.2)

Figure 3.2 Log Analysis Results Snapshot One

The second macro %log_io_data() again uses a DATA step to search through the output text file

generated from the first step and put the results in a better text format. (Figure 3.3)

Figure 3.3 Log Analysis Results Snapshot Two

7

In addition, it puts them into a SAS data set for further analysis. (Figure 3.4)

Figure 3.4 Log Analysis Results Snapshot Three

Then PROC MEANS summarizes the runtime of the whole process recorded in the SAS log file. As an

example, the statistics of the M5 job for the 201607 run are shown below (Figure 3.5).

Figure 3.5 Log Analysis Results

There are 6,428 DATA steps, 3 large ones, and 6,426 small ones. The large data steps only took a few

minutes. And the 6,426 small data steps took more than 10 hours: 39,211/(60*60) seconds =10.89 hours.

The PROC steps took less than a minute.

Based on the statistics shown above, we can tell that the %MACRO/%DO structure is very time

consuming in this application. It posts an efficiency issue. In the next section, we will show the

redevelopment of this application to make it more efficient.

IV. REDEVELOPING THE APPLICATION

Once we have identified the cause of the long runtime, we can redesign the application with efficiency in

mind.

The first area to improve the original SAS application is to reduce the number of steps. Some data steps

and procs can be combined, some steps and the %macro and data sorting can be avoided. SAS view can

be used to replace data set. In addition, we can reduce the size of the log file by getting rid of macro

related lines and fixing invalid data errors. That will make the log file more readable and save some I/O

time as well. Second, and most importantly, for the reporting part, we can use a simple but powerful

technique to avoid the 6,000+ small data steps: We use the SAS BY processing mechanism and DATA

step FILE statement instead of the loops of DATA steps and PROC PRINTs.

8

Here is the outline of the re-developed SAS application. The new code only contains one PROC SQL

view and one DATA step. There is no %macro/PROC PRINT/SORT. It uses a DATA step FILE

statement with option FILEVAR= to write out facility specific reports.

PROC SQL; CREATE VIEW … AS …; QUIT;

DATA …;

 SET …;

 BY FACID;

 … …

 _FN= … FACID …;

 FILE WRITEOUT FILEVAR=_FN …;

 … …

 PUT …;

 … …

RUN;

The new SAS application has only about 80 lines. (The original one has about 150 lines.)

Figure 4.1a Redeveloped Code (part 1)

Figure 4.1b Redeveloped Code (part2)

9

The key SAS features used in the new application is FILE statement and its option FILEVAR=.

The new SAS application produces the same results much more efficiently. Moreover, the log file (Figure

4.2) is nice and clean. It lists all the output files orderly. The runtime is 2.25 minutes (Figure 4.3). Can

you believe it? The new application reduced the process time from about 10 hours to about 2 minutes.

Comparing to the original version, it saved 99.6% of the runtime.

 Figure 4.2 New Log Snapshot One

Figure 4.3 New Log Snapshot Two

V. CONCLUSIONS

This real case study shows us that programming with efficiency in mind can make a great difference:

 79 lines vs. 150 lines

 1 step vs. 6,384 steps

 22,518,989 vs. 61,852,446 records processed

 00:02:30 vs. 11:02:17 (hh:mm:ss). Process time saved 99.62%.

Besides raising awareness for programming efficiency and introducing a log analysis utility, this case

study presented two important suggestions to promote the performance of SAS applications.

10

First, developing a better SAS application requires a better understanding of the problem the application

is to solve; once the problem is well understood, the programmer’s problem solving skills help to design

the right algorithm to tackle the problem. This design phase should involve as many knowledge and skills

as possible, such as analytics, modular and parallel, data structure, logic/abstract/model and system

thinking, etc.

Second, the application developer/programmer’s SAS knowledge, experience, and skills also play an

important role in programming efficiency. Here are some general SAS programming tips that can be

usefully to improve application performance: use as fewer steps as possible if applicable; combine

steps/remove unnecessary steps; process only the required variables and observations; avoid complex

macro if you can; use simple/non-macro coding effective techniques; do not fall in love with your

“hammer”, know and pick the right tool to use; be machine, human and computing environment friendly.

REFERENCES

SAS Online Documentations for SAS 9.2, 9.3 and 9.4. (http://support.sas.com/documentation)

ACKNOWLEDGEMENTS

I would like to thank my colleagues at UM-KECC for their support. To name a few: Dr. Thomas Zheng

reviewed and helped present some materials of this paper at a KECC journal club meeting in April 2016.

Ms. Anca Tilea, Ms. Mia Wang and Dr. Thomas Zheng helped organize KECC journal club. Ms. Robin

Padilla, Ms. Karen Wisniewski, Ms. Yating Sun and Ms. Natalie Scholz helped test the redeveloped

application in May 2016. Ms. Megan Turf helped test the log analysis utility. Without the support from

the KECC management team (Ms. Tempie Shearon, Ms. Valarie Ashby, Mr. Jas Sokhal, Ms. Casey

Parrotte, Ms. Sally Sivrais and Dr. Joe Messana), it would not have been possible for this paper to be

presented at the MWSUG conference. Jas and Valarie reviewed the draft slides. Ms. Susan Reimann

directly helped with travel arrangement.

I also want to thank the MWSUG conference 2106 team, especially co-chairs of Beyond the Basic SAS,

Ms. Melissa Ullman and Ms. Andrea Frazier, for answering my email requests when I was traveling

overseas in August 2016.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Lingqun Liu

University of Michigan

Kidney Epidemiology and Cost Center

1415 Washington Heights, Suite 3645 SPH I

Ann Arbor, MI 48109-2029

Email: lqliu@umich.edu

http://www.kecc.sph.umich.edu/

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of

SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

http://support.sas.com/documentation
mailto:lqliu@umich.edu
http://www.kecc.sph.umich.edu/

