
1

MWSUG 2016 - Paper TT11

Base SAS® and SAS® Enterprise Guide® ~ Automate Your SAS World with Dynamic Code;

Your Newest BFF (Best Friend Forever) in SAS

Kent Ronda Team Phelps, The SASketeers, Des Moines, IA

All for SAS and SAS for All!

ABSTRACT

Communication is the basic foundation of all relationships including our SAS relationship with the Server, PC,

or Mainframe. To communicate more efficiently ~ and to increasingly automate your SAS World ~ you will

want to learn how to transform Static Code into Dynamic Code that automatically recreates the Static Code,

and then executes the recreated Static Code automatically.

Our presentation highlights the powerful partnership which occurs when Dynamic Code is creatively

combined with a Dynamic FILENAME Statement, the INDSNAME SET Option, and the CALL EXECUTE

Command within 1 SAS Enterprise Guide Base SAS Program Node. You will have the exciting opportunity to

learn how 1,469 time-consuming Manual Steps are amazingly replaced with only 1 time-saving Dynamic

Automated Step.

We invite you to attend our session where we will detail the UNIX syntax for our project example and

introduce you to your newest BFF (Best Friend Forever) in SAS. Please see the Appendices to review starting

point information regarding the syntax for Windows and z/OS, and to review the source code that created the

data sets for our project example.

INTRODUCTION

SAS is highly regarded around the world, and rightly so, as a powerful, intuitive, and flexible programming

language. As all of you know, SAS enables you to creatively program Smarter And Smarter. However, SAS, as

remarkable as it is, will remain an island unto itself without your coding proficiency.

The tagline for SAS is The Power To Know® and your ‘power to know’ greatly expands with your determination

to communicate more efficiently with the Server, PC, or Mainframe (referred to as server going forward). The

Power To Know enables The Power To Transform which leads to The Power To Execute ~ but these

powers will quickly go down the drain if you do not continuously learn how to request data more efficiently

and how to automate your SAS World.

2

Here are 3 questions to ask yourself when designing your SAS program:

 How do I request data more efficiently from the server while protecting the integrity of the data?

 How do I automate my program to eliminate time-consuming and error prone manual processing to gain

back valuable time for more enjoyable SAS endeavors?

 How do I pursue and accomplish this grand and noble deed?

Good News ~ we are going to show you how to design a Base SAS Program Node which:

 Transforms a Static FILENAME Statement into a Dynamic FILENAME Statement to obtain a Directory

Listing of a date range of files from the server.

 Utilizes the Directory Listing to transform Extract, Append, and Export Static Code into Dynamic Code.

 Dynamic Code is executable code based upon parameters that can change, and therefore may or may

not run exactly the same way.

 The Dynamic Code in this presentation recreates Static Code which is executable code that never

changes and always runs exactly the same way.

 The Dynamic Code will store the recreated Static Code in a variable in a SAS dataset.

 Executes the recreated Static Code automatically with no manual processing or intervention.

The SAS project in this presentation demonstrates:

The Power To Know through a Dynamic FILENAME Statement

The Power To Transform Static Code into Dynamic Code using the INDSNAME SET Option

The Power To Execute the recreated Static Code automatically using the CALL EXECUTE Command

We invite you to journey with us as we share how

Dynamic Code

can become your Best Friend Forever in SAS.

 A Tale of SAS Wis-h-dom

As stated before, the SAS programming language is powerful, intuitive, and flexible. When we wish for a better

way to design our programs, we can tap into the built-in wisdom of SAS. Thus, we have coined the phrase SAS

Wis-h-dom to describe the blending of a SAS Wish with SAS Wisdom. Discovering the power of combining

Dynamic Code with a Dynamic FILENAME Statement, the INDSNAME SET Option, and the CALL EXECUTE

Command was, as Bob Ross, the well-known painter on PBS, so often said, “A happy accident.”

When Bob needed to change his plan for a painting, he referred to the detour as a Happy Accident. Likewise,

when we started the following project with one plan in mind, we soon found that in order to overcome obstacle

bumps on the project road, we needed to discover creative new ways to accomplish the Project Requirements.

3

On a recent SAS Quest, we made several discoveries which we are eager to share with you through our project

example. Read on to learn about the Project Requirements, the SAS Wis-h-dom that transpired along the way,

and the Happy Accidents which occurred on the journey. This project was prompted by a business need to

make the research and analysis of vital variables from 13 years of weekly snapshot data sets more efficient.

Project Requirements:

 Extract vital variables from 52 weekly snapshot data sets per year for 13 years (2003-15) and combine

them with a Load_Date variable created from the Friday date value derived from the filenames of the data

sets.

 Append the 52 weekly snapshot data sets per year to create 13 yearly data sets.

 Export the 13 appended yearly data sets back to the folder on the server where the weekly snapshot data

sets are stored.

Since SAS Enterprise Guide was being used to design this project, the first decision to make was, “Should the

program be designed with Graphical User Interface (GUI) and/or a Base SAS Program Node?

Here are the questions considered in the programming decision “To GUI or not to GUI?”

 What will it take to manually add 52 weekly snapshot data sets to the project?

 What will it take to manually create 52 queries to select vital variables from 52 data sets?

 What will it take to manually enter the derived value of the Load_Date variable in 52 queries?

 What will it take to manually append the 52 new data sets created by the 52 queries?

 What will it take to manually export the appended yearly data set back to the server?

 Once the program is designed, what will it take to manually swap 52 inputs and manually update the

Load_Date variable in 52 queries – 12 more times – while running the program for the 13 year timeframe?

Are you getting tired yet?

It was determined that the 209 manual steps needed to design the program, and the 105 manual steps

needed to update the program each year, could be done with GUI. However, it also became apparent that the

1,469 manual steps required to run the program for the 13 year timeframe would be excessive and prone to

errors. As a result, our SAS Intuition said, “There must be a smarter, easier, and faster way to do this in SAS!”

By the way, are you in tune with your SAS Intuition? Be sure to listen closely when the quiet, reassuring voice

within you says with conviction, “There must be a better way to do this in SAS!” We encourage you to honor

your SAS Intuition and to let it motivate you to find new ways to maximize your programming.

“And now for the rest of the story…”,
as Paul Harvey so often said on the radio.

Dear SAS Wisdom,

We wish we could find a way to automate this program
and eliminate manual processing and intervention –

except of course for choosing the year.
We look forward to hearing from you soon,

Thank You

4

The SAS Quest

Starting

is the first step

towards success.

John C. Maxwell

Sometimes at the beginning of a project it can be challenging to figure out how to accomplish the requirements.

Always remember, the only thing we really need to do is take the first step ~ and the rest will soon follow.

 Team Phelps Law

Everything is easier than it looks;

it will be more rewarding than you expect;

and if anything can go right

~ it will ~

and at the best possible moment.

Our first step was to revise the previous programming questions:

 What will it take to automatically create 1 DATA step to read and append 52 data sets together?

 What will it take to automatically extract vital variables in 1 DATA step?

 What will it take to automatically enter the derived value of the Load_Date variable in 1 DATA step?

 What will it take to automatically export the appended yearly data set back to the server?

 Once the program is designed, what will it take to automatically swap 52 inputs and automatically

update the Load_Date variable in 1 DATA step – 12 more times – while running the program for the 13

year timeframe?

We began a quest to accomplish the grand and noble deed of automating this program . Our first task was to

find a way to transform a Static FILENAME Statement into a Dynamic FILENAME Statement to read 52 weekly

snapshot data sets from a folder on the server automatically and sequentially ~ rather than manually one at a

time. A Google search led to an article titled Using FILEVAR= To Read Multiple External Files in a DATA Step.

Here is a brief overview of the article:

 The article explained many different ways to transform a Static FILENAME Statement into a Dynamic

FILENAME Statement to automatically and sequentially read the content of multiple data sets.

Obstacle Bump ~ Unfortunately this article did not mention how to use a Dynamic FILENAME Statement to

obtain a Directory Listing of the filename of each data set while reading multiple data sets ~ Bummer!

 Happy Accident Alert ~ We did not give up and began a series of researching detours. Along the way we

finally discovered that when a Dynamic FILENAME Statement is used, SAS will actually assign a variable called

FILENAME to the name of each file being read ~ Yea!

This knowledge enabled us to transform a Static FILENAME Statement into a Dynamic FILENAME Statement to

obtain a Directory Listing of the filenames which can be utilized to read the content of the files while also

deriving the value of a variable from the filenames of the files being read.

5

Obstacle Bump ~ However, we then realized that although a Dynamic FILENAME Statement can be used to
obtain a Directory Listing which is utilized to transform Static Code into Dynamic Code that automatically
recreates the Static Code, we determined that the same Dynamic FILENAME Statement could not be used
again within the recreated Static Code to obtain the name of each data set as it is actually being read.

Our SAS Intuition pondered once again, “Surely, when multiple input data sets are used as inputs in a DATA
step, there must be a way to obtain the name of the data set from where each input observation is read!”

 Happy Accident Alert ~ Another Google search happily uncovered a SET option called INDSNAME
which identifies the input data set being read with each input observation.

We concluded that a variable called FILENAME can be used to identify the name of an input data set when
using a Dynamic FILENAME Statement, and a variable called INDSNAME can be used to identify the name of
the input data set when using a Static input SET Statement using the INDSNAME SET option. We will
demonstrate the differences as we review the project example.

Learning this information enabled us to design a program which utilizes:

 A Dynamic FILENAME Statement to obtain one Directory Listing per year for 13 years of the filenames of

the 52 weekly snapshot data sets.

 The Directory Listing to transform Extract, Append, and Export Static Code into Dynamic Code that

automatically recreates the Static Code to:

 Extract vital variables from the data sets and combine them with a Load_Date variable created from the

Friday date value derived from the filenames of the data sets using the INDSNAME SET Option.

 Append the 52 weekly snapshot data sets per year to create 13 yearly data sets.

 Export the 13 appended yearly data sets back to the folder on the server where the weekly snapshot

data sets are stored.

Once the program has run, the recreated Extract, Append, and Export Static Code can be run manually by

copying and pasting the code into another Program Node. This program fulfills most of the project

requirements… but remember, our SAS Wish was to COMPLETELY automate this project.

As we
continue on
our journey,
we will shed
more light

on this
exciting

SAS
Quest.

6

SAS Illumination

Sometimes success is seeing

what we already have

in a

new light.

Dan Miller

After we determined how to transform a Static FILENAME Statement into a Dynamic FILENAME Statement to

obtain a Directory Listing to utilize in transforming Extract, Append, and Export Static Code into Dynamic Code

that automatically recreates the Static Code; a very important question arose, “Is there also a way to execute

the recreated Static Code automatically?” You guessed it… our SAS Intuition spoke up again, “There must be a

way to call and execute a variable in a SAS data set containing a SAS DATA step.”

 Happy Accident Alert ~ Another hopeful Google search led to a White Paper titled CALL EXECUTE: A

Powerful Data Management Tool which revealed that a CALL EXECUTE command already existed!

Here is a brief overview of the White Paper:

 CALL EXECUTE (variable); resolves and executes the value of a variable.

 The variable can be a character variable in a data set containing SAS statements such as a DATA step.

 The CALL EXECUTE Command will execute the recreated Static Code automatically and will enable us to

finally fulfill all of the project requirements!

SAS Illumination ~ We will use a Dynamic FILENAME Statement to obtain a Directory Listing to utilize in

transforming Extract, Append, and Export Static Code into Dynamic Code that automatically recreates the

Static Code and then use the CALL EXECUTE Command to execute the Static Code automatically. The program

will run automatically without any manual processing or intervention ~ except for choosing the year!

Here is the program displayed as a SAS Enterprise Guide Base SAS Program Node:

 Create Yearly
data sets

Yea!!!

 Strike up the band,
Toss the confetti,

 Release the balloons!

Applause… Applause… Applause…

Bring out the treats for everyone!

Create
Yearly

data sets

7

As you can see from this SAS Quest, it pays to listen to your SAS Intuition. A series of simple Google searches

led to resources which illuminated how to fulfill the project requirements and enabled this project to become a

very successful reality. Always remember there is a treasure chest of SAS information waiting on the web to

help you maximize the quality and efficiency of your programming.

 On the next leg of our journey

 we will walk you through a

 step-by-step demonstration of

 The Power To Know, Transform, and Execute.

The first step is the most important step you will take,

And the last step is the most rewarding step you will experience.

Kent Ronda Team Phelps

8

Disclaimer: This presentation details the UNIX syntax for our project example. Please refer to your

specific Operating System (e.g. UNIX, Windows, or z/OS) Manual, Installation Configuration, and/or in-

house Technical Support for further guidance in how to create the SAS code presented in this paper.

Please see Appendix A for starting point information regarding the syntax for Windows and z/OS.

The following examples highlight how to transform a Static FILENAME Statement into a Dynamic FILENAME

Statement to obtain a Directory Listing of the filenames of the 52 weekly data sets for the year 2015 from a

folder on the server.

This code will obtain and store the Directory Listing:

 This code will obtain a Directory Listing of the data sets following the file2015*.sas7bdat pattern

from the /data/MWSUG/CALL_EXECUTE folder on the server and store it in a data set.

 Create
Yearly

data sets

These are the 7 weekly data sets being processed in our example:

 Each of these data sets must follow the same pattern of fileYYYYMMDD.sas7bdat.

 Please see Appendix B for the code that creates these data sets.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN;

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

RUN;

THE POWER TO KNOW
Through a Dynamic FILENAME Statement

9

This is a sample of the columns and formatting for each data set:

 The data sets contain each Special Person, Special Number, and Special Code for the employees of the

 Smiley Company .

Creating a Dynamic FILENAME Statement:

 The FILENAME Statement assigns indata as a file reference (fileref) to the folder and file pattern.

 The asterisk within the file pattern file2015*.sas7bdat transforms the Static FILENAME Statement

into a Dynamic FILENAME Statement which will read multiple files automatically and sequentially.

 The FILENAME=variable Statement assigns the path and name of each file being read.

 In summary, a Dynamic FILENAME Statement and the FILENAME=variable Statement will obtain the
Directory Listing.

Creating a DATA step which will read and store the Directory Listing:

 The DATA statement creates an output data set called path_list_files.

 The LENGTH statement assigns a length of 100 characters to a variable that will store each unique

data set path and filename called fpath.

 The RETAIN statement retains the value of fpath until it is assigned a new filename later in the code.

 The LENGTH statement also assigns a length of 100 characters to a variable that will be used to store

and track changes to the data set path and filename called SAS_data_set_and_path.

 In summary, the path_list_files data set is created to contain the 100 character fpath and

SAS_data_set_and_path variables which will be used to read and store the Directory Listing.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

 DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

10

Preparing the INFILE indata (fileref) for use and the INPUT of data:

 The INFILE statement assigns indata to be read with the INPUT statement.

 The TRUNCOVER option tells SAS the input data may or may not be the same length.

 The FILENAME=SAS_data_set_and_path statement assigns SAS_data_set_and_path to the path

and filename of the file being read.

 The INPUT statement reads the INFILE indata (fileref) sequentially without creating any variables.

 In summary, INFILE assigns indata to be read with an INPUT of variable length (without creating

any variables) while assigning SAS_data_set_and_path to the filename of each file being read.

Creating an IF-THEN DO-END Statement to detect new filenames being read:

 The IF-THEN statement executes the contents of the DO-END when a new filename is read.

 The fpath = SAS_data_set_and_path statement assigns the fpath variable to the value of the

SAS_data_set_and_path variable which contains the path and filename as each new file is read.

 The OUTPUT statement is executed within the IF-THEN DO-END statement to ensure that we only

write an observation recreating Static Code when a new file is read and fpath changes.

 In summary, the fpath variable is assigned to the path and filename of each new data set (Directory

Listing) up to 100 characters as the filename of the data sets change.

Here are the statements combined with a RUN Statement:

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN;

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH fpath SAS_data_set_and_path $100;

 RETAIN fpath;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN;

 DO;

 fpath = SAS_data_set_and_path;

 ...

 OUTPUT;

 END;

RUN;

11

This is the output data set created by the preceding statements:

 In the next section we will explore how this Directory Listing is used to transform Static Code into

Dynamic Code.

12

The following examples highlight how to transform Extract, Append, and Export Static Code into Dynamic

Code that automatically recreates the Static Code to Extract vital variables from 52 weekly snapshot data sets

and combine them with a Load_Date variable (created from the Friday date value derived from the filenames

of the data sets), how to Append the 52 weekly snapshot data sets together to create a yearly data set, and

how to Export the yearly data set to the server.

This is the original Extract Static Code for weeks 1 and 7:

 Each weekly DATA step creates a file_final_YYYYMMDD data set with the YYYYMMDD matching the

create date of the data set.

 The Load_Date variable is derived and formatted as a SAS date (date9) which also matches the date
of the data set.

 A KEEP statement is used to keep the Special_Person and Special_Number from the data set while
also keeping the Load_Date which is derived within the DATA step.

DATA file_final_20150213;

 SET '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '13FEB2015'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

THE POWER TO TRANSFORM
Static Code Into Dynamic Code Using The INDSNAME SET Option

Here is the Append Code combined with the Export Code for weeks 1 to 7:

 Each yearly DATA step creates a file_final_YYYY data set with the YYYY matching the year of each
data set.

 Each of the file_final_YYYYMMDD data sets are SET as data sets one after another.

 Question: How can the Extract, Append, and Export code be completely combined into one DATA
step?

DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 SET file_final_20150102.sas7bdat

 file_final_20150109.sas7bdat

 file_final_20150116.sas7bdat

 file_final_20150123.sas7bdat

 file_final_20150130.sas7bdat

 file_final_20150206.sas7bdat

 file_final_20150213.sas7bdat;

RUN;

DATA file_final_20150102;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '02JAN2015'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

13

Here is the Extract, Append, and Export Code almost completely combined:

 The major change from the previous Append is that this Append SETs the 52 original data sets as
inputs rather than using the outputs from the 52 Extract DATA steps.

 Question: Since the Dynamic FILENAME Statement, which is used to execute the Dynamic Code that
recreates this Static Code, is not available during the runtime of this Static Code, how do we obtain
the Load_Date?

DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat';

 FORMAT Load_Date date9.; Load_Date = '02JAN2015'd;

 KEEP Special_Person Special_Number Load_Date;

RUN;

Here is the Extract, Append, and Export Code completely combined:

 Create a variable Current_SAS_dataset with a LENGTH long enough for each data set name and
path in the Directory Listing.

 Place the LENGTH before the SET statement so the complete data set name and path are captured.

 Add INDSNAME=Current_SAS_dataset to the end of the SET statement so Current_SAS_dataset
will always be assigned the data set name and path of the observation being read.

 Use the MDY, INPUT, and SUBSTR functions to transform the month, day, and year of each data set
name and path (Current_SAS_dataset) into the Load_Date.

DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

RUN;

14

Here is the Extract, Append, and Export Code efficiently combined:

 The previous DATA step correctly derives and assigns the Load_Date with each observation.

 However, for better efficiency, we can create another variable Prior_SAS_dataset to track the data
set changes and add a RETAIN Load_Date statement so that we only derive Load_Date with each
observation when the data set changes (IF Current_SAS_dataset NE Prior_SAS_dataset).

 The next step is to transform the efficient Static Code into Dynamic Code.

DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

RUN;

15

How to transform the efficient Static Code into Dynamic Code:

 Surround the Static Code with quotation marks to begin the process of transforming the code.

 If single quotes are contained within the Static Code, use double quotes to surround the Static Code.

 Create a variable fpath_line that is assigned to the concatenation with spaces removed (CATS) of
the Static Code in quotation marks.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 fpath_line $1000;

 RETAIN fpath;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

fpath_line = CATS("

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

16

Next identify what changes with each observation of Static Code:

 Surround the year of the output data set with double quotes and commas because the year of the
output data set will match the year of the input data sets.

 Surround the names of the input data sets with double quotes and commas because the names of the
input data sets will change with each observation.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 fpath_line $1000;

 RETAIN fpath;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

fpath_line = CATS("

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_","2015",".sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '","/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat","'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

17

Now identify the timing of changes with each observation of Static Code:

 The DATA through SET statements needs to occur only once, and 2015 can be derived from the first
observation of fpath which is derived from SAS_data_set_and_path.

 The /data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat through file20150213.sas7bdat
input data sets needs to occur with each observation because they are equivalent to each observation
of fpath.

 The INDSNAME=Current_SAS_dataset; through RUN; statements needs to occur at the end after all
the observations of the Directory Listing have been read and processed as the fpath variable.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 fpath_line $1000;

 RETAIN fpath;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path;

 INPUT;

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

fpath_line = CATS("

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_","2015",".sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '","/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat","'

 '","/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat","'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

18

Code for the timing of changes with each observation of Static Code:

 Add the fpath_line variable to the RETAIN statement to enable concatenating each piece of the
DATA step to the fpath_line variable until the result is the original Static Code.

 Begin what must occur with the first observation with IF _N_ = 1 THEN, and change 2015 to the
derivation of SUBSTR(SAS_data_set_and_path,30,4); noting that SAS_data_set_and_path is
assigned the name of each input data set and path by the FILENAME=SAS_data_set_and_path
option on the INFILE statement.

 Next we add the IF fpath NE SAS_data_set_and_path THEN logic so that only when the first
observation of each new input data set is read will the fpath = SAS_data_set_and_path
assignment occur.

 Assign fpath_line to itself with beginning and ending spaces removed (CATS(fpath_line))
concatenated (||) to each input data set and path (CATS(fpath)) surrounded by single quotes (').

 Add END=DONE to the INFILE Statement so DONE will be set to True once the last observation is read
from the last input data set.

 Assign fpath_line to itself with beginning and ending spaces removed (CATS(fpath_line))
concatenated (||) to the remainder of the code needed to complete the DATA step.

 Add the OUTPUT Statement to create only one observation of the fpath_line variable containing the
entire resolved and concatenated original Static Code.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 fpath_line $1000;

 RETAIN fpath fpath_line;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN

 fpath_line =

 CATS("DATA '/data/MWSUG/CALL_EXECUTE/file_final_",

 SUBSTR(SAS_data_set_and_path,30,4),".sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET ";

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 fpath_line = CATS(fpath_line)||" '"||CATS(fpath)||"' ";

 END;

 IF DONE THEN

 DO;

 fpath_line = CATS(fpath_line)||

 "INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

19

This is the final Dynamic Code which recreates the original Static Code:

 Now that the Dynamic Code has been finalized, we will do a recap of our exciting journey and then
we will demonstrate how the resulting Static Code is executed using the CALL EXECUTE command.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100 fpath_line $1000;

 RETAIN fpath fpath_line;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN

 fpath_line =

 CATS("DATA '/data/MWSUG/CALL_EXECUTE/file_final_",

 SUBSTR(SAS_data_set_and_path,30,4),".sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET ";

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 fpath_line = CATS(fpath_line)||" '"||CATS(fpath)||"' ";

 END;

 IF DONE THEN

 DO;

 fpath_line = CATS(fpath_line)||

 "INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

20

THE POWER TO TRANSFORM section has walked us through the process of transforming Extract, Append,

and Export Static Code into Dynamic Code that automatically recreates the Static Code to Extract vital

variables from 52 weekly snapshot data sets and combining them with a Load_Date variable (created from

the Friday date value derived from the filenames of the data sets), appending the 52 weekly snapshot data

sets together to create a yearly data set, and exporting the yearly data set back to the server.

The Final Dynamic Code and the resulting Final Recreated Static Code:

This is the program displayed as a Base SAS Program Node:

 Create
Yearly

data sets

Static Code recreated by running the Dynamic Code:

DATA '/data/MWSUG/CALL_EXECUTE/

 file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset

 Prior_SAS_dataset $100;

 SET

'/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

'/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date =

 MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

RUN;

Dynamic Code within the Base SAS Program Node:

FILENAME indata '/data/MWSUG/CALL_EXECUTE/

 file2015*.sas7bdat';

DATA path_list_files;

 LENGTH SAS_data_set_and_path fpath $100

 fpath_line $1000;

 RETAIN fpath fpath_line;

 FORMAT Load_Date date9.;

 INFILE indata TRUNCOVER FILENAME=

 SAS_data_set_and_path END=DONE;

 INPUT;

 IF _N_ = 1 THEN fpath_line =

 CATS("DATA '/data/MWSUG/CALL_EXECUTE/

 file_final_",

 SUBSTR(SAS_data_set_and_path,30,4),

 ".sas7bdat';

 LENGTH Current_SAS_dataset

 Prior_SAS_dataset $100;

 SET ";

 IF fpath NE SAS_data_set_and_path THEN

 DO;

 fpath = SAS_data_set_and_path;

 fpath_line = CATS(fpath_line)||"

 '"||CATS(fpath)||"' ";

 END;

 IF DONE THEN

 DO;

 fpath_line = CATS(fpath_line)||

 "INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset

 THEN

 DO;

 Load_Date =

 MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;");

 OUTPUT;

 END;

RUN;

21

After we transform the Static Code into Dynamic Code that automatically recreates the Static Code to Extract,

Append, and Export the yearly data set, the CALL EXECUTE Command is used to execute the recreated Static

Code automatically.

Executing the Extract, Append, and Export Static Code

using the CALL EXECUTE Command:

 The DATA step does not create an output data set because the _NULL_ option is used.

 The SET statement sets path_list_files as the input data set for this DATA step.

 The CALL EXECUTE Command runs the fpath_line variable in the path_list_files data set.

 DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(fpath_line);

 RUN;

THE POWER TO EXECUTE
Static Code Automatically Using The CALL EXECUTE Command

Here is the code with the value of the fpath_line variable resolved:

 Next we will demonstrate how this code is resolved as the data sets change in the SET statement.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

22

Here is the processing of the 1st data set of the SET statement:

 The INDSNAME=Current_SAS_dataset SET option assigns Current_SAS_dataset to equal the

first data set and path which is SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'.

 The IF Current_SAS_dataset NE Prior_SAS_dataset THEN logic is only True when the first
observation of each data set is read because of the Prior_SAS_dataset = Current_SAS_dataset
assignment.

 The Load_Date is assigned by the SUBSTR function capturing the character month, day, and year
from the Current_SAS_dataset.

 The character month, day, and year are converted to numeric using the INPUT function and then
converted to a SAS date using the MDY function and formatted as a SAS date by the FORMAT
Load_Date date9..

 The Load_Date is retained by the RETAIN Load_Date statement and reassigned with the first
observation of each new input data set.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

23

Here is the beginning of resolving the SUBSTR function of the Load_Date:

 The Load_Date resolution begins by resolving the SUBSTR’s of month, day, and year from the

Current_SAS_dataset variable.

 The SUBSTR(Current_SAS_dataset,34,2) resolves to '01' for the month as a character.

 The SUBSTR(Current_SAS_dataset,36,2) resolves to '02' for the day as a character.

 The SUBSTR(Current_SAS_dataset,30,4) resolves to '2015' for the year as a character.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT(SUBSTR(Current_SAS_dataset,34,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,36,2),2.),

 INPUT(SUBSTR(Current_SAS_dataset,30,4),4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

24

Here is the resolution of the SUBSTR function of month, day, and year:

 The SUBSTR function captured the character month, day, and year from the Current_SAS_dataset.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(INPUT('01',2.),

 INPUT('02',2.),

 INPUT('2015',4.));

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

Here is the resolution of the INPUT function of month, day, and year:

 The INPUT function converted the character month, day, and year to numeric.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = MDY(01,02,2015);

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

25

Here is the final resolution of the Load_Date for the 2nd input data set:

 The MDY function and FORMAT Load_Date date9. converts the month, day, and year to a SAS date.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = '09JAN2015'd;

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

Here is the final resolution of the Load_Date for the 1st input data set:

 The MDY function and FORMAT Load_Date date9. converts the month, day, and year to a SAS date.

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = '02JAN2015'd;

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

26

Now that we have completed the process for 1 year, we need to repeat the process for the remaining 12 years

of this project. How is this accomplished? We simply update the year in the variable portion of the Dynamic

FILENAME Statement in the Create Yearly data set program node, rerun the program node, and then repeat

this process until each of the remaining years is complete.

 Done and Done

Creating the yearly data sets for each year:

 Update the year in the Create Yearly data set program node and rerun for each year.

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

Here is the final resolution of the Load_Date for the last input data set:

 The MDY function and FORMAT Load_Date date9. converts the month, day, and year to a SAS date.

 Here is the result of executing fpath_line in the path_list_files data set:

DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(

 DATA '/data/MWSUG/CALL_EXECUTE/file_final_2015.sas7bdat';

 LENGTH Current_SAS_dataset Prior_SAS_dataset $100;

 SET '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat'

 INDSNAME=Current_SAS_dataset;

 FORMAT Load_Date date9.;

 KEEP Special_Person Special_Number Load_Date;

 RETAIN Load_Date;

 IF Current_SAS_dataset NE Prior_SAS_dataset THEN

 DO;

 Load_Date = '02FEB2015'd;

 Prior_SAS_dataset = Current_SAS_dataset;

 END;

 RUN;

);

RUN;

27

CONCLUSION

The Power To Know through a Dynamic FILENAME Statement enables The Power To Transform Static

Code into Dynamic Code using the INDSNAME SET Option and leads to The Power To Execute the recreated

Static Code automatically using the CALL EXECUTE Command. { Try saying that statement really fast for

fun ! } You have seen how 1,469 time-consuming Manual Steps are amazingly replaced with only 1 time-

saving Dynamic Automated Step.

On your future SAS Quests, listen closely to your SAS Intuition and pursue blending your SAS wishes with the

built-in wisdom of SAS. As you experience SAS Wis-h-dom, your research will lead you to your own Happy

Accident discoveries which will increase the efficiency of your program designs. As you leave here with your

newest BFF in SAS, begin thinking about how you can benefit from this powerful partnership.

It’s not what the SAS World holds for you, it’s what YOU bring to it. You are like the language itself ~ you are

intuitive and flexible in designing your programs. As a SAS Professional, you are inquisitive, research

oriented, and solution driven. Your optimistic and tenacious desire to design a quality program fuels your

thoroughness and attention to detail. When you are in your SAS Zone, you are relentless in your pursuit to

overcome obstacles and maximize your programming.

Don’t be a reservoir, be a river. John C. Maxwell

SAS Programming is Mind Art ~ a creative realm where each of you is an Artist. Continue to develop and

build on your many skills and talents. Keep looking for different ways to share your God-given abilities and

ideas. Don’t be a reservoir of SAS knowledge, be a river flowing outward to help and empower other people.

Always remember, your contributions make a positive impact in the world. Plan on coming back to the

MWSUG Conference next year to shed some light on the exciting things you are learning. All of us are on the

SAS journey with you and we look forward to your teaching sessions in the future.

As we conclude, we want to introduce you to our SAS Mascot, Smiley. Smiley represents the SAS Joy which

each of us experience as we find better ways to accomplish mighty and worthy deeds using SAS. We hope we

have enriched your SAS knowledge. You may not use this powerful partnership on a daily basis, but when the

need arises ~ Oh, how powerful and valuable your relationship will be with your newest BFF in SAS!

Thank You for sharing part of your SAS journey with us ~

 Happy SAS Trails to you… until we meet again

It’s not what the world holds for you,
it’s what YOU bring to it!

Anne of Green Gables

Your life is like a campfire at night –
You never know how many people will see it
and be comforted and guided by your light.

Claire Draper

28

MEET THE AUTHORS

Writing is a permanent legacy.

John C. Maxwell

Kent Phelps ~ SAS Certified Professional ~ B.S. Electrical Engineering ~ Writer ~ Teacher ~ Coach ~ has

presented at the MWSUG Conference for 3 years, worked in IT and Data Governance since 1990, programmed

in SAS since 2007, and specializes in blending the best of Base SAS with SAS Enterprise Guide to engineer

automated solutions. He co-created/taught Intro to SAS EG classes, offered SAS News You Can Use, presented

at the Iowa SAS Users Group (IASUG), studied Transformational Leadership, Dynamic Teamwork, and

Personal Growth since 1994, and is certified as a John Maxwell Team and 48 Days To The Work You Love

Coach. Past highlights include acting for over ten years, co-leading WOW Drama, singing a drama solo with a

live orchestra, and auditioning in Branson, MO. Kent wants to encourage and equip you to fulfill your life and

leadership potential as you build an enduring legacy of inspiration, excellence, and honor.

Ronda Phelps ~ Writer ~ Teacher ~ Coach ~ has presented at the MWSUG Conference for 2 years, formerly

worked in the Banking and Insurance industries for 19 years, studied Transformational Leadership, Dynamic

Teamwork, and Personal Growth since 1994, and is certified as a John Maxwell Team and 48 Days To The

Work You Love Coach. Past highlights include speaking in Siberia, acting for over ten years, co-leading WOW

Drama, and developing life-changing presentations. Ronda believes that YOU are a gift the world is waiting to

receive, and she wants to encourage and equip you to pursue your unique destiny as you navigate your life

journey with intentionality, fulfilling purpose, and enduring hope.

We invite you to share your valued comments with us:

Kent Ronda Team Phelps

The SASketeers ~ All for SAS & SAS for All!

E-mail: SASketeers@q.com

 We look forward to connecting with you in the future!

mailto:SASketeers@q.com

29

Disclaimer: This presentation details the UNIX syntax for our project example. Please refer to your

specific Operating System (e.g. UNIX, Windows, or z/OS) Manual, Installation Configuration, and/or in-

house Technical Support for further guidance in how to create the SAS code presented in this paper.

APPENDIX A
Starting Point Information Regarding Syntax For Windows And z/OS

Creating the Dynamic FILENAME Statement on page 8:

 The Windows version of the Dynamic FILENAME Statement references the specific drive letter along

with the path:

FILENAME indata "c:\data\MWSUG\CALL_EXECUTE\file2015*.sas7bdat";

 The z/OS version of the Dynamic FILENAME Statement can take different forms depending on the

z/OS version and installation configuration. Here are 2 reference links as a starting point:

 Using the FILENAME Statement or Function to Allocate External Files from SAS® 9.4

Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#n0yrspsfthx1w5n1gyt6rg

zh3qsu.htm

 Accessing UNIX System Services Files from SAS® 9.4 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#n001udyg5mzcb1n1bhts
48m1bal1.htm

FILENAME indata '/data/MWSUG/CALL_EXECUTE/file2015*.sas7bdat';

Creating the first Dynamic Code which exports a data set on page 14:

 The Windows version of fpath_line uses the specific drive letter:

fpath_line = CATS("DATA 'c:\data\MWSUG\CALL_EXECUTE\file_all_",

 The z/OS version of the fpath_line can take different forms depending on the z/OS version and

installation configuration. Here are 2 reference links as a starting point:

 Data Set Options under z/OS from SAS® 9.4 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#p1t2wsrhr9x099n1h967c

ql2j3fm.htm

 SAS® 9.4 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#titlepage.htm

fpath_line = CATS("DATA '/data/MWSUG/CALL_EXECUTE/file_all_",

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#n0yrspsfthx1w5n1gyt6rgzh3qsu.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#n0yrspsfthx1w5n1gyt6rgzh3qsu.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23n001udyg5mzcb1n1bhts48m1bal1.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23n001udyg5mzcb1n1bhts48m1bal1.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23p1t2wsrhr9x099n1h967cql2j3fm.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23p1t2wsrhr9x099n1h967cql2j3fm.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23titlepage.htm

30

Executing the CALL EXECUTE Command on page 21:

 The Windows version of the CALL EXECUTE Command is identical in syntax to the UNIX version.

 The z/OS version of the CALL EXECUTE Command can take different forms depending on the z/OS

version and installation configuration even though the CALL EXECUTE Command is considered to be

a portable function in SAS. Here are 2 reference links as a starting point:

 SAS(R) 9.4 Macro Language: Reference, Fourth Edition:

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#n1q1527d51eivsn1ob5hn

z0yd1hx.htm

 SAS® 9.4 Companion for z/OS:

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#titlepage.htm

 DATA _NULL_;

 SET path_list_files;

 CALL EXECUTE(fpath_line);

 RUN;

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm%23n1q1527d51eivsn1ob5hnz0yd1hx.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm%23n1q1527d51eivsn1ob5hnz0yd1hx.htm
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23titlepage.htm

31

APPENDIX B

The Code That Created The Data Sets For Our Project Example

DATA '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat'

 '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat';

 LENGTH Special_Person $20. Special_Number 8. Special_Code $1.;

 INFILE DATALINES DELIMITER=',';

 INPUT Special_Person $ Special_Number Special_Code $;

 SELECT;

 WHEN(_N_ LE 5) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150102.sas7bdat';

 WHEN(_N_ LE 10) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150109.sas7bdat';

 WHEN(_N_ LE 15) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150116.sas7bdat';

 WHEN(_N_ LE 20) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150123.sas7bdat';

 WHEN(_N_ LE 25) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150130.sas7bdat';

 WHEN(_N_ LE 30) OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150206.sas7bdat';

 OTHERWISE OUTPUT '/data/MWSUG/CALL_EXECUTE/file20150213.sas7bdat';

 END;

 DATALINES;

Smiley,10127911,A

Smiley's Son,10173341,K

Smiley's Twin,10376606,B

Smiley's Wife,10927911,A

Smiley's Son,11471884,E

Smiley,10027911,C

Smiley,10877911,H

Smiley's Son,11071884,A

Smiley's Twin,11173691,C

Smiley's Daughter,11375498,J

Smiley,10027911,H

Smiley,10877911,B

Smiley's Son,11071884,F

Smiley's Twin,11173691,H

Smiley's Daughter,11375498,D

Smiley's Son,10173341,G

Smiley,10177911,C

Smiley's Twin,10376606,I

Smiley,10977246,H

Smiley's Son,11471884,A

Smiley's Son,10471884,A

Smiley's Twin,10573616,C

Smiley,10727911,H

Smiley's Son,11571884,F

Smiley's Twin,11773691,H

Smiley,10177911,F

Smiley's Son,10471884,J

Smiley's Twin,10573616,A

Smiley's Son,11571884,D

Smiley's Twin,11773691,F

Smiley,10177911,I

Smiley's Son,10471884,B

Smiley's Twin,10573616,D

Smiley's Son,11571884,G

Smiley's Twin,11773691,I

;

RUN;

32

ACKNOWLEDGMENTS

We want to thank the 27th Annual MWSUG 2016 Tools of the Trade Section Co-Chairs, David Corliss, Sherry

Zhou (former), and Deanna Schreiber-Gregory (current) for graciously accepting our abstract and paper.

In addition, we want to express our appreciation to the Conference Co-Chairs, Richann Watson (Academic

Chair) and Adrian Katschke (Operations Chair), the Executive Committee and Conference Leaders, and SAS

Institute for their diligent efforts in organizing this illuminating and energizing conference.

We also offer our deep gratitude to our friend, mentor, and fellow SASketeer, Kirk Paul Lafler. Your heart to

continuously share what you are learning, blended with your servant leadership and supportive guidance, is a

constant light of encouragement to us. And in conclusion, we want to give a shout out to our friend, Charlie

Shipp, for his friendship and faithful service to the SAS World. You both inspire us to share what we are

learning and our hope is to be a light of encouragement to you as well ~ All for SAS & SAS for All!

REFERENCES

Agarwal, Megha (2012), The Power of “The FILENAME” Statement, Gilead Sciences, Foster City, CA, USA.

http://www.lexjansen.com/wuss/2012/63.pdf

Gan, Lu (2012), Using SAS® to Locate and Rename External Files, Pharmaceutical Product Development, L.L.C., Austin, TX, USA.

http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf

Hamilton, Jack (2012), Obtaining a List of Files in a Directory Using SAS® Functions.

http://www.wuss.org/proceedings12/55.pdf

Lafler, Kirk Paul and Charles Edwin Shipp (2012), Google® Search Tips and Techniques for SAS® and JMP® Users, Proceedings of the 23rd

Annual MidWest SAS Users Group (MWSUG) 2012 Conference, Software Intelligence Corporation, Spring Valley, CA, and Consider

Consulting, Inc., San Pedro, CA, USA.

http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf

Langston, Rick (2013), Submitting SAS® Code On The Side; SAS Institute Inc., Cary, NC.

http://support.sas.com/resources/papers/proceedings13/032-2013.pdf

Michel, Denis (2005), CALL EXECUTE: A Powerful Data Management Tool, Proceedings of the 30th Annual SAS® Users Group International

(SUGI) 2005 Conference, Johnson & Johnson Pharmaceutical Research and Development, L.L.C.

http://www2.sas.com/proceedings/sugi30/027-30.pdf

Phelps, Kent Ronda Team (2016), Hands-On workshop: The Joinless Join ~ The Impossible Dream Come True; Expand the Power of Base

SAS® and SAS® Enterprise Guide® in a New Way, Proceedings of the 27th Annual MidWest SAS Users Group (MWSUG) 2016 Conference, The

SASketeers, Des Moines, IA, USA.

Phelps, Kent Ronda Team (2015), SAS® Enterprise Guide® Base SAS® Program Nodes ~ Automating Your SAS World With a Dynamic

FILENAME Statement, Dynamic Code, and the CALL EXECUTE Command; Your Newest BFF (Best Friends Forever) in SAS, Proceedings of the

26th Annual MidWest SAS Users Group (MWSUG) 2015 Conference, The SASketeers, Des Moines, IA, USA.

http://www.mwsug.org/proceedings/2015/TT/MWSUG-2015-TT-05.pdf

Phelps, Kent Ronda Team (2015), The Joinless Join ~ The Impossible Dream Come True; Expanding the Power of SAS® Enterprise

Guide® in a New Way, Proceedings of the 26th Annual MidWest SAS Users Group (MWSUG) 2015 Conference, The SASketeers, Des Moines,

IA, USA.

http://www.mwsug.org/proceedings/2015/BI/MWSUG-2015-BI-11.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2014), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Your Newest BFF (Best Friends Forever), Proceedings of the 25th Annual MidWest SAS Users Group (MWSUG) 2014 Conference,

The SASketeers, Des Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI13.pdf

http://www.lexjansen.com/wuss/2012/63.pdf
http://www.scsug.org/wp-content/uploads/2012/11/Using-SAS-to-locate-and-rename-external-files.pdf
http://www.wuss.org/proceedings12/55.pdf
http://www.mwsug.org/proceedings/2012/JM/MWSUG-2012-JM06.pdf
http://support.sas.com/resources/papers/proceedings13/032-2013.pdf
http://www2.sas.com/proceedings/sugi30/027-30.pdf
http://www.mwsug.org/proceedings/2015/TT/MWSUG-2015-TT-05.pdf
http://www.mwsug.org/proceedings/2015/BI/MWSUG-2015-BI-11.pdf
http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI13.pdf

33

Phelps, Kent Ronda Team and Kirk Paul Lafler (2014), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Proceedings of the 25th Annual MidWest SAS Users Group (MWSUG) 2014 Conference, The SASketeers, Des Moines, IA, and Software

Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI12.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Best Friends, Presented at Iowa SAS Users Group (IASUG), The SASketeers, Des Moines, IA, and Software Intelligence

Corporation, Spring Valley, CA, USA.

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Presented at Iowa SAS Users Group (IASUG), The SASketeers, Des Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), SAS® Commands PIPE and CALL EXECUTE; Dynamically Advancing From

Strangers to Best Friends, Proceedings of the 24th Annual MidWest SAS Users Group (MWSUG) 2013 Conference, The SASketeers, Des

Moines, IA, and Software Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf

Phelps, Kent Ronda Team and Kirk Paul Lafler (2013), The Joinless Join; Expand the Power of SAS® Enterprise Guide® in a New Way,

Proceedings of the 24th Annual MidWest SAS Users Group (MWSUG) 2013 Conference, The SASketeers, Des Moines, IA, and Software

Intelligence Corporation, Spring Valley, CA, USA.

http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf

SAS Institute Inc. (2015), SAS® 9.4 Companion for z/OS, Fifth Edition; Cary, NC; SAS Institute Inc.

http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm#hosto390whatsnew93.htm

SAS Institute Inc. (2015), SAS(R) 9.4 Macro Language: Reference, Fourth Edition; Cary, NC; SAS Institute Inc.

http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm#mcrolrefwhatsnew94.htm

SAS Institute Inc. (2015), SAS(R) 9.4 Statements: Reference, Fourth Edition; Cary, NC; SAS Institute Inc.

http://support.sas.com/documentation/cdl/en/lestmtsref/68024/HTML/default/viewer.htm#p00hxg3x8lwivcn1f0e9axziw57y.htm

Spector, Phil, An Introduction to the SAS System; Statistical Computing Facility; University of California, Berkeley.

http://www.stat.berkeley.edu/~spector/

Support.SAS.com (2007), Using FILEVAR= to Read Multiple External Files in a DATA Step.

http://support.sas.com/techsup/technote/ts581.pdf

Varney, Brian (2008), You Check out These Pipes: Using Microsoft Windows Commands from SAS®, SAS Institute Inc. 2008. Proceedings of

the SAS® Global Forum 2008 Conference, Cary, NC; SAS Institute Inc.

http://www2.sas.com/proceedings/forum2008/092-2008.pdf

Watson, Richann (2013), Let SAS® Do Your DIRty Work, Experis, Batavia, OH.

http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

TRADEMARK CITATIONS

SAS and all other SAS Institute, Inc., product or service names are registered trademarks or trademarks of SAS Institute,

Inc., in the USA and other countries. The symbol, ®, indicates USA registration. Other brand and product names are

registered trademarks or trademarks of their respective companies.

DISCLAIMER

We have endeavored to provide accurate and helpful information in this SAS White Paper. The information is provided in

‘Good Faith’ and ‘As Is’ without any kind of warranty, either expressed or implied. Recipients acknowledge and agree that

we and/or our companies are not, and never will be, liable for any problems and/or damages whatsoever which may

arise from the recipient’s use of the information in this paper. Please refer to your specific Operating System (e.g. UNIX,

Windows, or z/OS) Manual, Installation Configuration, and/or in-house Technical Support for further guidance in how to

create the SAS code presented in this paper.

Copyright © Kent Ronda Team Phelps ~ The SASketeers ~ All Rights Reserved

http://www.mwsug.org/proceedings/2014/BI/MWSUG-2014-BI12.pdf
http://www.mwsug.org/proceedings/2013/00/MWSUG-2013-0003.pdf
http://www.mwsug.org/proceedings/2013/BB/MWSUG-2013-BB06.pdf
http://support.sas.com/documentation/cdl/en/hosto390/68955/HTML/default/viewer.htm%23hosto390whatsnew93.htm
http://support.sas.com/documentation/cdl/en/mcrolref/67912/HTML/default/viewer.htm%23mcrolrefwhatsnew94.htm
http://support.sas.com/documentation/cdl/en/lestmtsref/68024/HTML/default/viewer.htm%23p00hxg3x8lwivcn1f0e9axziw57y.htm
http://www.stat.berkeley.edu/~spector/
http://support.sas.com/techsup/technote/ts581.pdf
http://www2.sas.com/proceedings/forum2008/092-2008.pdf
http://www.pharmasug.org/proceedings/2013/TF/PharmaSUG-2013-TF06.pdf

