
1

MWSUG 2016 - Paper HW03

The Joinless Join ~ The Impossible Dream Come True;
Expand the Power of Base SAS® and SAS® Enterprise Guide® in a New Way

Kent Ronda Team Phelps, The SASketeers, Des Moines, IA

All for SAS and SAS for All!

ABSTRACT

Base SAS and SAS Enterprise Guide can easily combine data from tables or data sets by using a PROC SQL Join

to match on like columns or by using a DATA Step Merge to match on the same variable name. However, what

do you do when tables or data sets do not contain like columns or the same variable name and a Join or Merge

cannot be used? We invite you to attend our exciting presentation on the Joinless Join where we will teach you

how to expand the power of Base SAS and SAS Enterprise Guide in a new way.

We will empower you to creatively overcome the limits of a standard Join or Merge. You will learn how to

design a Joinless Join based upon dependencies, indirect relationships, or no relationships at all between the

tables or data sets. In addition, we will highlight how to use a Joinless Join to prepare unrelated joinless data to

be utilized by ODS and PROC REPORT in creating a PDF. Come experience the power and the versatility of the

Joinless Join to greatly expand your data transformation and analysis toolkit.

We look forward to introducing you

to the surprising paradox of the

Joinless Join.

INTRODUCTION

The tagline for SAS is The Power To Know® and your 'power to know' greatly expands with your ability to

access, combine, and analyze important data from tables or data sets (referred to as tables going forward).

The Power To Know sets off The Power To Create which leads to The Power To Automate ~ much like an

intricate and fluid domino design. However, this power will quickly become disjointed if you do not know how

to effectively Join or Merge tables of data ~ even when the tables do not have a relationship.

Here are 2 questions to ask yourself when analyzing 2 or more tables:

 Do the tables contain like columns or the same variable name which can be utilized in a Join or Merge?

 If the tables do not contain like columns or the same variable name and a standard Join or Merge cannot be

used, have I reached a cavernous and insurmountable ‘woe is me’ research impasse in my data analysis?

2

 There is no need to fear, the Joinless Join is here!

The Joinless Join will bridge your research impasse and empower you to:

 Creatively overcome the limits of a standard Join or Merge using Base SAS and SAS Enterprise Guide

 Access, combine, and analyze tables for the first time based upon dependencies, indirect relationships, or no

relationships at all

 Open up new worlds of table creations, calculations, validations, and filtrations

 Prepare unrelated joinless data to be utilized by ODS and PROC REPORT

 Increase your ability to detect and resolve errors including hidden errors

 Prevent validation process failure ~ yea! ~ and completely... yes, completely automate your projects

The SAS project in this presentation demonstrates:

The Power To Know how to design a Joinless Join

The Power To Create tables based upon dependencies, indirect relationships, or no relationships at all

The Power To Automate projects even when tables cannot be directly joined or merged

We invite you to journey with us

as we help you

E X P A N D

 the power of Base SAS and Enterprise Guide in a new way.

Brief Overview of Standard PROC SQL Joins and DATA Step Merges

A standard Join or Merge enables you to combine tables side-by-side horizontally by matching related rows. A

like column or the same variable name, with the same attributes and like values, is used to connect the tables and

bring together some or all of each table’s contents.

An Inner Join or Merge is a symmetrical process of matching related rows in tables ~ an Inner Join can

match related rows in 2 to 256 tables, and a Merge can match related rows in 2 tables.

 Figure 1. Venn Diagram – Inner Join or Merge

Just traveling along...
side-by-side.

Harry Macgregor Woods

The result of an Inner Join or Merge produces only

matched rows from the tables. The result is illustrated

by the shaded area AB in Figure 1.

3

An Outer Join or Merge is an asymmetrical process of matching related rows in 2 tables. The resulting set of

data also contains unmatched rows from the left, right, or both tables.

Figure 2. Venn Diagram – Left Outer Join or Merge

 Figure 3. Venn Diagram – Right Outer Join or Merge

Figure 4. Venn Diagram – Full Outer Join or Merge

All of these Joins and Merges have an important common denominator ~ each of them requires a like column

or the same variable name for matching. Thus, we now return to the core focus of this presentation…

Figure 5. Venn Diagram – Tables Without Like Columns or the Same Variable Name

What do you do when the tables you want to analyze do not contain like columns or the same variable name

(Figure 5) and a standard Join or Merge cannot be used?

 Professor Domino will be our guide

In the next section
we will

continue
to

follow

The Power To Know

dominoes
to

find
the

answer.

The result of a Left Outer Join or Merge produces

matched rows from both tables while preserving all

unmatched rows from the left table. The result is

illustrated by the shaded areas A and AB in Figure 2.

The result of a Right Outer Join or Merge produces

matched rows from both tables while preserving all

unmatched rows from the right table. The result is

illustrated by the shaded areas B and AB in Figure 3.

The result of a Full Outer Join or Merge produces

matched rows while preserving all unmatched rows

from both tables. The result is illustrated by the

shaded areas A, AB, and B in Figure 4.

4

Illuminating the Paradox of the Joinless Join

The development of the Joinless Join came about during a recent project when the need arose to overcome the

limitations of a standard Join and to resolve unforeseen issues which occurred with a One-Way Frequency.

SAS Highlight

A One-Way Frequency contains a distribution list of values, counts, and percentages for a column.

Here is our SAS Enterprise Guide project example:

 Our project example demonstrates 8 ways to use a Joinless Join.

Sometimes success is seeing
what we already have

in a new light.

Dan Miller

5

The Program Node creates the SMILEY_COMPANY source table:

We design a Program Node to create a source table:

 This is the code you will need to recreate this table.

DATA SMILEY_COMPANY;

 LENGTH Special_Person $20 Special_Number 8 Special_Code $1 Load_Date 8;

 FORMAT Load_Date date9.;

 INFILE DATALINES DELIMITER=',';

 INPUT Special_Person $ Special_Number Special_Code $ Load_Date;

DATALINES;

Smiley,10127911, ,20090

Smiley's Son,10173341,K,20090

Smiley's Twin,10376606,B,20090

Smiley's Wife,10927911,A,20090

Smiley's Son,11471884,E,20090

Smiley's Twin,11573691,G,20090

Smiley's Daughter,11975386,C,20090

Smiley's Son,12071884,J,20090

Smiley's Son,12871884,D,20090

Smiley's Twin,13173691,A,20090

Smiley's Wife,13771202,D,20090

Smiley's Daughter,13775498,H,20090

Smiley's Son,14171884,I,20090

Smiley's Twin,15373691,F,20090

Smiley's Son,15471884,C,20090

Smiley's Son,16074330,H,20090

Smiley's Daughter,16175498,B,20090

Smiley's Wife,16176964,I,20088

Smiley,16279111,E,20090

Smiley's Twin,16573691,K,20090

RUN;

 The SMILEY_COMPANY table is used

throughout this presentation.

 This table contains each Special

Person, Special Number, and Special

Code of the Smiley Company

employees.

 Load_Date is the date when each

row was created.

6

The output table contains 1 row:

 The Special_Code_Flag is set to 1 because the Special_Code is missing from this row.

The output is filtered to include only rows where a flag is set to 1:

This Query creates the SMILEY_CONTROL_VALUE table:

 Please see Appendix A to learn how to create

Computed Columns and see Appendix B for the
Base SAS code which corresponds to each example.

A Control Value table is created in which
Computed Columns are set to 1 if any data
is missing in the SMILEY_COMPANY table:

Special_Person_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Special_Number_Flag:
CASE

 WHEN t1.Special_Number = 0 THEN 1

 WHEN t1.Special_Number is missing

 THEN 1

 ELSE 0

END

Special_Code_Flag:
CASE

 WHEN t1.Special_Code = '' THEN 1

 ELSE 0

END

Load_Date_Flag:
CASE

 WHEN t1.Load_Date = . THEN 1

 ELSE 0

END

7

A One-Way Frequency is run using the 4 flags:

Here is the One-Way Frequency output with the 4 flags:

 This One-Way Frequency is setup to automatically send an email when this project is run.

Then one day NOTHING was missing from the SMILEY_COMPANY table…

 To replicate this scenario you will need to perform the following:

 Replace the Smiley,10127911, ,20090 DATALINE with Smiley,10127911,A,20090 in the

SMILEY_COMPANY Program Node on Page 6 and rerun to have no missing data in the table.

 Rerun the Query for the SMILEY_CONTROL_VALUE table and the Control Value Report One-

Way Frequency.

8

Here is the empty SMILEY_CONTROL_VALUE table:

 Since nothing is missing from the SMILEY_COMPANY table, all of the flags are set to 0 which

filters out all of the rows causing the SMILEY_CONTROL_VALUE table to be created empty.

 Do you know what happens when the SMILEY_CONTROL_VALUE table is created empty?

Note the Red X in the upper left corner
of the One-Way Frequency output:

 At first glance, it appears the report ran correctly – but remember, the input to the Control

Value Report was created empty.

 If the input is empty, then what are we seeing? Notice the Warning Message which appeared:

 This warning message unfortunately means that we are looking at the previous successful run

of this One-Way Frequency instead of the current results which we are seeking.

9

When the Smiley_Company table processed error free and no data was missing for the first time, it was ironic

that the resulting empty Smiley_Control_Value table caused the One-Way Frequency to not run! Consequently,

the previous results were generated on the monthly report instead of the current results.

Here is a review of the One-Way Frequency issue before we explore the solution:

 When data is missing in the Smiley_Company table a row is created in the Smiley_Control_Value table with

the column flags set to 1.

 When the Smiley_Control_Value table is populated with at least 1 row the One-Way Frequency runs correctly

and generates current results.

 However, when data is not missing from the Smiley_Company table no rows are created in the

Smiley_Control_Value table.

 When the Smiley_Control_Value table is created empty the One-Way Frequency does not run correctly and

does not generate current results but instead displays the previous results.

 In summary, the One-Way Frequency runs correctly and generates current results only when the

Smiley_Control_Value table is populated with at least 1 row created by missing data detected in the

Smiley_Company table.

In response to this dilemma, SAS Intuition kicked in and a quest was undertaken to find a permanent

workaround solution that would enable the project to run successfully – even if all the tables were empty.

Here is the solution which arose during the quest to resolve this issue:

 Create a Smiley_Control_Value_Row_Count table with the row count of the Smiley_Control_Value table.

 Create a Smiley_Control_Value_Mock_Row table based upon an indirect relationship between the

Smiley_Control_Value_Row_Count table and the Smiley_Company table.

 When the Smiley_Control_Value table is populated with rows, the Smiley_Control_Value_Row_Count table will

contain a non-zero row count, and the Smiley_Control_Value_Mock_Row table will be created empty.

 When the Smiley_Control_Value table is empty, the Smiley_Control_Value_Row_Count table will contain a

zero row count, and the Smiley_Control_Value_Mock_Row table will be created with 1 mock row of column

flags set to 0.

 Append the Smiley_Control_Value table and the Smiley_Control_Value_Mock_Row table to ensure that the

appended output is always populated with either real data or mock data instead of being created empty.

 Use this appended output as the input to the One-Way Frequency to enable it to always run correctly and to

generate current results.

Always Remember, It’s Too Soon To Quit!

Bob Wieland (Mr. Inspiration)

 What to do, what to do…

Necessity is the mother of all inventions.

Plato / Einstein

10

This Query creates the SMILEY_CONTROL_VALUE_ROW_COUNT table

with the row count of the SMILEY_CONTROL_VALUE table:

 A Count of Special_Person is used to create the SMILEY_CONTROL_VALUE_ROW_COUNT.

 Automatically Select Groups is selected and no groups are selected to count the rows.

The output table contains 1 row with 1 column:

11

Create a Smiley_Control_Value_Mock_Row table based upon an indirect

relationship between the Smiley_Control_Value_Row_Count table

and the Smiley_Company table:

 As the mock row is created, all 4 flags are set to a 0 value meaning nothing is missing.

 Since only 1 mock row is needed, Query limits are set to create 1 output row via the Options.

 A filter is set to create a mock row only if the SMILEY_CONTROL_VALUE table is empty.

Notice there are no columns to Join between the two tables:

12

How the Joinless Join works:

 The SMILEY_CONTROL_VALUE_ROW_COUNT table indirectly relates to the SMILEY_COMPANY

table because it contains the row count of the error rows in the SMILEY_COMPANY table.

 We utilize a Joinless Join to create a Cartesian Product based upon this indirect relationship.

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SMILEY_CONTROL_VALUE_ROW_COUNT table to the right of each of the 20 rows

and 4 columns in the SMILEY_COMPANY table.

No Problem ~

We will use a Joinless Join

based upon an indirect relationship

between the tables.

13

 This Warning Message always appears whenever 2 tables are joined with a Joinless Join

because SAS knows it will create a Cartesian Product which can take a lot of extra resources.

Here is the complete result of the Joinless Join:

 Notice that all 4 flags are set to 0 because no data is missing from the SMILEY_COMPANY table.

SAS Highlight

A Cartesian Product is a result set of all the possible rows and columns contained in 2 or more

tables. The resulting set of data can be extremely large and unwieldy. The DATA Step does not

easily lend itself to creating a Cartesian Product thus PROC SQL is the desired approach. Its most

noticeable coding characteristic is the absence of a WHERE-clause. Although rarely produced, a

Cartesian Product Join nicely illustrates a base (or internal representation) for all Joins.

Caution:

When you design your Joinless Join

make sure that one of the tables

has only ONE row!

14

Append the Smiley_Control_Value table and the

Smiley_Control_Value_Mock_Row table to ensure the appended output

is always populated with either real data or mock data

instead of being created empty:

 Notice the Append result matches the Smiley_Control_Value_Mock_Row table – Done & Done!

 We have achieved our desired results and we have a new input to the One-Way Frequency.

The One-Way Frequency is recreated using the appended table:

15

 Oh but wait... your new friend, the Joinless Join, is just getting started!

Here is the One-Way Frequency output with the 4 flags:

 The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is

missing – thanks to the Joinless Join .

Yea!!!

 Strike up the band,
 Toss the confetti,
 Release the balloons!

Applause… Applause… Applause…

Bring out the treats for everyone!

16

Here are the 3 additional tables the Program Node creates:

Next we design another Program Node to create 3 additional tables:

 This is the code you will need to recreate these tables.

DATA Special_Number_National_Average

 (KEEP=Special_Number_National_Average)

 Load_Date_Check (KEEP=Load_Date_Check)

 Special_Code_National_Focus

 (KEEP=Special_Code_National_Focus);

 LENGTH Load_Date_Check 8;

 FORMAT Load_Date_Check date9.;

 Special_Number_National_Average = 12000000;

 OUTPUT Special_Number_National_Average;

 Load_Date_Check = '01JAN2015'd;

 OUTPUT Load_Date_Check;

 Special_Code_National_Focus = 'K';

 OUTPUT Special_Code_National_Focus;

RUN;

 The Special_Number_National_Average table contains

the average of all the Special_Number columns from

each Smiley Company nationwide which we will use in a

Joinless Join to calculate a percentage of the

Special_Number column in our SMILEY_COMPANY table.

 The Load_Date_Check table contains a Load Date which

we will use in a Joinless Join to validate that all of our

SMILEY_COMPANY table rows were created in 2015.

 The Special_Code_National_Focus table contains a

Special Code from the Smiley Company National

Headquarters which we will use in a Joinless Join to

filter our SMILEY_COMPANY table output.

17

Designing a Joinless Join to perform a Calculation:

 Build a Query with the SMILEY_COMPANY table and the Smiley Company National

Headquarters SPECIAL_NUMBER_NATIONAL_AVERAGE table.

 The Joinless Join is based upon the SPECIAL_NUMBER_NATIONAL_AVERAGE table which

indirectly relates to the SMILEY_COMPANY table because it contains the average of all the

Special_Number columns from each SMILEY_COMPANY table nationwide.

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SPECIAL_NUMBER_NATIONAL_AVERAGE table to the right of each of the 20 rows

and 4 columns in the SMILEY_COMPANY table.

18

 Calculate a Special_Number_Percent Computed Column using the Special_Number column from

the SMILEY_COMPANY table and the Special_Number_National_Average column from the

Cartesian Product results.

 Here is the final result of the SMILEY_COMPANY table with the Special_Number_Percent column

to the right of each of the 20 rows and 4 columns.

19

Designing a Joinless Join to perform a Validation:

 Build a Query with the SMILEY_COMPANY table and the LOAD_DATE_CHECK table.

 The Joinless Join is based upon the LOAD_DATE_CHECK table which indirectly relates to the

SMILEY_COMPANY table because it contains the valid Load Date that should be found in the

Load_Date column in the SMILEY_COMPANY table.

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the LOAD_DATE_CHECK table to the right of each of the 20 rows and 4 columns in the

SMILEY_COMPANY table.

20

 Validate a Date_Validation Computed Column using the Load_Date column from the

SMILEY_COMPANY table and the Load_Date_Check column from the Cartesian Product results.

 Here is the final result of the SMILEY_COMPANY table with the Special_Number_Percent column

to the right of each of the 20 rows and 4 columns.

21

Designing a Joinless Join to perform a Filtration:

 Build a Query with the SMILEY_COMPANY table and the Smiley Company National

Headquarters SPECIAL_CODE_NATIONAL_FOCUS table.

 The Joinless Join is based upon the SPECIAL_CODE_NATIONAL_FOCUS table which indirectly

relates to the SMILEY_COMPANY table because it contains the Special Code to be focused upon

nationwide within the Special_Code column in the SMILEY_COMPANY table.

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SPECIAL_CODE_NATIONAL_FOCUS table to the right of each of the 20 rows and 4

columns in the SMILEY_COMPANY table.

22

 Filter the raw data to include the rows where the value of the Special_Code column from the

SMILEY_COMPANY table is equal to the value of the Special_Code_National_Focus column from

the Cartesian Product results.

 Here is the final result of the SMILEY_COMPANY table with the Special_Code column filtered by

the Special_Code_National_Focus column.

23

Designing a Joinless Join to perform a

Mock Row Creation, Calculation, Validation, and Filtration:

 Build a Query with the SMILEY_COMPANY table and the SMILEY_CONTROL_VALUE_ROW

_COUNT, SPECIAL_NUMBER_NATIONAL_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE

_NATIONAL_FOCUS tables.

 The Joinless Join is based upon the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER

_NATIONAL_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS tables which

indirectly relate to the SMILEY_COMPANY table as shown in the previous examples.

24

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER_NATIONAL

_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS tables to the right of

each of the 20 rows and 4 columns in the SMILEY_COMPANY table.

 The Mock Row Creation, Calculation, Validation, and Filtration are represented by Computed

Columns which are derived in the same way as shown in the previous examples along with one

new Special_Code_Match Computed Column representing Filtration.

 Here is the final result with the Flags to the left and the Calculation, Validation, and Filtration

Computed Columns to the right of each of the 20 rows and 4 columns.

25

 The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is

missing ~ thanks to the Joinless Join .

26

Designing a Joinless Join to combine 4 tables

with No Relationships At All

using the 3 additional tables that the 2nd Program Node created

 and the Smiley_Control_Value_Row_Count table:

 Notice how the 4 columns in the 4 tables have No Relationships At All.

 Build a Query with the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER_NATIONAL

_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE _NATIONAL_FOCUS tables.

 This time the Joinless Join is based upon the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL

_NUMBER_NATIONAL_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS

tables having No Relationships At All.

27

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 1

column of the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER_NATIONAL

_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS tables to the right of

each other.

 Here is the final result from selecting all 4 columns which is equal to the Cartesian Product.

28

Designing a Joinless Join of the 1 row 4 column table to perform

a Mock Row Creation, Calculation, Validation, and Filtration:

 Build a Query with the SMILEY_COMPANY table and the JOINLESS_JOIN_NOTHING_IN_COMMON

table.

 The Joinless Join is based upon all 4 columns in the JOINLESS_JOIN_NOTHING_IN_COMMON table

which indirectly relate to the SMILEY_COMPANY table as shown in the previous examples.

29

 The Joinless Join automatically creates a Cartesian Product which places the 1 row and 4

columns of the SMILEY_CONTROL_VALUE_ROW_COUNT, SPECIAL_NUMBER_NATIONAL

_AVERAGE, LOAD_DATE_CHECK, and SPECIAL_CODE_NATIONAL_FOCUS tables to the right of

each of the 20 rows and 4 columns in the SMILEY_COMPANY table.

 The Mock Row Creation, Calculation, Validation, and Filtration are represented by Computed

Columns which are derived in the same way as shown in the previous examples along with one

new Special_Code_Match Computed Column representing Filtration.

 Here is the final result with the Flags to the left and the Calculation, Validation, and Filtration

Computed Columns to the right of each of the 20 rows and 4 columns.

30

 The One-Way Frequency correctly displays that all 4 flags are set to 0 and therefore no data is

missing – thanks to the Joinless Join of 1 row with 4 columns .

31

Design a Quarterly Report PDF utilizing the results of the

Joinless Join of the 4 tables with No Relationships At All:

 The Smiley Company has requested a quarterly report of the results of the Joinless Join of the 4

tables with No Relationships At All that we designed on pages 26 and 27.

 The ODS PDF FILE statement opens the SMILEY COMPANY.PDF with no table of contents – NOTOC.

 The TITLE statement includes the title shown at the top of the PDF.

 PROC REPORT is used to report the contents of the JOINLESS_JOIN_NOTHING_IN_COMMON table in

the PDF with no default report window – NOWD.

 The COLUMNS statement tells PROC REPORT which columns to include in the report.

 The DEFINE statements provide a WIDTH and justification along with renaming each column.

 The ODS PDF CLOSE statement closes the PDF.

 Here is the PDF of the results of the Joinless Join of the 4 tables with No Relationships At All.

ODS PDF FILE='/data/MWSUG/JOINLESS_JOIN/SMILEY COMPANY.PDF' NOTOC;

TITLE 'SMILEY COMPANY - QUARTERLY VALIDATION PARAMETERS';

PROC REPORT DATA=JOINLESS_JOIN_NOTHING_IN_COMMON NOWD;

 COLUMNS SMILEY_CONTROL_VALUE_ROW_COUNT Special_Number_National_Average

 Load_Date_Check Special_Code_National_Focus;

 DEFINE SMILEY_CONTROL_VALUE_ROW_COUNT / STYLE={WIDTH=25mm JUST=CENTER}

 "Missing Values";

 DEFINE Special_Number_National_Average / STYLE={WIDTH=25mm JUST=CENTER}

 "National Average";

 DEFINE Load_Date_Check / STYLE={WIDTH=25mm JUST=CENTER}

 "Load Date Check";

 DEFINE Special_Code_National_Focus / STYLE={WIDTH=25mm JUST=CENTER}

 "Special Code";

RUN;

ODS PDF CLOSE;

32

CONCLUSION

The Joinless Join empowers you to creatively overcome the limits of a standard Join or Merge and enables you

to expand the power of Base SAS and SAS Enterprise Guide in a new way. The Power To Know how to design

a Joinless Join sets off The Power To Create tables based upon dependencies, indirect relationships, or no

relationships at all which leads to The Power To Automate projects even when tables cannot be directly

joined or merged ~ try saying that statement really fast for fun !

The Joinless Join bridges the research impasse you experience when needing to combine data from tables

which do not contain like columns or the same variable name. New worlds of table creations, calculations,

validations, filtrations, and PROC REPORTing have opened up to greatly expand your data transformation and

analysis toolkit. Begin thinking about how you can benefit from the power and versatility of the Joinless Join.

SAS Programming is like a series of intricate and fluid domino designs and you are the Designer. Your

desire to design a quality program fuels your thoroughness and attention to detail. As a SAS Professional,

your inquisitive nature, research oriented mindset, and solution driven focus are among your greatest assets.

Always remember – It's not what the SAS World holds for you, it's what YOU bring to it! Continue to develop

and build on your many skills and talents. Keep looking for different ways to share your God-given abilities

and ideas. You will soon discover new and creative ways to design your SAS programs. Plan on coming back

to the MWSUG Conference next year to shed some light on the exciting things you are learning. All of us are

on the SAS journey with you and we look forward to your teaching sessions in the future.

As we conclude, we want to introduce you to our SAS Mascot, Smiley. Smiley represents the SAS Joy which

each of us experience as we find better ways to accomplish mighty and worthy deeds using SAS. The three of

us, along with Professor Domino, hope we have expanded and enriched your SAS knowledge.

Thank You for sharing part of your SAS journey with us ~

 Happy SAS Trails to you… until we meet again

Your life is like a campfire at night -
You never know how many people will see it
and be comforted and guided by your light.

Claire Draper

Rule #6: Study hard and learn all you can.

 Roy Rogers Riders Club Rules

How wonderful it is that we need not wait a single minute
before starting to improve ourselves and our world!

Anne Frank

33

MEET THE AUTHORS

Writing is a permanent legacy.

John C. Maxwell

Kent Phelps ~ SAS Certified Professional ~ B.S. Electrical Engineering ~ Writer ~ Teacher ~ Coach ~ has

presented at the MWSUG Conference for 3 years, worked in IT and Data Governance since 1990, programmed

in SAS since 2007, and specializes in blending the best of Base SAS with SAS Enterprise Guide to engineer

automated solutions. He co-created/taught Intro to SAS EG classes, offered SAS News You Can Use, presented

at the Iowa SAS Users Group (IASUG), studied Transformational Leadership, Dynamic Teamwork, and

Personal Growth since 1994, and is certified as a John Maxwell Team and 48 Days To The Work You Love

Coach. Past highlights include acting for over ten years, co-leading WOW Drama, singing a drama solo with a

live orchestra, and auditioning in Branson, MO. Kent wants to encourage and equip you to fulfill your life and

leadership potential as you build an enduring legacy of inspiration, excellence, and honor.

Ronda Phelps ~ Writer ~ Teacher ~ Coach ~ has presented at the MWSUG Conference for 2 years, formerly

worked in the Banking and Insurance industries for 19 years, studied Transformational Leadership, Dynamic

Teamwork, and Personal Growth since 1994, and is certified as a John Maxwell Team and 48 Days To The

Work You Love Coach. Past highlights include speaking in Siberia, acting for over ten years, co-leading WOW

Drama, and developing life-changing presentations. Ronda believes that YOU are a gift the world is waiting to

receive, and she wants to encourage and equip you to pursue your unique destiny as you navigate your life

journey with intentionality, fulfilling purpose, and enduring hope.

We invite you to share your valued comments with us:

Kent Ronda Team Phelps

The SASketeers ~ All for SAS & SAS for All!

E-mail: SASketeers@q.com

 We look forward to connecting with you in the future!

mailto:SASketeers@q.com

34

APPENDIX A
How To Create Computed Columns

Here is the process to create the 4 Computed Columns

in the SMILEY_CONTROL_VALUE table:

 From within the Query click Computed Columns to open the list of Computed Columns.

 Click New to create a New Computed Column.

 To create a flag using a CASE statement, select Advanced expression and click Next.

 Enter the expression while typing or clicking the functions and column names and click Next.

35

 Enter the New Computed Column as the Identifier and Column Name and click Next.

 Click Finish and then click Close to close the Computed Column.

 The Special_Person_Flag now appears under Computed Columns and in the Selected Data.

 Repeat this process to create the 3 additional Computed Columns that are needed.

36

The following Base SAS Code was generated by SAS Enterprise Guide for all examples and creates the
same results when copied to and run in Base SAS.

This code creates the SMILEY_CONTROL_VALUE table:

 The PROC SQL creates a TABLE called SMILEY_CONTROL_VALUE by assigning the value 0 (present)
or 1 (missing) to Special_Person_Flag, Special_Number_Flag, Special_Code_Flag, and
Load_Date_Flag and selecting Special_Person, Special_Number, Special_Code, and
Load_Date from the SMILEY_COMPANY table.

 Each CASE statement ends with AS and a variable name because the result of each CASE
statement is stored in a flag variable.

 The WHERE clause contains the word CALCULATED before each variable name because these
variables are calculated rather than selected from the table while also limiting the output data
set to contain only rows in which 1 or more of the calculated variables are missing (= 1).

PROC SQL;

 CREATE TABLE WORK.SMILEY_CONTROL_VALUE AS

 SELECT /* Special_Person_Flag */

 (CASE

 WHEN t1.Special_Person = ''

 THEN 1

 ELSE 0

 END) AS Special_Person_Flag,

 /* Special_Number_Flag */

 (CASE

 WHEN t1.Special_Number = 0

 THEN 1

 WHEN t1.Special_Number IS MISSING

 THEN 1

 ELSE 0

 END) AS Special_Number_Flag,

 /* Special_Code_Flag */

 (CASE

 WHEN t1.Special_Code = ''

 THEN 1

 ELSE 0

 END) AS Special_Code_Flag,

 /* Load_Date_Flag */

 (CASE

 WHEN t1.Load_Date = .

 THEN 1

 ELSE 0

 END) AS Load_Date_Flag,

 t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date

 FROM WORK.SMILEY_COMPANY t1

 WHERE (CALCULATED Special_Person_Flag) = 1 OR

 (CALCULATED Special_Number_Flag) = 1 OR

 (CALCULATED Special_Code_Flag) = 1 OR

 (CALCULATED Load_Date_Flag) = 1;

QUIT;

APPENDIX B
How To Code a Joinless Join Using Base SAS

37

This code creates the Control Value Report for
the Smiley Company One-Way Frequency:

 The PROC SQL creates a VIEW from the SMILEY_CONTROL_VALUE table containing only the
variables which are to be included in the One-Way Frequency.

 The TITLE and FOOTNOTE statements with no title or footnote clear all titles and footnotes, and
the TITLE1, TITLE2, and FOOTNOTE1 statements set the titles and footnote.

 FOOTNOTE1 is an optional default which is always added by SAS Enterprise Guide.

 The PROC FREQ creates TABLES for each Flag containing the SCORES or values of each Flag
listed by INTERNAL or numeric/alphabetic ORDER.

 Both ORDER=INTERNAL and SCORES=TABLE are optional defaults for PROC FREQ which are always
added by SAS Enterprise Guide.

PROC SQL;

 CREATE VIEW WORK.SORT AS

 SELECT T.Special_Person_Flag, T.Special_Number_Flag,

 T.Special_Code_Flag, T.Load_Date_Flag

 FROM WORK.SMILEY_CONTROL_VALUE AS T;

QUIT;

TITLE;

TITLE1 "Control Value Report for";

TITLE2 "Smiley Company";

FOOTNOTE;

FOOTNOTE1 "Generated by the SAS System on %TRIM(%QSYSFUNC(DATE(),

 NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMNP12.))";

PROC FREQ DATA=WORK.SORT

 ORDER=INTERNAL;

 TABLES Special_Person_Flag / SCORES=TABLE;

 TABLES Special_Number_Flag / SCORES=TABLE;

 TABLES Special_Code_Flag / SCORES=TABLE;

 TABLES Load_Date_Flag / SCORES=TABLE;

RUN;

RUN; QUIT;

TITLE; FOOTNOTE;

This code creates the SMILEY_CONTROL_VALUE_ROW_COUNT table:

 The PROC SQL creates a TABLE called SMILEY_CONTROL_VALUE_ROW_COUNT from the
SMILEY_CONTROL_VALUE table containing the COUNT of the values of the Special_Person
variable stored in the SMILEY_COUNTROL_VALUE_ROW_COUNT variable.

PROC SQL;

 CREATE TABLE WORK.SMILEY_CONTROL_VALUE_ROW_COUNT AS

 SELECT /* SMILEY_CONTROL_VALUE_ROW_COUNT */

 (COUNT(t1.Special_Person)) AS SMILEY_COUNTROL_VALUE_ROW_COUNT

 FROM WORK.SMILEY_CONTROL_VALUE t1;

QUIT;

38

This code creates the SMILEY_CONTROL_VALUE_MOCK_ROW table:

 The PROC SQL creates a TABLE called SMILEY_CONTROL_VALUE_MOCK_ROW containing one
observation (OUTOBS=1).

 The value 0 is assigned to Special_Person_Flag, Special_Number_Flag, Special_Code_Flag,
and Load_Date_Flag, and Special_Person, Special_Number, Special_Code, and Load_Date
are selected from the SMILEY_COMPANY table.

 Notice the FROM does not contain any type of join between the 2 tables thus a Joinless Join.

 The WHERE clause causes the output row to be created with all 4 flags set to 0 only when the
value of the SMILEY_CONTROL_VALUE_ROW_COUNT = 0 and therefore is a ‘Mock Row’.

PROC SQL OUTOBS=1;

 CREATE TABLE WORK.SMILEY_CONTROL_VALUE_MOCK_ROW AS

 SELECT /* Special_Person_Flag */

 (0) AS Special_Person_Flag,

 /* Special_Number_Flag */

 (0) AS Special_Number_Flag,

 /* Special_Code_Flag */

 (0) AS Special_Code_Flag,

 /* Load_Date_Flag */

 (0) AS Load_Date_Flag,

 t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date

 FROM WORK.SMILEY_COMPANY t1, WORK.SMILEY_CONTROL_VALUE_ROW_COUNT t2

 WHERE t2.SMILEY_COUNTROL_VALUE_ROW_COUNT = 0;

QUIT;

This code creates the Append of the Smiley_Control_Value
table and the Smiley_Control_Value_Mock_Row table:

 The PROC SQL creates a TABLE called SMILEY_CONTROL_VALUE_FINAL by concatenating the
results (OUTER UNION) of all columns (SELECT *) from the SMILEY_CONTROL_VALUE and the
SMILEY_CONTROL_VALUE_MOCK_ROW tables and overlaying all corresponding (CORR) columns.

 The DATA step creates a data set (or table) called SMILEY_CONTROL_VALUE_FINAL by SETing the
SMILEY_CONTROL_VALUE data set and the SMILEY_CONTROL_VALUE_MOCK_ROW data set with all
columns (which are the same in this case) from both data sets.

 The PROC SQL and the DATA step create the same results, thus either can be used.

PROC SQL;

 CREATE TABLE WORK.SMILEY_CONTROL_VALUE_FINAL AS

 SELECT * FROM WORK.SMILEY_CONTROL_VALUE

 OUTER UNION CORR

 SELECT * FROM WORK.SMILEY_CONTROL_VALUE_MOCK_ROW;

QUIT;

OR

DATA WORK.SMILEY_CONTROL_VALUE_FINAL;

 SET WORK.SMILEY_CONTROL_VALUE

 WORK.SMILEY_CONTROL_VALUE_MOCK_ROW;

RUN;

39

This code creates the Final Control Value Report
for the Smiley Company One-Way Frequency:

 The PROC SQL creates a VIEW from the SMILEY_CONTROL_VALUE_FINAL table containing only the
variables which are to be included in the One-Way Frequency.

 The TITLE and FOOTNOTE statements with no title or footnote clear all titles and footnotes, and
the TITLE1, TITLE2, and FOOTNOTE1 statements set the titles and footnote.

 FOOTNOTE1 is an optional default which is always added by SAS Enterprise Guide.

 The PROC FREQ creates TABLES for each Flag containing the SCORES or values of each Flag
listed by INTERNAL or numeric/alphabetic ORDER.

 Both ORDER=INTERNAL and SCORES=TABLE are optional defaults for PROC FREQ which are always
added by SAS Enterprise Guide.

PROC SQL;

 CREATE VIEW WORK.SORT AS

 SELECT T.Special_Person_Flag, T.Special_Number_Flag,

 T.Special_Code_Flag, T.Load_Date_Flag

 FROM WORK.SMILEY_CONTROL_VALUE_FINAL AS T;

QUIT;

TITLE;

TITLE1 "Final Control Value Report for";

TITLE2 "Smiley Company";

FOOTNOTE;

FOOTNOTE1 "Generated by the SAS System on %TRIM(%QSYSFUNC(DATE(),

 NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMNP12.))";

PROC FREQ DATA=WORK.SORT

 ORDER=INTERNAL;

 TABLES Special_Person_Flag / SCORES=TABLE;

 TABLES Special_Number_Flag / SCORES=TABLE;

 TABLES Special_Code_Flag / SCORES=TABLE;

 TABLES Load_Date_Flag / SCORES=TABLE;

RUN;

RUN; QUIT;

TITLE; FOOTNOTE;

40

This code creates the SMILEY_JOINLESS_JOIN_CALCULATION table:

 The PROC SQL creates a TABLE called SMILEY_JOINLESS_JOIN_CALCULATION by selecting
Special_Person, Special_Number, Special_Code, and Load_Date from the SMILEY_COMPANY
table.

 The Special_Number_Percent column is calculated by taking the ratio of Special_Number
from the SMILEY_COMPANY table and Special_Number_National_Average from the
SPECIAL_NUMBER_NATIONAL_AVERAGE table and applying the FORMAT=PERCENT8.1 to obtain the
resulting percent instead of the ratio.

 Notice the FROM does not contain any type of join between the 2 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.SMILEY_JOINLESS_JOIN_CALCULATION AS

 SELECT t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date,

 /* Special_Number_Percent */

 (t1.Special_Number/t2.Special_Number_National_Average)

 FORMAT=PERCENT8.1 AS Special_Number_Percent;

 FROM WORK.SMILEY_COMPANY t1, WORK.SPECIAL_NUMBER_NATIONAL_AVERAGE t2;

QUIT;

This code creates the SMILEY_JOINLESS_JOIN_VALIDATION table:

 The PROC SQL creates a TABLE called SMILEY_JOINLESS_JOIN_VALIDATION by selecting
Special_Person, Special_Number, Special_Code, and Load_Date from the SMILEY_COMPANY
table.

 The Date_Validation column is derived by checking if Load_Date from the SMILEY_COMPANY
table is greater than or equal to (GE) Load_Date_Check from the LOAD_DATE_CHECK table and
assigning 'AOK' or 'NOT AOK' as a result.

 Notice the FROM does not contain any type of join between the 2 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.SMILEY_JOINLESS_JOIN_VALIDATION AS

 SELECT t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date,

 /* Date_Validation */

 (CASE

 WHEN t1.Load_Date GE t2.Load_Date_Check

 THEN 'AOK'

 ELSE 'NOT AOK'

 END) AS Date_Validation

 FROM WORK.SMILEY_COMPANY t1, WORK.LOAD_DATE_CHECK t2;

QUIT;

41

This code creates the SMILEY_JOINLESS_JOIN_FILTRATION table:

 The PROC SQL creates a TABLE called SMILEY_JOINLESS_JOIN_CALCULATION by selecting

Special_Person, Special_Number, Special_Code, and Load_Date from the SMILEY_COMPANY
table.

 The WHERE clause filters the output to include only observations in which t1.Special_Code
from the SMILEY_COMPANY table is equal to Special_Code_National_Focus from the
SPECIAL_CODE_NATIONAL_FOCUS table.

 Notice the FROM does not contain any type of join between the 2 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.SMILEY_JOINLESS_JOIN_FILTRATION AS

 SELECT t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date,

 FROM WORK.SMILEY_COMPANY t1, WORK.SPECIAL_CODE_NATIONAL_FOCUS t2

 WHERE t1.Special_Code = t2.Special_Code_National_Focus;

QUIT;

42

This code creates the SMILEY_JOINLESS_JOIN_ALL_CHECKS table:

 The PROC SQL creates a TABLE called SMILEY_JOINLES_JOIN_ALL_CHECKS by selecting
Special_Person, Special_Number, Special_Code, and Load_Date from the SMILEY_COMPANY
table.

 If SMILEY_CONTROL_VALUE_ROW_COUNT is 0 then a mock row needs to be created with
Special_Person_Flag, Special_Number_Flag, Special_Code_Flag, and Load_Date_Flag

assigned a value 0; otherwise a mock row is not needed and the flags are set to Null (.).

 The Special_Number_Percent, Date_Validation, and Special_Code_Match columns are
calculated or derived as in the previous examples; however Special_Code_Match is a derived
column rather than an applied filter.

 Notice the FROM does not contain any type of join between the 5 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.SMILEY_JOINLESS_JOIN_ALL_CHECKS AS

 SELECT /* Special_Person_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Person_Flag,

 /* Special_Number_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Number_Flag,

 /* Special_Code_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Code_Flag,

 /* Load_Date_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Load_Date_Flag,

 t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date,

 /* Special_Number_Percent */

 (t1.Special_Number/t3.Special_Number_National_Average)

 FORMAT=PERCENT8.1 AS Special_Number_Percent,

 /* Date_Validation */

 (CASE

 WHEN t1.Load_Date GE t4.Load_Date_Check

 THEN 'AOK'

 ELSE 'NOT AOK'

 END) AS Date_Validation,

 /* Special_Code_Match */

 (CASE

 WHEN t1.Special_Code = t5.Special_Code_National_Focus

 THEN 'MATCH'

 ELSE 'NO MATCH'

 END) AS Special_Code_Match

 FROM WORK.SMILEY_COMPANY t1, WORK.SMILEY_CONTROL_VALUE_ROW_COUNT t2,

 WORK.SPECIAL_NUMBER_NATIONAL_AVERAGE t3, WORK.LOAD_DATE_CHECK t4,

 WORK.SPECIAL_CODE_NATIONAL_FOCUS t5;

QUIT;

43

This code creates the Append of the Smiley_Control_Value
table and the Smiley_Joinless_Join_All_Checks table:

 The PROC SQL creates a TABLE called SMILEY_CONTROL_VALUE_FINAL_ALL by concatenating the

results (OUTER UNION) of all columns (SELECT *) from the SMILEY_CONTROL_VALUE and the
SMILEY_JOINLESS_JOIN_ALL_CHECKS tables and overlaying all corresponding (CORR) columns.

 The DATA step creates a data set (or table) called SMILEY_CONTROL_VALUE_FINAL_ALL by SETing
the SMILEY_CONTROL_VALUE data set and the SMILEY_JOINLESS_JOIN_ALL_CHECKS data set with
all columns (which are the same in this case) from both data sets.

 The PROC SQL and the DATA step create the same results, thus either can be used.

PROC SQL;

 CREATE TABLE WORK.SMILEY_CONTROL_VALUE_FINAL_ALL AS

 SELECT * FROM WORK.SMILEY_CONTROL_VALUE

 OUTER UNION CORR

 SELECT * FROM WORK.SMILEY_JOINLESS_JOIN_ALL_CHECKS;

QUIT;

OR

DATA WORK.SMILEY_CONTROL_VALUE_FINAL_ALL;

 SET WORK.SMILEY_CONTROL_VALUE

 WORK.SMILEY_JOINLESS_JOIN_ALL_CHECKS;

RUN;

44

This code creates the Control Value Report for the
Smiley Company All Joinless Joins One-Way Frequency:

 The PROC SQL creates a VIEW from the SMILEY_CONTROL_VALUE_FINAL_ALL table containing

only the variables which are to be included in the One-Way Frequency.

 The TITLE and FOOTNOTE statements with no title or footnote clear all titles and footnotes, and
the TITLE1, TITLE2, and FOOTNOTE1 statements set the titles and footnote.

 FOOTNOTE1 is an optional default which is always added by SAS Enterprise Guide.

 The PROC FREQ creates TABLES for each Flag containing the SCORES or values of each Flag
listed by INTERNAL or numeric/alphabetic ORDER.

 Both ORDER=INTERNAL and SCORES=TABLE are optional defaults for PROC FREQ which are always
added by SAS Enterprise Guide.

PROC SQL;

 CREATE VIEW WORK.SORT AS

 SELECT T.Special_Person_Flag, T.Special_Number_Flag,

 T.Special_Code_Flag, T.Load_Date_Flag

 FROM WORK.SMILEY_CONTROL_VALUE_FINAL_ALL AS T;

QUIT;

TITLE;

TITLE1 "Control Value Report for";

TITLE2 "Smiley Company All Joinless Joins";

FOOTNOTE;

FOOTNOTE1 "Generated by the SAS System on %TRIM(%QSYSFUNC(DATE(),

 NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMNP12.))";

PROC FREQ DATA=WORK.SORT

 ORDER=INTERNAL;

 TABLES Special_Person_Flag / SCORES=TABLE;

 TABLES Special_Number_Flag / SCORES=TABLE;

 TABLES Special_Code_Flag / SCORES=TABLE;

 TABLES Load_Date_Flag / SCORES=TABLE;

RUN;

RUN; QUIT;

TITLE; FOOTNOTE;

45

This code creates the JOINLESS_JOIN_NOTHING_IN_COMMON table:

 The PROC SQL creates a TABLE called JOINLESS_JOIN_NOTHING_IN_COMMON by selecting

SMILEY_CONTROL_VALUE_ROW_COUNT from the SMILEY_CONTROL_VALUE_ROW_COUNT table,
Special_Number_National_Average from the SPECIAL_NUMBER_NATIONAL_AVERAGE table,
Load_Date_Check from the LOAD_DATE_CHECK table, and Special_Code_National_Focus from
the SMILEY_COMPANY table.

 Notice the FROM does not contain any type of join between the 4 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.JOINLESS_JOIN_NOTHING_IN_COMMON AS

 SELECT t1.SMILEY_CONTROL_VALUE_ROW_COUNT,

 t2.Special_Number_National_Average,

 t3.Load_Date_Check,

 t4.Special_Code_National_Focus,

 FROM WORK.SMILEY_CONTROL_VALUE_ROW_COUNT t1,

 WORK.SPECIAL_NUMBER_NATIONAL_AVERAGE t2, WORK.LOAD_DATE_CHECK t3,

 WORK.SPECIAL_CODE_NATIONAL_FOCUS t4;

QUIT;

46

This code creates the SMILEY_JOINLESS_JOIN_ALL_AGAIN table:

 The PROC SQL creates a TABLE called SMILEY_JOINLES_JOIN_ALL_CHECKS by selecting

Special_Person, Special_Number, Special_Code, and Load_Date from the SMILEY_COMPANY
table.

 If SMILEY_CONTROL_VALUE_ROW_COUNT is 0 then a mock row is needs to be created with
Special_Person_Flag, Special_Number_Flag, Special_Code_Flag, and Load_Date_Flag

assigned a value 0; otherwise a mock row is not needed and the flags are set to Null (.).

 The Special_Number_Percent, Date_Validation, and Special_Code_Match columns are
calculated or derived as in the previous examples; however Special_Code_Match is a derived
column rather than an applied filter.

 Notice the FROM does not contain any type of join between the 2 tables and thus is a Joinless
Join.

PROC SQL;

 CREATE TABLE WORK.SMILEY_JOINLESS_JOIN_ALL_AGAIN AS

 SELECT /* Special_Person_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Person_Flag,

 /* Special_Number_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Number_Flag,

 /* Special_Code_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Special_Code_Flag,

 /* Load_Date_Flag */

 (CASE t2.SMILEY_CONTROL_VALUE_ROW_COUNT

 WHEN 0 THEN 0

 ELSE .

 END) AS Load_Date_Flag,

 t1.Special_Person,

 t1.Special_Number,

 t1.Special_Code,

 t1.Load_Date,

 /* Special_Number_Percent */

 (t1.Special_Number/t2.Special_Number_National_Average)

 FORMAT=PERCENT8.1 AS Special_Number_Percent,

 /* Date_Validation */

 (CASE

 WHEN t1.Load_Date GE t2.Load_Date_Check

 THEN 'AOK'

 ELSE 'NOT AOK'

 END) AS Date_Validation,

 /* Special_Code_Match */

 (CASE

 WHEN t1.Special_Code = t2.Special_Code_National_Focus

 THEN 'MATCH'

 ELSE 'NO MATCH'

 END) AS Special_Code_Match

 FROM WORK.SMILEY_COMPANY t1, WORK.JOINLESS_JOIN_NOTHING_IN_COMMON t2;

QUIT;

47

This code creates the Control Value Report for the
Smiley Company All Joinless Joins Again One-Way Frequency:

 The PROC SQL creates a VIEW from the SMILEY_JOINLESS_JOIN_ALL_AGAIN table containing
only the variables which are to be included in the One-Way Frequency.

 The TITLE and FOOTNOTE statements with no title or footnote clear all titles and footnotes, and
the TITLE1, TITLE2, and FOOTNOTE1 statements set the titles and footnote.

 FOOTNOTE1 is an optional default which is always added by SAS Enterprise Guide.

 The PROC FREQ creates TABLES for each Flag containing the SCORES or values of each Flag
listed by INTERNAL or numeric/alphabetic ORDER.

 Both ORDER=INTERNAL and SCORES=TABLE are optional defaults for PROC FREQ which are always
added by SAS Enterprise Guide.

PROC SQL;

 CREATE VIEW WORK.SORT AS

 SELECT T.Special_Person_Flag, T.Special_Number_Flag,

 T.Special_Code_Flag, T.Load_Date_Flag

 FROM WORK.SMILEY_JOINLESS_JOIN_ALL_AGAIN AS T;

QUIT;

TITLE;

TITLE1 "Control Value Report for";

TITLE2 "Smiley Company All Joinless Joins Again";

FOOTNOTE;

FOOTNOTE1 "Generated by the SAS System on %TRIM(%QSYSFUNC(DATE(),

 NLDATE20.)) at %TRIM(%SYSFUNC(TIME(), TIMEAMNP12.))";

PROC FREQ DATA=WORK.SORT

 ORDER=INTERNAL;

 TABLES Special_Person_Flag / SCORES=TABLE;

 TABLES Special_Number_Flag / SCORES=TABLE;

 TABLES Special_Code_Flag / SCORES=TABLE;

 TABLES Load_Date_Flag / SCORES=TABLE;

RUN;

RUN; QUIT;

TITLE; FOOTNOTE;

48

ACKNOWLEDGMENTS

We want to thank the 27th Annual MWSUG 2016 Hands-On Workshop Section Co-Chairs, Dave Foster and

Chuck Kincaid, for graciously accepting our abstract and paper. In addition, we want to express our

appreciation to the Conference Co-Chairs, Richann Watson (Academic Chair) and Adrian Katschke

(Operations Chair), the Executive Committee and Conference Leaders, and SAS Institute for their diligent

efforts in organizing this illuminating and energizing conference.

We also offer our deep gratitude to our friend, mentor, and fellow SASketeer, Kirk Paul Lafler. Your heart to

continuously share what you are learning, blended with your servant leadership and supportive guidance, is a

constant light of encouragement to us. And in conclusion, we want to give a shout out to our friend, Charlie

Shipp, for his friendship and faithful service to the SAS World. You both inspire us to share what we are

learning and our hope is to be a light of encouragement to you as well ~ All for SAS & SAS for All!

REFERENCES

Carpenter, Art (2012), PROC REPORT Basics: Getting Started with the Primary Statements, Proceedings of the 6th Annual SAS Global Forum

(SGF) 2012 Conference, California Occidental Consultants, Anchorage, AK, USA.

http://support.sas.com/resources/papers/proceedings12/242-2012.pdf

Celko, Joe (2010), Joe Celko's SQL for Smarties, Fourth Edition: Advanced SQL Programming (The Morgan Kaufmann Series in Data

Management Systems); November 10, 2010; ISBN-10: 0123820227; ISBN-13: 978-0123820228.

http://www.accuteach.com/book/joe-celkos-sql-for-smarties-fourth-edition-advanced-sql-programming-the-morgan-kaufmann-series-

in-data-management-systems-by-joe-celko/#

Foley, Malachy J. (2005), Merging vs. Joining: Comparing the DATA Step with SQL, Proceedings of the 30th Annual SAS Users Group

International (SUGI) 2005 Conference, University of North Carolina, Chapel Hill, NC, USA.

http://www.scsug.org/SCSUGProceedings/2005/Foley_Merging%20vs%20Joining%20-%20184.pdf

Kent, Paul, SQL Joins -- The Long and The Short of It; SAS Institute Inc., Cary, NC, USA.

http://support.sas.com/techsup/technote/ts553.html

Kerman, Jonathan (2010), Ordering PROC FREQ Around, NorthEast SAS Users Group (NESUG) 2010 Conference, Johns Hopkins

University, S Baltimore, MD, USA.

http://www.lexjansen.com/nesug/nesug10/cc/cc16.pdf

Lafler, Kirk Paul (2013), PROC SQL: Beyond the Basics Using SAS, Second Edition; SAS Press.

http://support.sas.com/publishing/authors/lafler.html

Lafler, Kirk Paul and Mira Shapiro (2013), Point-and-Click Programming Using SAS® Enterprise Guide®, NorthEast SAS Users Group

(NESUG) 2013 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

 http://www.lexjansen.com/nesug/nesug13/63_Final_Paper.pdf

Lafler, Kirk Paul (2012), Exploring DATA Step Merges and PROC SQL Joins, Proceedings of the 6th Annual SAS Global Forum (SGF) 2012

Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

http://support.sas.com/resources/papers/proceedings12/251-2012.pdf

Lafler, Kirk Paul (2012), Exploring DATA Step Merges and PROC SQL Joins, Proceedings of the 14th Annual Pharmaceutical SAS Users

Group (PharmaSUG) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

 http://pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA02.pdf

Lafler, Kirk Paul (2011), Output Delivery System (ODS)– Simply the Basics, Proceedings of the 5th Annual SAS Global Forum (SGF) 2011

Conference, Software Intelligence Corporation, Spring Valley, CA, USA.

http://support.sas.com/resources/papers/proceedings11/273-2011.pdf

http://support.sas.com/resources/papers/proceedings12/242-2012.pdf
http://www.accuteach.com/book/joe-celkos-sql-for-smarties-fourth-edition-advanced-sql-programming-the-morgan-kaufmann-series-in-data-management-systems-by-joe-celko/
http://www.accuteach.com/book/joe-celkos-sql-for-smarties-fourth-edition-advanced-sql-programming-the-morgan-kaufmann-series-in-data-management-systems-by-joe-celko/
http://www.scsug.org/SCSUGProceedings/2005/Foley_Merging%20vs%20Joining%20-%20184.pdf
http://support.sas.com/techsup/technote/ts553.html
http://www.lexjansen.com/nesug/nesug10/cc/cc16.pdf
http://support.sas.com/publishing/authors/lafler.html
http://www.lexjansen.com/nesug/nesug13/63_Final_Paper.pdf
http://support.sas.com/resources/papers/proceedings12/251-2012.pdf
http://pharmasug.org/proceedings/2012/TA/PharmaSUG-2012-TA02.pdf
http://support.sas.com/resources/papers/proceedings11/273-2011.pdf

49

Phelps, Kent Ronda Team (2016), Base SAS® and SAS® Enterprise Guide® ~ Automate Your SAS World With Dynamic Code; Your

Newest BFF (Best Friend Forever) in SAS, Proceedings of the 27th Annual MidWest SAS Users Group (MWSUG) 2016 Conference, The

SASketeers, Des Moines, IA, USA.

Phelps, Kent Ronda Team (2015), The Joinless Join ~ The Impossible Dream Come True; Expanding the Power of SAS® Enterprise

Guide® in a New Way, Proceedings of the 26th Annual MidWest SAS Users Group (MWSUG) 2015 Conference, The SASketeers, Des Moines,

IA, USA.

http://www.mwsug.org/proceedings/2015/BI/MWSUG-2015-BI-11.pdf

Phelps, Kent Ronda Team (2015), SAS® Enterprise Guide® Base SAS® Program Nodes ~ Automating Your SAS World With a Dynamic

FILENAME Statement, Dynamic Code, and the CALL EXECUTE Command; Your Newest BFF (Best Friends Forever) in SAS, Proceedings of the

26th Annual MidWest SAS Users Group (MWSUG) 2015 Conference, The SASketeers, Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2015/TT/MWSUG-2015-TT-05.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2014), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Proceedings of the 25th Annual MidWest SAS Users Group (MWSUG) 2014 Conference, The SASketeers, Des Moines, IA, and Software

Intelligence Corporation, Spring Valley, CA, USA.

 http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI12.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2014), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Your Newest BFF (Best Friends Forever), Proceedings of the 25th Annual MidWest SAS Users Group (MWSUG) 2014 Conference,

The SASketeers, Des Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI13.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Presented at Iowa SAS Users Group (IASUG), The SASketeers, Des Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Best Friends, Presented at Iowa SAS Users Group (IASUG), The SASketeers, Des Moines, IA, and Software Intelligence

Corporation, Spring Valley, CA, USA.

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Proceedings of the 24th Annual MidWest SAS Users Group (MWSUG) 2013 Conference, The SASketeers, Des Moines, IA, and Software

Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Best Friends, Proceedings of the 24th Annual MidWest SAS Users Group (MWSUG) 2013 Conference, The SASketeers, Des

Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf

TRADEMARK CITATIONS

SAS and all other SAS Institute, Inc., product or service names are registered trademarks or trademarks of SAS

Institute, Inc., in the USA and other countries. The symbol, ®, indicates USA registration. Other brand and

product names are registered trademarks or trademarks of their respective companies.

DISCLAIMER

We have endeavored to provide accurate and helpful information in this SAS White Paper. The information is

provided in ‘Good Faith’ and ‘As Is’ without any kind of warranty, either expressed or implied. Recipients

acknowledge and agree that we and/or our companies are not, and never will be, liable for any problems

and/or damages whatsoever which may arise from the recipient’s use of the information in this paper. Please

refer to your specific Operating System (e.g. UNIX, Windows, or z/OS) Manual, Installation Configuration,

and/or in-house Technical Support for further guidance in how to create the SAS code presented in this paper.

Copyright © Kent Ronda Team Phelps ~ The SASketeers ~ All Rights Reserved

http://www.mwsug.org/proceedings/2015/BI/MWSUG-2015-BI-11.pdf
http://www.mwsug.org/proceedings/2015/TT/MWSUG-2015-TT-05.pdf
http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI12.pdf
http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI13.pdf
http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf
http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf

