
1

MWSUG 2016 – Paper BB21

Finding National Best Bid and Best Offer – Quote by Quote

Mark Keintz, Wharton Research Data Services

ABSTRACT

U.S. stock exchanges (currently there are 12) are tracked in real time via the Consolidated Trade System (CTS) and
the Consolidated Quote System (CQS). CQS contains every updated quote from each of these exchanges, covering
some 8,500 stock tickers. It provides the basis by which brokers can honor their fiduciary obligation to investors to
execute transactions at the best price, i.e. at the NBBO (National Best Bid or Best Offer). With the advent of
electronic exchanges and high frequency trading (timestamps are published to the nanosecond), data set size
(approaching 1 billion quotes requiring 80 gigabytes of storage for a normal trading day) has become a major
operational consideration for market behavior researchers recreating NBBO values from quotes.

This presentation demonstrates a straightforward use of hash tables for tracking constantly changing quotes for each
ticker/exchange combination to provide the NBBO for each ticker at each time point in the trading day.

INTRODUCTION

While not all stocks are listed in every one of the 12 currently active exchanges1, most are listed in multiple
exchanges. For the trader or broker, this means tracking, for each stock, multiple bids2 and asks3 (referred to as
“offers” in this presentation). The consolidated quote system (started in 1978) provides a single stream of quotes, in
chronological order, containing every change in best bid and offer (BBO) at each exchange for each stock. Of course
a trader would want to buy (or sell) at the most advantageous price among all these exchanges – i.e. at the National
BBO. A single NBBO can be composed of parts of BBO’s from more than one exchange – for example, it may be
that two exchanges post the best bid, and a third exchange posts the best offer.

The presentation that follows shows how to track the voluminous sequence of quotes (over 100,000 daily for a typical
security) and update the NBBO when applicable. The program logic is applicable to any “auction” context in which
multiple buyers and sellers repeatedly issue changing bids and offers for a variety of items.

NBBO FOR A SINGLE STOCK – THE “BEFORE” AND THE “AFTER”

Before dealing with multiple stocks, let’s look at the NBBO task for a single stock. For example, consider Table 1,
containing 22 IBM quotes at the start of June 10, 2015. The quotes originated from various stock exchanges (B, K,
N, P, T, X, Y and Z – all in the “EX” column). Ten of the quotes are highlighted (yellow for bids, blue for offers),
indicating those that change the NBBO.

 TIME EX SYMBOL BID BIDSIZ OFR OFRSIZ

1 09:30:00.184 K IBM 166.05 5 166.86 3

2 09:30:00.184 Y IBM 159.41 1 166.77 1

3 09:30:00.398 T IBM 166.09 3 166.77 1

4 09:30:00.409 T IBM 166.09 3 166.64 3

5 09:30:00.409 T IBM 166.09 3 166.63 6

6 09:30:00.409 T IBM 166.10 6 166.63 6

7 09:30:00.411 B IBM 139.53 1 193.12 1

8 09:30:00.411 X IBM 139.53 1 193.12 1

9 09:30:00.640 T IBM 166.10 9 166.63 6

1 Current (Spring 2015) CQS documentation identifies 17 exchanges, but our recent quote files have
consistently shown only 12, as used in our sample programs.
2 A “bid” contains the price per share and volume (“bid size”) a potential buyer will pay for a given stock.
3 An “ask” (termed an offer in this paper) contains the price and volume (“offer size”) a potential seller will
accept for a given stock.

Finding National Best Bid and Best Offer, continued

2

 TIME EX SYMBOL BID BIDSIZ OFR OFRSIZ

10 09:30:00.821 Z IBM 165.50 1 168.00 1

11 09:30:00.821 Z IBM 165.50 1 167.20 1

12 09:30:01.006 P IBM 166.05 1 166.49 1

13 09:30:01.006 P IBM 166.06 6 166.49 1

14 09:30:01.006 Y IBM 159.41 1 166.55 1

15 09:30:01.378 N IBM 166.30 5 166.59 8

16 09:30:01.379 P IBM 166.05 1 166.49 1

17 09:30:01.379 K IBM 166.04 4 166.86 3

18 09:30:01.379 Y IBM 159.41 1 166.77 1

19 09:30:01.379 T IBM 166.10 9 166.64 3

20 09:30:01.379 T IBM 166.10 3 166.64 3

21 09:30:01.380 X IBM 139.53 1 166.87 5

22 09:30:01.380 N IBM 166.12 8 166.59 8

Table 1: First 22 IBM “Local” BBO Quotes for June 10, 20154

The object is to produce the NBBO results in table 2 below5 from the quote changes in table 1. Table 2 has ten
NBBO records, synchronized with the ten records having shaded elements above – the other twelve quote records
have no impact on NBBO. The NBBO records represent a change in bid price (BB) or offer price (BO), or their
respective sizes (BBSIZ, BOSIZ) – like record 7 below, which differs from record 6 only in BBSIZ).

 TIME SYMBOL BB BBSIZ BO BOSIZ

1 09:30:00.184 IBM 166.05 5 166.86 3

2 09:30:00.184 IBM 166.05 5 166.77 1

3 09:30:00.398 IBM 166.09 3 166.77 2

4 09:30:00.409 IBM 166.09 3 166.64 3

5 09:30:00.409 IBM 166.09 3 166.63 6

6 09:30:00.409 IBM 166.10 6 166.63 6

7 09:30:00.640 IBM 166.10 9 166.63 6

8 09:30:01.006 IBM 166.10 9 166.49 1

9 09:30:01.378 IBM 166.30 5 166.49 1

10 09:30:01.380 IBM 166.12 8 166.49 1

Table 2: IBM NBBO Values Corresponding to Quotes in Table 1

SAS® NBBO CODE FOR A SINGLE STOCK – ARRAYS HAVE GRACE

The obvious logic to generate NBBO values is to keep a running status on each of the 12 exchanges, using four
arrays (one each for bids, bid sizes, offers, and offer sizes). The process is as follows:

1. Read a quote.

2. Update the element in each array corresponding to the exchange (variable EX).

4 BID and OFR are prices. BIDSIZ and OFRSIZ represent the number of trade units the trader is willing
to buy or sell. Usually the unit-of-trade is 100 shares – i.e. BIDSIZ=9 means 900 shares.
5 BB and BBSIZ represent the national best bid price (i.e. maximum BID) and size (the sum of BIDSIZ
over all exchanges at the BB price). BO and BOSIZ are the price and size of the national best offer.

Finding National Best Bid and Best Offer, continued

3

3. Find the best bid (BB=max of 12 bids) and best offer (BO=min of 12 offers).

4. Sum up the bid/offer sizes over all exchanges that match the best bid/offer.

5. Finally, if there is a change in best bid or offer then output the NBBO record.

The logic is implemented in this simple program:

SAS Code for Single Stock NBBO Notes

data nbbo_onesymbol (drop=_:);

 set quotes;

 where symbol=’IBM’;

Read a single quote for a specific stock.

 array _bp {12} ;

 array _bs {12} ;

 array _op {12} ;

 array _os {12} ;

 retain _bp: _bs: _op: _os: ;

Four 12-element arrays (12 exchanges), containing:
 Bid and offer prices (_bp and _op)
 Bid and offer sizes (_bs and _os)

RETAIN preserves all values from record to record

Note the trailing colon indicates all variables whose
name starts with the indicated stem.

 retain bb bbsiz bo bosiz ; Best Bid, Size of Best Bid, Best Offer, Size of Best
Offer

 _e=indexc('ABDJKMNPTXYZ',ex);

 _bp{_e}= bid;

 _bs{_e}= bidsiz;

 _op{_e}= ofr;

 _os{_e}= ofrsiz;

Because the exchange identifiers are single letters,
the INDEXC function easily assigns unique array
elements for each exchange (A=1, B=2, D=3, …,
Y=11, Z=12)

Then update the “_E’th” element of each array

 bb=max(of _bp:); bbsiz=0;

 bo=min(of _op:); bosiz=0;
Get the best bid (maximum bid), best offer (minimum
offer) and initialize their sizes to zero.

 do _e= 1 to dim(_bp);

 if _bp{_e}=bb then bbsiz=bbsiz+_bs{_e};

 if _op{_e}=bo then bosiz=bosiz+_os{_e};

 end;

Update the sizes by looping over the arrays,
accumulating sizes for exchanges whose bid or offer
matches the best bid/offer

 if lag(bb)^=bb or lag(bbsiz)^=bbsiz

 or lag(bo)^=bo or lag(bosiz)^=bosiz;

run;

Use subsetting IF: Output only if there have been
any changes in best bid/offer or their sizes

If the quotes file has multiple stocks, but is sorted by stock, then the program above still works, with very little
modification. Simply make these three changes:

1. Substitute
 by symbol;

for the where statement. This provides a dummy variable (“first.symbol”) indicating whether the record in hand
is the beginning of a new symbol.

2. After the retain statement enter
 if first.symbol then call missing(bb,bbsiz,bo,bosiz,of _:);

which initializes all the retain variables if the record in hand is the start of a new symbol.

3. Add a condition (“or first.symbol”) to the subsetting if statement assuring a new nbbo is output at the start

of each symbol
 if lag(bb)^=bb or lag(bbsiz)^=bbsiz or lag(bo)^=bo or lag(bosiz)^=bosiz

 or first.symbol;

This modification is needed only for the extremely unlikely case in which the first nbbo for one symbol entirely
matches the last nbbo of the prior symbol.

Finding National Best Bid and Best Offer, continued

4

The program is simple and easy to maintain. However the simplicity is obtained by neglecting some efficiencies,
which will be addressed in the “case oriented approach” section.

INTERLEAVED STOCKS – TIME FOR A HASH UP

If the data file replicates the real stream of quotes, then stock symbols are interleaved at each time value and another
solution is required. We effectively have to simultaneously maintain the four arrays above for each stock. Each of
these arrays has to (1) be identified by stock, and (2) be retained across observations, just as in the single stock
case. A ready solution to this problem is the use of hash tables. The hash object will provide a ready technique for
retrieving and updating, on a symbol-by-symbol basis, the running set of BBO’s and NBBO’s. The program below
demonstrates:

SAS Code for Multiple Stock NBBO
Notes

data dummy;

 length symbol $6;

 retain

 symbol ' '

 BB BBSIZ _bp1-_bp12 _bs1-_bs12

 BO BOSIZ _op1-_op12 _os1-_os12 .;

 stop;

run;

This is a dummy data set file. It has zero observations
(because a stop statement precedes the run statement)

and 53 variables.

This data set will greatly simplify hash construction in the
next data step. In particular, it lets the “h.definedata”

method below use the parameter all:’YES’ to include all

53 variables brought into the hash object from this data set.
Otherwise those 53 variable names would entered as a
comma-separate list of quoted variable names.

These 53 variables are all that is needed to trace the status
of bids, offers and best bid/offers for each stock symbol.

data nbbo_many_symbols;

 set nbbo.quotes_many_symbols;

 if 0 then set dummy;

 if _n_=1 then do;

 dcl hash h (dataset:'dummy'

 ,hashexp:8);

 h.definekey('symbol');

 h.definedata(all:'YES');

 h.definedone();

 end;

Read a quote record.

The “if 0 then set” statement populates the program data
vector with the variables from DUMMY, which is needed for
successful use of the following hash object.

By default, hash object contents persist across observations
(no “retain” statement necessary). So we “instantiate” it only
once. Hence the hash object declare statement (“dcl”) is

inside the “if _n_=1 then do” section.

The “definekey(’symbol’)” method tells SAS that items

in the hash table are to be “indexed” by symbol, for lookup
purposes (i.e. the “find” and “replace” methods below).
Each symbol in the hash table will be attached to a unique
set of values for the data variables.

The definedata statement tells sas what data variables to
include in the hash object – in this case all the variables in
dataset dummy.

 array _bp {12} ;

 array _bs {12} ;

 array _op {12} ;

 array _os {12} ;

These arrays are for bid/offer prices (_bp, _bo) and sizes
(_bs, _os). The array variables are NOT retained. That is
because they will be stored in and retrieved from the hash
table, which itself is “retained” by default.

 _rc=h.find(key:’symbol’);

 if _rc^=0 then call

 missing(bb,bbsiz,bo,bosiz,of _:);

Get the hash item (53 variables) for the current symbol.

_RC^=0 means the find method failed – i.e. there is no item
in the table corresponding to symbol, so the bid/offer
variables need to be reset to missing values.

Finding National Best Bid and Best Offer, continued

5

 _oldbb=bb;

 _oldbbsiz=bbsiz;

 _oldbo=bo;

 _oldbosiz=bosiz;

Before finding the new NBBO, store the old values, just now
retrieved from the hash table. The old values will be used to
detect any change in the new values.

 _e=indexc('ABDJKMNPTXYZ',ex);

 _bp{_e}=bid;

 _bs{_e}=bidsiz;

 _op{_e}=ofr;

 _os{_e}=ofrsiz;

Update the arrays just as in the single-stock case.

 bb=max(of _bp:); bbsiz=0;

 bo=min(of _op:); bosiz=0;

 do _e= 1 to dim(_bp);

 if _bp{_e}=bb then

 bbsiz=bbsiz+_bs{_e};

 if _op{_e}=bo then

 bosiz=bosiz+_os{_e};

 end;

Update the best bid/offer values, as in the single stock case.

 rc=h.replace(key:’symbol’); Put updated values for the current stock in the hash object,
for later retrieval.

 if bb^=_oldbb or bbsiz^=_oldbbsiz

 or bo^=_oldbo or bosiz^=_oldbosiz;

run;

As in the single stock case, output an NBBO only when it is
changed.

Unlike array statements, which require a fixed size (12 in this case), there is no similar size specification for the hash
object. This demonstrates another advantage of hash objects – dynamic expandability. True, a fixed number of
“buckets” is always assigned to a hash table – in the above the “hashexp:8” specifies 2**8=256 buckets. But as more
symbols are added, each bucket simply receives more items. In fact SAS documentation6 states that “each bucket
can hold an infinite number of items”. At some point, increasing the hashexp value (maximum is 20) might improve
performance, but I have not found it to have an impact on the CQS quotes datasets above.

EFFICIENCY CONSIDERATIONS – A CASE-ORIENTED APPROACH

The code above is simplified at the expense of significant inefficiencies. Whether required or not, for each quote it
recalculates the best bid7 by applying a MAX function over the entire set of exchanges, and then loops over every
exchange to generate the aggregate size of best bid. This is usually a needless process. In fact, in Table 1, only the
22nd quote actually requires this set of computations for best bid.

A far better strategy is to take a case-oriented approach, recognizing that each incoming bid/offer is either
(1) superior to the current bet bid/offer, (2) tied, or (3) inferior, per the list below. Only one subgroup within the
“inferior” condition (3c in table 3) requires scanning of all exchanges to find the new BB/BO.

6 See the “Declare Statement, Hash and Hash Iterator Objects” description in the SAS(R) 9.2 Language
Reference Dictionary
7 The same inefficiencies occur for best offer.

https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002576871.htm
https://support.sas.com/documentation/cdl/en/lrdict/64316/HTML/default/viewer.htm#a002576871.htm

Finding National Best Bid and Best Offer, continued

6

Incoming BID/OFR Status Subgroup
(Based on prior BID/OFR and prior

BIDSIZ/OFRSIZ from same exchange)

Best Bid/ Best Offer
Calculation

1. Superior: incoming bid
higher than current BB or
ofr lower than BO.

No subgroups Replace BB/BBSIZ (BO/BOSIZE)
with incoming BID/BIDSIZ
(OFR/OFRSIZE)

2. Tied: incoming bid equal
to current BB, or ofr equal
to BO.

a. Prior bid (ofr) inferior to BB (BO). Add incoming BIDSIZ (OFRSIZ) to
BBSIZ (BOSIZ)

b. Prior bid (ofr) tied with BB (BO) Adjust BBSIZE (BOSIZE) by the
difference in size for this exchange

3. Inferior: incoming bid lower
than current BB, or ofr
higher than BO.

a. Prior bid (ofr) inferior to BB (BO) Do nothing.

b. Prior bid (ofr) tied with BB (BO) but
prior BIDSIZ (OFRSIZ) less than
BBSIZ (BOSIZ)

Reduce BBSIZ (BOSIZ) by the
reduction in size for this exchange.

c. Prior bid (ofr) tied with BB (BO) and
prior BIDSIZ (OFRSIZ) equal to
BBSIZ (BOSIZ)

SCAN all exchanges for new best
bid (best offer) and size.

Table 3: Case Definitions for Generating National Best Bid or Best Offer

Coding of the case logic is shown in SAS macros in Appendices 2 and 3. A full implementation of the interleaved
stock program utilizing the macos in in appendix 1.

CONCLUSION

At first look, generating the national best bid and offer (NBBO) for each of 8,500 stocks from constantly changing
quotes might appear to need relatively dense programming, but that need not be the case. With the use of arrays,
finding NBBO’s for a single stock is very straightforward. For multiple stocks the use of hash tables preserves the
programming simplicity. The application of case logic in the actual calculations of highest bid and lowest offer
provides efficiency for large data sets.

The techniques shown are also readily generalizable to almost any market in which both buyers and sellers
frequently change the terms they are prepared to accept.

ACKNOWLEDGMENTS

Many thanks to Rabih Moussawi of Wharton Research Data Services – the motivator and author of the initial single-
stock version of the program presented here.

CONTACT INFORMATION

This presentation is part of a work in progress. Your comments and questions are valued and encouraged. Contact
the author at:

Name: Mark Keintz
Enterprise: Wharton Research Data Services
Address: 3819 Chestnut St, St. Leonards Court Suite 300
City, State ZIP: Philadelphia, PA 19104
Work Phone: 215/898-2160
E-mail: mkeintz@wharton.upenn.edu

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS
Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

Finding National Best Bid and Best Offer, continued

7

APPENDIX 1: NBBO PROGRAM FOR INTERLEAVED STOCKS AND CALLS TO “CASE
LOGIC” NATIONAL BEST BID/OFR MACROS

data dummy;

 length symbol $6;

 retain

 symbol ' '

 BB BBSIZ _bp1-_bp12 _bs1-_bs12

 BO BOSIZ _op1-_op12 _os1-_os12 .;

 stop;

run;

data nbbo_many_symbols;

 set nbbo.quotes_many_symbols;

 if 0 then set dummy;

 if _n_=1 then do;

 dcl hash h (dataset:'dummy',hashexp:8);

 h.definekey('symbol');

 h.definedata(all:'YES');

 h.definedone();

 end;

 array _bp {12} ;

 array _bs {12} ;

 array _op {12} ;

 array _os {12} ;

 _rc=h.find(key:’symbol’);

 if _rc^=0 then call missing(bb,bbsiz,bo,bosiz,of _:); /* New symbol */

 _oldbb=bb;

 _oldbbsiz=bbsiz;

 _oldbo=bo;

 _oldbosiz=bosiz;

 _e=indexc('ABDJKMNPTXYZ',ex);

 _oldbid=_bp{_e};

 _oldbidsiz=_bs{_e};

 _oldofr=_op{_e};

 _oldofrsiz=_os{_e};

 _bp{_e}=bid;

 _bs{_e}=bidsiz;

 if ofr=. then ofr=constant('big'); /* Convert missing ofr to inferior offer*/

 _op{_e}=ofr;

 _os{_e}=ofrsiz;

 %nbb; /* Case logic for National Best Bid */

 %nbo; /* Case logic for National Best Ofr */

 rc=h.replace(key:’symbol’);

 if bb^=_oldbb or bbsiz^=_oldbbsiz

 or bo^=_oldbo or bosiz^=_oldbosiz;

run;

Finding National Best Bid and Best Offer, continued

8

APPENDIX 2: “CASE LOGIC” MACROS FOR NATIONAL BEST BID

%macro nbb / des="Get National Best Bid Using Case Logic";

 /* Case 1: Incoming bid is superior */

 if bid>bb then do;

 bb=bid;

 bbsiz=bidsiz;

 end;

 /* Case 2: Incoming bid ties BB, two subcases */

 /* 2a: Incoming exchange is joining the set of best bids*/

 /* 2b: Incoming exchange already at best bid, change size only*/

 else if bid=bb then do;

 if _oldbid^=bb then bbsiz=bbsiz+bidsiz; /* Case 2a */

 else bbsiz = bbsiz - _oldbs + bidsiz; /* Case 2b */

 end;

 /* Case 3: Incoming bid inferior to BB, three subcases */

 /* 3a: Prior bid for this exchange also inferior */

 /* 3b: Prior bid at BB but not only one at BB */

 /* 3c: Prior bid at BB and was only one at BB */

 else if bid<bb then do;

 if _oldbid^= bb then leave; /* 3a */

 else if _oldbidsiz < bbsiz then bbsiz=bbsiz-_oldbidsiz; /* 3b */

 else do; /* 3c */

 bb=max(of _bp:);

 bbsiz=0;

 do _e= 1 to dim(_bp);

 if _bp{_e}=bb then bbsiz=bbsiz+_bs{_e};

 end;

 end;

 end;

%mend nbb;

Finding National Best Bid and Best Offer, continued

9

APPENDIX 3: “CASE LOGIC” MACRO FOR NATIONAL BEST OFR

%macro nbo / des="Get National Best ofr Using Case Logic";

 /* Case 1: Incoming ofr is superior */

 if ofr<bo then do;

 bo=ofr;

 bosiz=ofrsiz;

 end;

 /* Case 2: Incoming ofr ties BO, two subcases */

 /* 2a: Incoming exchange is joining the set of best ofrs*/

 /* 2b: Incoming exchange already at best ofr, change size only*/

 else if ofr=bo then do;

 if _oldofr^=bo then bosiz=bosiz+ofrsiz; /* Case 2a */

 else bosiz = bosiz - _oldbs + ofrsiz; /* Case 2b */

 end;

 /* Case 3: Incoming ofr inferior to bo, three subcases */

 /* 3a: Prior ofr for this exchange also inferior */

 /* 3b: Prior ofr at BO but not only one at BO */

 /* 3c: Prior ofr at BO and was only one at BO */

 else if ofr>bo then do;

 if _oldofr^= bo then leave; /* 3a */

 else if _oldofrsiz < bosiz then bosiz=bosiz-_oldofrsiz; /* 3b */

 else do; /* 3c */

 bo=min(of _op:);

 bosiz=0;

 do _e= 1 to dim(_bo);

 if _op{_e}=bo then bosiz=bosiz+_os{_e};

 end;

 end;

 end;

%mend nbo;

