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ABSTRACT  

Regression modeling is a widely used statistical method for scientific investigation. A series of rules on 
how to report regression result have also been established to standardize the way it is presented in 
formal settings. The default output from major SAS/STAT

®
 regression procedures, however, does not 

usually meet such requirement and is therefore not directly usable for final presentation. While it is 
acceptable to manually edit the raw output, such task can easily become tedious and error-prone when a 
large number of regression models are to be presented. This paper describes several SAS

®
 Base 

programming techniques for automating the process of generating publication quality regression tables. 
Using the birth weight data set offered through the SAS.HELP library, we provide a detailed illustration on 
creating nicely-constructed output under the context of linear and logistic regression model. Key steps 
discussed here include applying formats to easily manipulate the reference group and displaying order for 
categorical predictors; Using Output Delivery System (ODS) to extract key component(s) of regression 
modeling results; and making use of various DATA step functions and statements to format regression 
statistics and/or transform regression tables. A macro program is further provided that integrates all the 
necessary steps to achieve complete automation. All the techniques mentioned in this paper can be 
easily extended to other commonly used regression procedures. 

INTRODUCTION  

Regression modeling, in its various forms, is a commonly used statistical method in scientific 
investigation. Depending on the specific research objective and hypothesis, regression analysis can be 
used to describe associations between different variables, perform predictions of outcome, or reveal 
causal relationship. Accurate reporting of results from regression models is therefore critical for 
researchers to effectively show significant findings to their audiences, and for the audiences to quickly 
gain insight. 

Towards that end, a series of requirements on reporting regression models have been established to 
standardize the communication of statistical analysis results. While the exact format and requirement 
could vary by discipline, one way of summarizing analytic results can be illustrated in Table 1 below: 

Variable OR 95% CI p-Value 

Age 1.09 (1.06,1.13) <.001 
Years of education 1.01 (0.99,1.03) 0.497 
Gender    

Female  -Reference-  
Male 1.59 (1.06, 2.39) 0.024 

Household annual income    
<50k  -Reference-  

50k-99k 1.07 (0.72, 1.60) 0.721 
>=100k 3.14 (1.13, 8.68) 0.028 

Table 1. A Possible Layout for Presenting Logistic Regression Model Results 

In this example, the goal is to present the result from a logistic regression model. The convention is to list 
exponentiated parameter estimates, such as odds ratios (ORs), rather than the parameter estimates 
themselves. The inclusion of 95% confidence intervals is also necessary because it reflects the precision 
of each parameter estimate. When confidence intervals are included, it is not necessary to also show p-
values. But when presented, the actual observed values should be rounded to a certain number of 
decimal points. In terms of the general layout of the regression table, you usually just need one row for 
each continuous variable (e.g., age). For categorical variable, you need one row for the name of that 
variable (e.g., gender), and also additional rows for each level of the variable (e.g., female, male), 
including the reference category. It is also a good idea to clearly indicate which level is used as reference 
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category. For linear regression model, you present the actual beta coefficient rather than OR, but other 
parts remain the same. 

For most SAS/STAT
®
 regression procedures, however, the default output is not organized in the way 

described above. To prepare for final presentation, SAS
®
 users might have to export the raw output to an 

Excel sheet, and manually go through a series of steps to create a nicely formatted table. While such task 
is doable, it can easily become tedious and error-prone when you are to present a large number of 
regression models. Finding a solution to automate such process of generating regression tables will save 
the analyst considerable amount of time, enabling them to focus on other important parts of the research.    

This paper attempts to build the connection between what SAS users need and what the software 
provides when it comes to presenting results from regression models. We discuss a series of data 
manipulation techniques or tips that help you turn a raw regression output into a nicely constructed table 
such as the one displayed in Table 1. Linear and logistic regression models are used as examples 
throughout the paper, as they are the two most commonly used statistical methods among researchers. 
However, all the techniques mentioned here can be easily extended to other regression context.    

DATA SET AND REGRESSION MODEL 

The data set used throughout this paper is the BWeight data provided in the SAS.HELP library. It 
contains information on 50,000 live, singleton births to mothers between the ages of 18 and 45 in the 
United States. Figure 1 below summarizes the variables included in this data set.  

 

Figure 1. Variable List for BWeight Data Set 

Linear and logistic regression models are used here as examples to demonstrate the process of 
generating regression tables. For linear regression model, the dependent variable is baby’s weight. For 
logistic regression model, the dependent variable is an indicator on whether the baby has low birth weight 
(defined as having a birth weight less than 2,500 grams). All the other variables contained in the BWeight 
data set are included as independent variables for both models. These two models are implemented 
using the GLM procedure and the LOGISTIC procedure, respectively, as shown below: 

proc glm data=sashelp.bweight; 

class Black Married Boy MomSmoke Visit MomEdLevel; 

model weight = MomAge CigsPerDay MomWtGain Black Married Boy MomSmoke 

Visit MomEdLevel / solution; 

run; 
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data bw; 

 set sashelp.bweight; if Weight<2500 then low=1; else low=0; 

run; 

 

proc logistic data=bw; 

class Black Married Boy MomSmoke Visit MomEdLevel / param=ref; 

model low(event=”1”) = MomAge CigsPerDay MomWtGain Black Married Boy 

MomSmoke Visit MomEdLevel; 

run; 

 

Below we first walk through each step of generating regression tables within the setting of linear 
regression model (PROC GLM), during which we provide detailed explanation on the issues to consider 
and the corresponding solutions. Later we move on to logistic regression (PROC LOGISTIC) and 
highlight the parts that are different and need special attention.  

MANIPULATING CATEGORICAL VARIABLES 

For categorical variables included in the regression model, you need to decide which level of each 
variable is used as the reference group. For variables having more than two levels, i.e. nominal or ordinal 
variables, another potential issue to consider is the order in which each level of the variable is listed in the 
table. By default, SAS determines the reference level of a variable by first sorting the values of that 
variable in ascending order, and assigning the last ordered value as the reference group. For character 
variables, the sorting is based on alphabetical order. For example, in the BWeight data set, the default 
reference group for variable Visit is the one coded as 3 (corresponds to “First Trimester”), because it is 
the largest value across all levels. 

Such default setting might not be ideal when the users have specific preference on which level of a 
variable should be used as reference. A simple way to easily manipulate this is to assign a format to each 
categorical variable through the FORMAT procedure and FORMAT statement, and then use 
ORDER=FORMATTED option in PROC GLM statement: 

proc format;  

value Black 1="1.Black Mother" 0="9.Non-Black Mother" ; 

 value Married 1="1.Married" 0="9.Not Married"; 

 value Boy 1="1.Boy" 0="9.Girl"; 

 value MomSmoke 1="1.Smoking Mother" 0="9.Non-smoking Mother"; 

 value Visit 0="9.No Visit" 1="2.Second Trimester" 2="3.Last Trimester" 

3="1.First Trimester"; 

value MomEdLevel 0="1.High School" 1="2.Some College" 2="3.College" 

     3="9.Less Than High School"; 

run; 

 

proc glm data=sashelp.bweight order=formatted; 

class Black Married Boy MomSmoke Visit MomEdLevel; 

model weight = MomAge CigsPerDay MomWtGain Black Married Boy MomSmoke 

Visit MomEdLevel / solution; 

format Black Black. Married Married. Boy Boy. MomSmoke Momsmoke. Visit 

Visit. MomEdLevel MomEdLevel.; 

run; 

 

Here ORDER=FORMATTED option tells SAS to sort each categorical variable based on their formatted 
value instead of the original coded value, with the largest formatted value being the reference group. 
Under this setup, you just need to make sure that your choice of the reference level for each variable is 
assigned the largest value label in PROC FORMAT. As shown in the code above, a simple trick is to 
include a numeric prefix in each value label, with the reference level getting a relatively large number 
such as 9. For example, for variable MomEdLevel, you want “Less than high school” as the reference 
level, so you include number 9 at the beginning of the value label. For other levels of MomEdLevel, you 



4 

assign a smaller number, such as 1-3, as the prefix of the value label. In this particular example, creating 
a format or not won’t make a difference, because the initial coding of MomEdLevel is in a way that “Less 
than high school” gets the largest numeric number. However, if later for whatever reason you decide to 
change the reference group to “College”, all you need to do is changing the numeric prefix. Therefore, 
having a format ready for each variable can help you quickly switch reference group.    

Figure 2 shows the partial output PROC GLM generated after running the code above. Note that the 
reference group for each variable is assigned in the same way as we expect. Moreover, by including this 
numeric prefix to the value label, you further have explicit control over how other non-reference levels are 
displayed in the output table. Again take variable MomEdLevel as an example, “Less than high school” is 
used as the reference category, and the output table first displays the row for “High school”, followed by 
“Some college” and finally “College”. If you want a different order of these three levels, just play with the 
numeric prefix and the output will reflect such change accordingly. 

 

Figure 2. Partial output from PROC GLM 

Another helpful trick during this step is to make sure that you specify the format name to be the same as 
the variable name in the PROC FORMAT. As we show later in the paper, this can greatly facilitate the 
automation of generating regression tables.   
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OUTPUT DELIVERY SYSTEM 

When you submit a statistical modeling procedure such as PROC GLM, SAS not only displays key results 
in the output window, but also creates a series of tables behind the scene. These tables store different 
parameters or statistics calculated from the regression model you are building, and you can select these 
tables and output them into separate data sets. Once a data set is created from such table, you can apply 
many DATA step programming techniques to perform data transformation. This makes it possible to 
automatically create a nicely formatted regression tables. 

You can use the Output Delivery System (ODS) to select a given table and create a corresponding output 
data set. SAS assigns a name to each table it creates, and you can use this name to refer to the table 
you are targeting. In our example, we want a table that contains the information on regression coefficient 
and hopefully other related information such as p-value and 95% confidence interval (CI) associated with 
each estimate. This table is named ParameterEstimates in PROC GLM, so here is the code: 

proc glm data=sashelp.bweight order=formatted; 

class Black Married Boy MomSmoke Visit MomEdLevel; 

model weight = MomAge CigsPerDay MomWtGain Black Married Boy MomSmoke 

Visit MomEdLevel / solution CLPARM; 

format Black Black. Married Married. Boy Boy. MomSmoke Momsmoke. Visit 

Visit. MomEdLevel MomEdLevel.; 

ods output ParameterEstimates=Beta; 

run; 

 

In the ODS OUTPUT statement, you put the name of the table, ParameterEstimates, on the left side of 
the equal sign. Then you specify a valid SAS data set name on the right side. In our example, the 
information contained in the table ParameterEstimates is output to the data set called Beta. You might 
wonder how we know the name ParameterEstimates. Such information can be obtained by referring to 
the SAS online documentation. In practice, simply search for “ods output PROC GLM” in Google, for 
example, and you will get a full list of names and contents of tables SAS creates under PROC GLM. 

Note that in order to successfully create the output data set from ODS, you might need to specify 
additional options within other statements of the procedure. In the example above, we have specified two 
options in the GLM MODEL statement. The first one is SOLUTION, which refers to the estimated 
regression coefficients of the linear model we build. Without this option, you will not see the 
corresponding output in the results window, and the ODS fails to create data set Beta. The second option 
is CLPARM, which tells SAS to include the lower and upper limit of the 95% CIs to the output. This 
information is necessary for final result presentation. 

DATA STEP PROGRAMMING ON TABLE FORMATTING 

The output data set (Beta) obtained through ODS has very similar structure as the default regression 
output SAS displays in the output window, neither of which is directly usable for final presentation. 
However, because such information is now stored in a SAS data set, we can use a series of DATA step 
programming to change its layout. Figure 3 shows the initial configuration of data set Beta. 

Given how the information is organized in this raw output data set, we can start with the following code to 
format the table: 
 

data Beta1(drop=LowerCL UpperCL); 

  set Beta(firstobs=2 keep=Parameter Estimate Probt--UpperCL); 

 

  if LowerCL ne . then  

  CI="("||strip(put(LowerCL,7.2))||","||" "||strip(put(UpperCL,7.2))||")"; 

  else CI="-Reference-"; 

run; 
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Figure 3. Data Set Beta 

To begin with, we read in the Beta data set by specifying the FIRSTOBS=2 data set option. This prevents 

SAS from reading the very first row of the data, which contains the regression estimate for the intercept — 

something that is usually omitted in the final presentation. 

The first thing you can do is generating a formatted 95% CI for each regression estimate. As shown in 
Figure 3, the output data set stores such information in two separate columns, one for the lower limit 
(LowerCL) and one for the upper limit (UpperCL). Using string functions is a good way to combine 
information that spreads across different columns.  More specifically, it involves the following steps:  

1) using the PUT function to perform explicit numeric to character conversion of variable LowerCL 
and UpperCL, with the second argument (format) of the function being 7.2, so that two decimal 
points are displayed after the conversion;  

2) using the STRIP function to remove any leading and trailing blanks of the character string 
obtained from the PUT function, which prevents extra blanks in the final confidence interval string; 

3) using the concatenation operator (a pair of vertical bars) to combine the aforementioned 
strings and other symbols (parenthesis, comma, blank) in order to construct the final CI; 

For reference levels, instead of generating a corresponding CI, we just specify it to be the string “-
Reference-”. This will make the final table easier to read.  

Note that in Figure 3, variable Parameter stores information on the variables used in the regression model. 
For categorical variables, both the variable name and the formatted value label of the variable are 
included in the string. For the final presentation, we prefer to have only the labels because they are more 
descriptive. We can use the following code to separate variable name from its label: 

data Beta1(drop=LowerCL UpperCL); 

  set Beta(firstobs=2 keep=Parameter Estimate Probt--UpperCL); 

 

  if LowerCL ne . then  

  CI="("||strip(put(LowerCL,7.2))||","||" "||strip(put(UpperCL,7.2))||")"; 

  else CI="-Reference-"; 

 

  pos=index(Parameter,"");  

  covariate=substr(Parameter,1,pos-1); 

  level=strip(substr(Parameter,pos)); 

run; 
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The trick here is to realize that for each string of the Parameter variable, there exists at least one blank 
between variable name and its label. We can use this feature to extract both the variable name and the 
label by first figuring out the position of the first blank within the string. This is accomplished by using the 
INDEX function. The INDEX function searches a character value (the first argument) for a specified string 
(the second argument), and returns the position of the string’s first character. In our case, we just want to 
search each string of Parameter for blank, so the second argument of the function only contains quotation 
marks. The position of the first blank in each string is stored in variable pos, which is further used in the 
SUBSTR function to extract the information on both the variable name and the value label. Figure 4 
shows the new variables created during this step (CI, pos, covariate, level). 

 

Figure 4. Data Set Beta1 

Up until this point, we pretty much have gathered everything we need for the regression table: variable 
name and its label, coefficient estimate, 95% CI and p-value. However, as shown in Figure 4, one 
potential issue is that for each categorical variable, the reference group is listed in the end. For final 
presentation, the convention is to list the reference group first within each predictor. The code below is 
used to modify the relative order of reference level, while still maintaining the overall predictor sequence: 

data Beta1(drop=LowerCL UpperCL); 

  set Beta(firstobs=2 keep=Parameter Estimate Probt--UpperCL); 

 

  if LowerCL ne . then  

  CI="("||strip(put(LowerCL,7.2))||","||" "||strip(put(UpperCL,7.2))||")"; 

  else CI="-Reference-"; 

 

  pos=index(Parameter,"");  

  covariate=substr(Parameter,1,pos-1); 

  level=strip(substr(Parameter,pos)); 

 

  level = tranwrd(level,"9","0");  

  last_covariate=lag(covariate); 

  if covariate ne last_covariate then num+1; 

run; 

 

proc sort data=Beta1; by num level; run; 

 

Here we first use the TRANWRD function, which replaces certain characters within a string. The first 
argument specifies the string you are working on, the second argument specifies the targeted string you 
want to search for and get replaced, the third argument specifies the string that replaces the target. 
Earlier when creating formats for categorical variables, we assigned a large numeric prefix, 9, to each 
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reference group so that PROC GLM correctly treats it as the baseline level under the 
ORDER=FORMATTED option. What we do here is to change that prefix from 9 to 0, so that later when 
we sort the data by its label, each reference group will move on to the top row because now it has the 
smallest formatted value.  

Next we create another variable called num, which serves as a way of maintaining the relative order of 
predictor variables (i.e. each unique value in the variable covariate) listed in the regression table. The 
trick here is to number each unique value of covariate in an ascending order. As is shown in the code 
above, this is accomplished by comparing the current observation of covariate with its previous 
observation (obtained using the LAG function), and add 1 to the value of num (through the SUM 
statement) if the two observations do not match— the place where the value of covariate changes. Then 
once you sort the data by num and level, the reference group for each categorical variable is listed first, 
and the order of predictor variables remains unchanged (Figure 5). 

 

Figure 5. Data Set Beta1 after Re-ordering of Rows 

At this point, the Beta1 data set is already a fairly good candidate to use for final presentation. However, 
before printing it out, we would like to do some final adjustments. This includes: 

1) Separating each categorical variable with a blank line; 

2) Removing the numeric prefix in the categorical variable label; 

3) Formatting regression coefficient, p-value and the column header; 

The reason for 1) is to make the final table look less crowded and therefore easier to read. Earlier when 
creating formats, we deliberately include a numeric prefix to the value label so that we can easily 
manipulate the reference group. For the final presentation, however, we do not want to show this number, 
so 2) is necessary. As for 3), depending on the situation the requirement can be different. In our example, 
we choose to retain two decimal points for the regression coefficient, and three decimal points for the p-
value. Moreover, for p-values that are smaller than 0.001, we would like to display it as “<.001”. 

To create the blank line, we use the code below: 

proc sql; 

create table blank as 

select covariate, num from Beta1 

where probt=.; 

quit; 

 

data combine(keep=Estimate Probt CI covariate level num); 

 set Beta1 blank; 

run; 

 

proc sort data=combine; by num level; run; 

 

In the SQL procedure above, we select only those rows with missing p-value, which gives us a list of all 
the categorical variables. Then we append this blank data set to the previous Beta1 data set. During the 
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appending process, because data set blank only contains two variables (covariate and num), variable 
level is set to missing for all the observations coming from that data set. As a result, when we sort the 
appended data set again by num and level, the additional blank line is listed first within each categorical 
variable (Figure 6), because missing value is considered the smallest in SAS. 

 

Figure 6. Data Set Combine 

The code below does some final formatting tasks. The SUBSTR function is used to get rid of the numeric 
prefix for variable level. The LABEL statement is used to assign a more interpretable name to each 
column. When it comes to formatting regression coefficient and p-value, one thing to note here is that 
both variables contain some special values. As is shown in Figure 6, regression coefficient for each 
reference group is listed as 0.000000, with a missing p-value represented by a dot. For each blank line 
we just add, both numbers are also missing and listed as dot. To avoid displaying such undesired 
numbers/symbols in the final table, we can combine both user-defined formats and SAS system formats. 
For example, for regression coefficient, we assign a label with no content (a blank within the quotation 
mark) to 0 and missing value (denoted by the keyword OTHER). For other values, we apply a SAS 
system format with length 7 and two decimal points. Note that when you are referring to another existing 
format within the VALUE statement, make sure to enclose that format with square bracket. Otherwise 
SAS will treat the format, which in this case is 7.2, as a value label, resulting in all the 0s and missing 
values being displayed as “7.2”.  

data combine1; 

 set combine; 

 x=substr(level,3); 

 level=x; 

label level="Covariates" estimate="Beta" CI="95% CI" probt="p-Value"; 

run; 

 

proc format; 

 value estimate low-<0 = [7.2] 0 = " " 0<-high = [7.2] other = " ";   

 value p 0-<0.001 = "<.001" 0.001-1 = [5.3] other = " " ; 

run; 
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Now we are finally ready to print the table. Running the code below, we get the output in Figure 7.  

proc print data=combine1 label; 

id covariate; 

var level estimate CI probt; 

format estimate estimate. probt p.; 

run; 

 

Figure 7. Final Formatted Regression Table 
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You can then copy and paste the above output to Excel, after which all you need to do is adding the 
name of each predictor to the table. In the end, you will get something like Error! Reference source not 
found. below. 

Covariates Beta 95% CI p-Value 

Mom's Age 5.18 (4.24, 6.12) <.001 

Cigarettes per Day -3.95 (-5.71, -2.19) <.001 

Mom's Weight Gain 8.65 (8.29, 9.02) <.001 

Race 
   

Non-Black Mother 
 

-Reference- 
 

Black Mother -195.29 (-209.07, -181.51) <.001 

Marital Status 
   

Not Married 
 

-Reference- 
 

Married 69.97 (57.60, 82.34) <.001 

Baby's Gender 
   

Girl 
 

-Reference- 
 

Boy 109.81 (100.42, 119.20) <.001 

Smoking Status 
   

Non-smoking Mother 
 

-Reference- 
 

Smoking Mother -163.19 (-187.69, -138.70) <.001 

Prenatal Visit 
   

No Visit 
 

-Reference- 
 

First Trimester 158.10 (105.28, 210.91) <.001 

Second Trimester 164.49 (110.52, 218.47) <.001 

Last Trimester 170.45 (109.41, 231.49) <.001 

Education 
   

Less Than High School 
 

-Reference- 
 

High School 20.95 (6.41, 35.49) 0.005 

Some College 36.01 (19.93, 52.09) <.001 

College 47.82 (30.53, 65.11) <.001 

Table 2. Final Regression Table after Minimal Adjustment 

MACRO FOR GENERATING REGRESSION TABLE 

It is a good idea to create a macro program that stores all the SAS codes we just talked about on making 
regression tables, so that you can easily accomplish similar tasks in the future. The macro glm_table 
listed below is one such attempt.  

There are four parameters included in the macro definition: dataset parameter specifies the data set on 
which the regression model is running; y parameter specifies the dependent variable for the model; 
cont_covar parameter specifies all the continuous predictors used in the model; cat_covar parameter 
specifies all the categorical predictors used in the model. For the last two parameters, if multiple variables 
are to be used, specify them in the order you want each variable to be presented in the final regression 
table, and separate each variable with a blank. With the current setup, all the continuous predictors are 
listed first in the final table, followed by all the categorical variables. 

*===========Macro for Making Regression Tables in PROC GLM===============*; 

%macro glm_table(dataset=, y=, cont_covar=, cat_covar=); 

 

/*count the number of categorical covariates in the model and store  

  this information in macro count*/ 

 %local count;  

 %let count=0;  

 %do %while (%scan(&cat_covar, &count+1) ne %str()); 
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  %let count=%eval(&count+1); 

 %end; 

 

/*run regression model*/ 

 proc glm data=&dataset order=formatted; 

  class &cat_covar; 

  model &y = &cont_covar &cat_covar / solution CLPARM; 

 

/*use do loop to generate a list of variable followed by its format*/ 

  format  

   %local i;  

   %do i=1 %to &count; 

    %scan(&cat_covar, &i) %scan(&cat_covar, &i).  

   %end; 

  ;  

  ods output ParameterEstimates=Beta;  

 run; 

 

/*construct regression table*/ 

 data Beta1(drop=LowerCL UpperCL); 

  set Beta(firstobs=2 keep=Parameter Estimate Probt--UpperCL); 

 

  if LowerCL ne . then  

CI="("||strip(put(LowerCL,7.2))||","||" "||strip(put(UpperCL,7.2))||")"; 

  else CI="-Reference-"; 

 

/*separate variable name from its label*/ 

  pos=index(Parameter,"");  

  covariate=substr(Parameter,1,pos-1); 

  level=strip(substr(Parameter,pos)); 

 

/*re-order reference group*/ 

  last_covariate=lag(covariate); 

  if covariate ne last_covariate then num+1; 

  level = tranwrd(level,"9","0"); 

 run; 

 

/*blank line separating each variable*/ 

 proc sql; 

  create table blank as 

   select covariate, num 

    from Beta1 

     where probt=.; 

 quit; 

 

 data combine(keep=Estimate Probt CI covariate level num); 

  set Beta1 blank; 

 run; 

 

 proc sort data=combine; by num level; run; 

 

 data combine1; 

  set combine; 

  /*get rid of number prefix in format*/ 

  x=substr(level,3); 

  level=x; 
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  /*label*/ 

  label level="Covariates" estimate="Beta" CI="95% CI"  

probt="p-Value"; 

 run; 

 

 proc format; 

    value estimate low-<0 = [7.2] 0 = " " 0<-high = [7.2] other = " ";   

   value p 0-<0.001 = "<.001" 0.001-1 = [5.3] other = " "; 

 run; 

 

/*PRINT the final table!*/ 

 proc print data=combine1 label; 

  id covariate; 

  var level estimate CI probt; 

  format estimate estimate. probt p.; 

 run; 

%mend; 

 

For example, to create the regression table shown in Figure 7, submit the following code: 

%glm_table(dataset=sashelp.bweight,  

     y=weight,  

     cont_covar=MomAge CigsPerDay MomWtGain,  

     cat_covar=Black Married Boy MomSmoke Visit MomEdLevel) 

 

One thing to note is that at the very beginning of this macro, instead of jumping right into PROC GLM, we 
first spend some time trying to count the total number of categorical variables to be used in the model. 
The reason for doing this is to avoid manually specifying all the variables and their formats in the 
FORMAT statement within PROC GLM section. As is shown above, the trick is to use macro 
function %SCAN to extract each word contained in the macro variable cat_covar.  A local macro named 
count is created to accumulate the total number of words scanned in cat_covar, and the accumulation 
process continues until the %SCAN function detects no more words.  Then in the FORMAT statement in 
PROC GLM, we use %DO loop to iteratively generate a series of text, each of which contains one 
categorical variable followed by its format name. The local macro count helps determine the number of 
iteration to perform. Earlier we mentioned that it is important to make sure the format name is the same 
as the variable name. Now you see why this is the case. Without such setup, it will be difficult to automate 
the format-assigning process within the FORMAT statement. 

LOGISTIC REGRESSION EXAMPLE 

We now apply what we have discussed before to a logistic regression example. Below is the macro for 
creating a regression table based on results from PROC LOGISTIC. The setup is very similar to that of 
PROC GLM. There are four parameters to be specified in the macro definition: data set, dependent 
variable, continuous predictors and categorical predictors. The macro starts by counting the number of 
categorical variables to be included in the model, then uses PROC LOGISTIC to generate the initial 
output, later employs a series of DATA step programming to format the ODS output tables before finally 
printing it out. 

One thing to note is that for PROC LOGISTIC, information on estimated odds ratio and the corresponding 
p-value for each predictor is stored in two separate ODS tables (called OddsRatios and 
ParameterEstimates). You need to output both tables and later combine them together as shown below. 
Another potential issue is that PROC LOGISTIC suppresses the row for reference category in the output 
table. You might need to create it on your own in the later DATA step.  

*=========Macro for Making Regression Tables in PROC LOGISTIC============*; 

%macro logistic_table(dataset=, y=, cont_covar=, cat_covar=); 

 *count the number of categorical covariates in the model; 
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 %local count;  

 %let count=0;  

 %do %while (%scan(&cat_covar, &count+1) ne %str()); 

  %let count=%eval(&count+1); 

 %end; 

 

 *regression model; 

 proc logistic data=&dataset order=formatted; 

  class &cat_covar / param=ref; 

  model &y(event="1") = &cont_covar &cat_covar; 

  format  

   %local i;  

   %do i=1 %to &count; 

    %scan(&cat_covar, &i) %scan(&cat_covar, &i). 

   %end; 

  ;  

  ods output OddsRatios=OR ParameterEstimates=Beta;   

run; 

 

 *construct regression table; 

 data combined; 

  set Beta(firstobs=2 keep=Variable ClassVal0 ProbChiSq); 

  set OR(keep=OddsRatioEst LowerCL UpperCL); 

CI="("||strip(put(LowerCL,5.2))||","||" "||strip(put(UpperCL,5.2))||")";  

 

  last_var=lag(variable); 

  if variable ne last_var then num+1; 

 run; 

 

 *select all the categorical variables; 

 proc sql; 

  create table ref as 

  select distinct variable, num from combined 

    where ClassVal0 ne "";  

quit; 

 

 *add two rows, one for reference group, one for the blank; 

 data combined2; set combined ref ref; run; 

 

 proc sort data=combined2; by num ClassVal0; run;  

 

 data combined3; 

  set combined2; 

  by num ClassVal0; 

  if first.num=0 and ClassVal0="" then CI="-Reference-"; 

 

  *get rid of the number in the format; 

  x=substr(ClassVal0,3); 

  ClassVal0=x; 

 

label ClassVal0="Covariates" OddsRatioEst="OR" CI="95% CI"  

ProbChiSq="p-Value"; 

 run; 

 

 proc format; 

  value OR low-high = [5.2] other = " ";                    

  value p 0-<0.001 = "<.001" 0.001-1 = [5.3] other = " " ;  
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run; 

 proc print data=combined3 label; 

  var variable ClassVal0 OddsRatioEst CI ProbChiSq; 

  format OddsRatioEst OR. ProbChiSq p.; 

 run; 

%mend; 

 

Assuming that you want to run a logistic regression model investigating the factors associated with low 
birth weight of baby. The code below is used to generate a final table. Figure 8 displays the final output. 
The only thing for you to do manually is adding the variable names and the label for each reference group.  

%logistic_table(dataset=bw, y=low,  

   cont_covar=MomAge CigsPerDay MomWtGain,  

   cat_covar=Black Married Boy MomSmoke Visit MomEdLevel) 

 

 

Figure 8. Logistic Regression Table 
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CONCLUSION 

This paper introduces several SAS Base programming techniques that can be used to automate the 
process of generating high quality regression tables for presentation purposes. Through examples on 
both linear and logistic regression, we demonstrate issues to be considered along the way and the 
corresponding solutions. These include: using format to easily manipulate the reference group and 
displaying orders for categorical variables; using ODS to extract tables that contain key information on 
regression results; using a series of DATA step functions and statements to transform and format tables 
and numbers. To further help automate the entire process, a macro program is further provided.   

Comparing two examples used in this paper, we see that the general steps required to build a regression 
table are similar regardless of the regression procedure we are using. With slight adjustment, all the 
aforementioned techniques can be easily applied to many other commonly used regression settings, such 
as PROC GENMOD, PROC MIXED, PROC GLIMMIX, PROC PHREG and PROC LIFEREG. 

CONTACT INFORMATION 

Your comments and questions are valued and encouraged. Contact the author at: 

Ji Qi  
University of Michigan Health System, Ann Arbor  
qiji@umich.edu  
 

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of 
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.  

Other brand and product names are trademarks of their respective companies.  

 


