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Defining

Definition

• A statistical phenomenon wherein there exists a perfect or exact relationship between predictor variables

From a Conventional Standpoint

• Occurs in regression when several predictors are high correlated

• Linear Dependence: Fit well into a straight line that passes through many data points

• Another way to look at collinearity is co-dependence

Consequence

• Creates difficulty in creating reliable estimates of individual coefficients for the predictor variables

• Results in incorrect conclusions about the relationship between outcome and predictor variables

• As degree of multicollinearity increases, regression model estimates of the coefficients become unstable

Consequence of Variance Inflation

• Multicollinearity inflates the variances of the parameter estimates

• Look at R-square = higher the value, better the model

• Collinearity results in inflation of variance, standard error, and parameter estimates

• Can lead you to an over-specified model

• Include predictor variables with low statistical significance

• The presence of multicollinearity can cause serious problems with the estimation 

of B and its interpretation

Explanatory vs Predictive Models

• Collinearity is a problem when a model’s purpose is explanation and not prediction

• More difficult to achieve significance of collinear parameters

• Note: if estimates are statistically significant, they are as reliable as any other variable in the model

• If they are not significant, the sum of the coefficient is likely to be reliable

• In the case of a predictive model: just need to increase sample size

• In the case of an explanatory model: further measures are needed

Examination of the Correlation Matrix

• Large correlation coefficients in the correlation matrix of predictor variables indicate multicollinearity

• If there is multicollinearity between any two predictor variables, then the correlation coefficient between those two 

variables will be near to unity (1.0000)

• PROC CORR

Variance Inflation Factor

• Quantifies the severity of multicollinearity in an ordinary least-squares regression analysis

• Consider equation: VIFj= 1/(1-Rj^2), for j= 1,2,…..p-1

• Let Rj^2 denote the coefficient of determination when Xj is regressed on all other predictor variables in the model

o VIFj= 1 when RJ^2 = 0 ……. When jth variable is not linearly related to the other variables

o VIFj-> ∞ when Rj^2 -> 1 …….. When jth variable is linearly related to the other predictor variables

• The VIF is an index which measures how much an estimated regression coefficient’s variance is increased due to 

multicollinearity

o Example:

 VIF for Xj is 5

 Variance of estimated Bj is 5 times larger than if Xj was uncorrelated with other predictors

• Note: If any of the VIF values exceeds 5 or 10 it implies that the associated regression coefficients are poorly 

estimated because of multicollinearity (Montgomery, 2001)

Tolerance

• Another way of looking at Variance Inflation Factor

• Represented by 1/VIF

Eigensystem Analysis of Correlation Matrix

• The eigenvalues can also be used to measure the presence of multicollinearity

• If multicollinearity is present in the predictor variables, one or more of the eigenvalues will be small (near to zero).

o Let λ1…….λp be the eigenvalues of correlation matrix. The condition number of correlation matrix is defined as 

follows:   K = sqrt(λmax / λmin) &

o Condition indices of correlation matrix are defined as:   Kj= sqrt(λmax / λj), j=1,2,….,p

• Note: If one or more of the eigenvalues are small (close to zero) and the corresponding condition number is large, 

then it indicates multicollinearity (Montgomery, 2001)

Ways to Control for Multicollinearity

• Easiest to just drop one or several predictor variables in order to lessen the multicollinearity

• If none of the predictor variables can be dropped, alternative methods of estimation need to be employed:

o Ridge Regression or Principal Component Regression

• For regression models with interactive terms, quadratic terms, or cubic terms:

o Centered-score regression or Orthogonalization

Ridge Regression 

• Logic: Multicollinearity leads to small characteristic roots

o When characteristic roots are small, the total mean square error of beta is large which implies an imprecision in 

the least squares estimation method

o Ridge regression gives an alternative estimator (k) that has a smaller total mean square error value

• Result:

o Allows for better interpretation of regression coefficients by imposing some bias on regression coefficients and 

shrinking their variances

o Consider Factor analysis: replaces inter-correlated predictors with principal components

• Calculation

o The value of k can be estimated by looking at a ridge trace plot

o Ridge trace plots are plots of parameter estimates vs k where k usually lies in the interval [0,1]

o Pick the smallest value of k that produces a stable estimate of β

o Get the variance inflation factors (VIF) close to 1

o Want a “modest” change in R-square

Principal Component Regression

• Logic: Every linear regression model can be restated in terms of a set of orthogonal explanatory variables

o New variables are obtained as linear combinations of the original explanatory variables: Principal Components

o Uses less than the full set of principal components in the model

• Calculation:

o Assume the regressor are arranged in order of decreasing eigenvalues, λ1 ≥ λ2 ………. ≥ λ p > 0

o The principal components corresponding to near zero eigenvalues are removed from the analysis

o Least squares is then applied to the remaining components

Definition Detection Control

/* Examination of the Correlation Matrix */

Proc corr data=temp;

Var hypertension aspirin hicholesterol anginachd smokingstatus obese_BMI exercise _AGE_G sex alcoholbinge; Run;

/* Multicollinearity Investigation: VIF TOL COLLIN */

Proc reg data=temp;

Model stroke = hypertension aspirin hicholesterol anginachd smokingstatus obese_BMI exercise _AGE_G sex alcoholbinge / vif tol collin;    

Run;     Quit;

PROC REG DATA=stroke;

MODEL stroke = genhealth bp chol/ VIF TOL COLLIN;   

RUN;

PROC REG DATA=stroke OUTVIF;

OUTEST=rrstrokeRIDGE=0 to 0.05 by 0.002;

MODEL stroke = genhealth bp chol;

PLOT / RIDGEPLOT NOMODEL NOSTAT;    RUN;

PROC PRINT DATA=rrstroke;    RUN;

PROC PRINCOMP DATA=stroke

OUT=result_1 N=3 PREFIX=z OUTSTAT=result_2;

VAR genhealth bp chol;     RUN;

PROC REG DATA=result_1

MODEL stroke = z1 z2 / VIF;    RUN;

Ridge Regression Principal Component Regression
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