

Multicollinearity: What Is It and What Can We Do About It?

Definition Definition **Examination of the Correlation Matrix** • A statistical phenomenon wherein there exists a perfect or exact relationship between predictor variables variables will be near to unity (1.0000) From a Conventional Standpoint · Occurs in regression when several predictors are high correlated PROC CORR • Linear Dependence: Fit well into a straight line that passes through many data points • Another way to look at collinearity is co-dependence Variance Inflation Factor Consequence • Creates difficulty in creating reliable estimates of individual coefficients for the predictor variables • Results in incorrect conclusions about the relationship between outcome and predictor variables • As degree of multicollinearity increases, regression model estimates of the coefficients become unstable **Consequence of Variance Inflation** multicollinearity • Multicollinearity inflates the variances of the parameter estimates • Example: • Look at R-square = higher the value, better the model VIF for Xj is 5 • Collinearity results in inflation of variance, standard error, and parameter estimates • Can lead you to an over-specified model • Include predictor variables with low statistical significance • The presence of multicollinearity can cause serious problems with the estimation of B and its interpretation Tolerance • Another way of looking at Variance Inflation Factor Represented by 1/VIF **Explanatory vs Predictive Models** • Collinearity is a problem when a model's purpose is explanation and not prediction • More difficult to achieve significance of collinear parameters **Eigensystem Analysis of Correlation Matrix** • Note: if estimates are statistically significant, they are as reliable as any other variable in the model • If they are not significant, the sum of the coefficient is likely to be reliable In the case of a predictive model: just need to increase sample size • In the case of an explanatory model: further measures are needed follows: $K = sqrt(\lambda max / \lambda min) \&$

/* Examination of the Correlation Matrix */ Proc corr data=temp; Var hypertension aspirin hicholesterol anginachd smokingstatus obese_BMI exercise _AGE_G sex alcoholbinge; Run;

/* Multicollinearity Investigation: VIF TOL COLLIN */

Proc reg data=temp;

Model stroke = hypertension aspirin hicholesterol anginachd smokingstatus obese BMI exercise AGE G sex alcoholbinge / vif tol collin;

Run; Qu	ll;										-											
Pearson Correlation Coefficients, N = 36345 Prob > r under H0: Rho=0											Parameter Estimates										Condition	
	hypertension	aspirin	hicholesterol	anginachd	smokingstatus	obese_BMI	exercise	_AGE_G	SEX	alcoholbinge				Parameter	Standard				Variance	Number	Eigenvalue	Index
hypertension	1.00000	0.08742	0.21641	0.14202	0.00978	0.17714 <.0001	-0.09920 <.0001	0.15519	-0.00693	3 -0.00014 7 0.9782	Variable	Label	DF	Estimate	Error	t Value	Pr > t	Tolerance	Inflation	1	7.26674	1.00000
aspirin	0.08742	1.00000	0.07538	0.04244	0.00902	0.02274	0.01524	0.08680	0.00469	-0.00798	Intercept	Intercept	1	-0.01888	0.01146	-1.65	0.0993		0	2	0.06462	2 74467
	< 0001		<.0001	< 0001	0.0853	<.0001	0.0037	<.0001	0.3716	6 0.1281	hypertension		1	0.03944	0.00328	12.03	<.0001	0.88842	1.12559	2	0.90403	2.14401
hicholesterol	0.21641	0.07538	1.00000	0.16461	0.04842	0.08058	-0.03651 <.0001	0.10100	-0.00336	6 -0.00570 3 0.2774	aspirin		1	0.05142	0.00347	14.83	<.0001	0.98259	1.01772	3	0.82476	2.96829
anginachd	0.14202	0.04244	0.16461	1.00000	0.08779	0.03634	-0.06577	0.09145	-0.08674	4 -0.02660	hicholesterol		1	0.01179	0.00314	3.76	0.0002	0.92484	1.08127	4	0.51415	3.75945
smokingstatus	0.00978	0.00902	0.04842	0.08779	1.00000	-0.03687	-0.09587	-0.07621	-0.09950	0 0.10007	anginachd		1	0.07910	0.00422	18.74	<.0001	0.93978	1.06408	5	0.38421	4.34895
	0.0622	0.0853	<.0001	<.0001		<.0001	<.0001	<.0001	<.0001	1 <.0001	amokinastatus			0.01000	0.00214	0.20	< 0001	0.05469	1 05070	6	0.31447	4.80710
obese_BMI	0.17714	0.02274	0.08058	0.03634	-0.03687	1.00000	-0.07686	-0.07462	-0.13354	4 -0.03241	smokingstatus			0.01990	0.00214	9.30	<.0001	0.95100	1.05070		0.05044	5 00004
	<.0001	<.0001	<.0001	<.0001	<.0001		<.0001	<.0001	<.000	1 <.0001	obese_BMI		1	-0.01431	0.00341	-4.20	<.0001	0.92887	1.07658	(0.25041	5.38694
exercise	-0.09920	0.01524	-0.03651	-0.06577 <.0001	-0.09587 <.0001	-0.07686 <.0001	1.00000	-0.01925	-0.06550	0 0.02262	exercise		1	-0.03434	0.00329	-10.44	<.0001	0.96555	1.03568	8	0.24042	5.49773
_AGE_G IMPUTED AGE IN SIX GRO	0.15519 UPS <.0001	0.08680	0.10100	0.09145	-0.07621 <.0001	-0.07462 <.0001	-0.01925 0.0002	1.00000	0.05388	8 -0.02970 1 <.0001	_AGE_G	IMPUTED AGE IN SIX GROUPS	1	0.00407	0.00169	2.40	0.0162	0.94089	1.06283	9	0.17624	6.42124
SEX RESPONDENTS SEX	-0.00693 0.1867	0.00469	-0.00336	-0.08674	-0.09950	-0.13354	-0.06550	0.05388	1.00000	0 -0.02312	SEX	RESPONDENTS SEX	1	0.01690	0.00303	5.58	<.0001	0.95513	1.04698	10	0.05282	11.72959
alcoholbinge	-0.00014	-0.00798	-0.00570 0.2774	-0.02660	0.10007 <.0001	-0.03241 <.0001	0.02262	-0.02970 <.0001	-0.02312	2 <u>1.00000</u>	alcoholbinge		1	-0.03391	0.00680	-4.99	<.0001	0.98622	1.01397	11	0.01115	25.52670

MWSUG - PO05

Deanna Naomi Schreiber-Gregory, MS, National University

Detection

• Large correlation coefficients in the correlation matrix of predictor variables indicate multicollinearity • If there is multicollinearity between any two predictor variables, then the correlation coefficient between those two

• Quantifies the severity of multicollinearity in an ordinary least-squares regression analysis • Consider equation: VIFj= 1/(1-Rj^2), for j= 1,2,....p-1

 \circ VIFj-> \sim when Rj² -> 1 When jth variable is linearly related to the other predictor variables

• The VIF is an index which measures how much an estimated regression coefficient's variance is increased due to

Variance of estimated Bj is 5 times larger than if Xj was uncorrelated with other predictors

• Note: If any of the VIF values exceeds 5 or 10 it implies that the associated regression coefficients are poorly estimated because of multicollinearity (Montgomery, 2001)

• The eigenvalues can also be used to measure the presence of multicollinearity

• If multicollinearity is present in the predictor variables, one or more of the eigenvalues will be small (near to zero).

- \circ Let $\lambda 1$ λp be the eigenvalues of correlation matrix. The condition number of correlation matrix is defined as
- Condition indices of correlation matrix are defined as: $Kj = sqrt(\lambda max / \lambda j), j=1,2,...,p$
- Note: If one or more of the eigenvalues are small (close to zero) and the corresponding condition number is large, then it indicates multicollinearity (Montgomery, 2001)

- Easiest to just drop one or several predictor variables in order to lessen the multicollinearity
- For regression models with interactive terms, quadratic terms, or cubic terms: • Centered-score regression or Orthogonalization

- When characteristic roots are small, the total mean square error of beta is large which implies an imprecision in the least squares estimation method • Ridge regression gives an alternative estimator (k) that has a smaller total mean square error value
- Result: • Allows for better interpretation of regression coefficients by imposing some bias on regression coefficients and shrinking their variances
- Consider Factor analysis: replaces inter-correlated predictors with principal components
- Calculation • The value of k can be estimated by looking at a ridge trace plot
- Ridge trace plots are plots of parameter estimates vs k where k usually lies in the interval [0,1] • Pick the smallest value of k that produces a stable estimate of β
- Get the variance inflation factors (VIF) close to 1 • Want a "modest" change in R-square

Principal Component Regression

- Logic: Every linear regression model can be restated in terms of a set of orthogonal explanatory variables • New variables are obtained as linear combinations of the original explanatory variables: Principal Components • Uses less than the full set of principal components in the model
- Calculation:
- Assume the regressor are arranged in order of decreasing eigenvalues, $\lambda 1 \ge \lambda 2 \dots \ge \lambda p > 0$ • The principal components corresponding to near zero eigenvalues are removed from the analysis • Least squares is then applied to the remaining components

PROC	CREG I	DA'I'A=	FROC FRINCOMP DAI											
MODE	L str	oke =	OUT=result_1											
RUN;			VAR genhealt											
				Paramet	ter Estima	tes								
ariable	Label	DF	Param	eter Sta	ndard	t Value	Pr > t	Tolerance	Variance					
			Estima	ate Err	Error				Inflation	Genhea	alth	Genhealth		
										Вр		Вр		
tercept	Intercept	1	-9.757	48 1.1	3256 -8.32		<.0001		0	Chol		Chol		
enhealth	Genhealth	1 1	-0.023	67 0.0	06768 -0.44		0.6730	0.00463	168.63567			F		
р	Вр	1	0.5765	58 0.0	8595	6.44	0.0004	0.96456	1.02894			Figenvalue	-	
hol	Chol	1	0.2278	<mark>.0.0</mark>	9457	2.67	0.0322	0.00436	168.93865	1				
PROC	REG	DATA=	strok	e OU	TVIF;							2.0042		
JO	UTEST=:	rrstr	okeRI	DGE=	0 to	0.05	by 0.	002;		2		0.9928		
MC	DEL s	troke	e = ge	nheal	lth b	p chc)l;			3		0.0029		
PLOT / RIDGEPLOT NOMODEL NOSTAT; RUN:														
PROC PRINT DATA=rrstroke: BIIN:														
					_ ,					Genhea	alth	Genhealth		
S	_Model_	_Туре_	_Depvar_	_Ridge_	_RMSE	_ Interce	pt Genhea	alth Bp	chol	Вр		Вр		
	Model1	Parms	Stroke	•	0.47508	8 -9.7384	-0.029	0.57585	0.252	Chol		chol		
	Model1	RidgeVIF	Stroke	0.000			168.65	3 1.03108	168.912	PI	ROC REG	DATA=re		
	Model1	Ridge	Stroke	0.000	0.47508	8 -9.7384	-0.029	0.57585	0.252		MODE	I. strok	P	
											IIO DE		~	

PROC REG DATA=stroke;											PROC PRINCOMP DATA=stroke														
MODE	MODEL stroke = genhealth bp chol/ VIF TOL COLLIN;												OUT=result_1 N=3 PREFIX=z OUTSTAT=result_2;												
RUN	RUN;												VAR genhealth bp chol; RUN;												
	Parameter Estimates												Correlation Matrix												
Variable	Label	Label DF Parameter Standard t Value Pr > t Tolerance Variance													Genhealt	ı	Вр		Chol						
			Estimat	te Error					Inflation		Genhealth	G	ienhe	ealth	1.0000		0.0538	(0.9970						
											Вр	В	р		0.0538		1.0000		0.0665						
Intercept	Intercept	1	-9.7574	18 1.132	256 -8.3	32 <.			0		Chol	С	hol		0.9970		0.0665		1.0000						
Genhealt	n Genhealt	n 1	-0.0236		768 -0.4	44 0.	6730 (0.00463	168.63567					Eig	envalues of th	e Correlation N	Matrix								
Chol	Chol	1	0.2278	9 0.085	157 2 6	.4 0. 7 0.	0004 0	0.96436	1.02894			E	igenv	alue	Difference	e	Proportion		Cumulative						
		<u>י</u> תית אכו –	$-a \pm r_{0} k_{0} = 0.00437 = 2.07 = 0.00430 = 100.33003003 = 100.30003 = 100$						1	2	.0042	2	1.0113		0.6681		0.6681								
$\begin{array}{c} \text{OUTERT-restrictioned UDCE-0} + 0 & 0.5 & \text{by } 0 & 0.02 \\ \text{OUTERT-restrictioned UDCE-0} + 0 & 0.5 & \text{by } 0 & 0.02 \\ \end{array}$											2 0.9928				0.9899		0.3310		0.9990						
MODEL stroke - corbealth br shal.								3	0	.0029	9			0.0010		1.0000)								
MODEL STROKE = gennealth pp chol;									Eigenvectors																
	PLOT / RIDGEPLOT NOMODEL NOSTAT; RUN;														Z1		Z2		Z3						
PROC	PROC PRINT DATA=rrstroke; RUN;										Genhealth Genhealth			0.704315		-0.066090	(0.706805							
Obs	_Model_	_Type_	_Depvar_	_Ridge_	_RMSE_	Intercept	Genhealth	n Bp	chol		Вр		Вр		0.084416		0.996390		0.009050						
1	Model1	Parms	Stroke		0.47508	-9.73849	-0.029	0.57585	0.252		Chol	с	chol		0.704851		-0.053292		-0.707351						
2	Model1	RidgeVIF	Stroke	0.000			168.653	1.03108	168.912		PROC	REGI	DATA = rocult 1												
3	Model1	Ridge	Stroke	0.000	0.47508	-9.73849	-0.029	0.57585	0.252		M	IODEI	$z_{\rm I} = z_{\rm I} = z_{\rm I} = 2 / M E \cdot DIN \cdot$												
											1*1		$\Box SCIORE = ZI ZZ / VIF, RON,$.011,							
33	Model1	Ridge	Stroke	0.038	0.55088	-8.35864	0.063	0.57769	0.114						Parameter Estimates										
34	Model1	RidgeVIF	Stroke	0.040			1.045	0.92752	1.045		Variable Labe			DF	Parameter Estimate	Standard Error	TValue	Pr > t	Ì	Variance Inflation					
35	Model1	Ridge	Stroke	0.040	0.55237	-8.32541	0.064	0.57679	0.114		Intercept	Intercep	ot	1	21.89091	0.15535	140.92	<.0001	(0					
36	Model1	RidgeVIF	Stroke	0.042			0.974	0.92393	0.975		Z1			1	3.14802	0.11509	27.35	<.0001		1.0000					
37	Model1	Ridge	Stroke	0.042	0.55386	-8.29250	0.064	0.57589	0.113		Z2			1	0.75853	0.16351	4.64	0.0017		1.0000					

Control

Ways to Control for Multicollinearity

- If none of the predictor variables can be dropped, alternative methods of estimation need to be employed:
- Ridge Regression or Principal Component Regression

Ridge Regression

• Logic: Multicollinearity leads to small characteristic roots

Ridge Regression

Principal Component Regression

MWSUG - PO05Multicollinearity: What Is It and What Can We Do About It?

References

Draper, N. R., Smith, H. (2003). *Applied regression analysis*, 3rd edition, Wiley, New York.

Montgomery, D. C., Peck, E. A., Vining, G. G. (2001). Introduction to linear regression analysis, 3rd edition, Wiley, New York.

Chatterjee, S., Price, B. Regression Analysis by Example, 3rd edition

Joshi, H., Kulkarni, H., Deshpande, S. (2012). Multicollinearity Diagnostics in Statistical Modeling and Remedies to deal with it using SAS. PhUSE2012.

Acknowledgements

BRFSS – CDC: For providing the dataset National University: For encouraging personal research Neuropsychiatric Research Institute: For providing a unique research opportunity

Contact Information

Name: Deanna (DeDe) Naomi Schreiber-Gregory

Organization: National University, Peace-Work

Location: Moorhead, MN

E-mail: d.n.schreibergregory@gmail.com

Twitter: https://twitter.com/DN_SchGregory

LinkedIn: https://www.linkedin.com/in/deanna-dedeschreiber-gregory-a54a7b66

Deanna Naomi Schreiber-Gregory, MS, National University

Thank You!

