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ABSTRACT  

In an observational study the subjects are assigned to treatments through a non-randomized process. In 
the simplest and most typical case there are two treatments, one being deemed as “control”. Associated 
with the subjects is an “outcome” which is of interest to the researcher. The outcome could be discrete, 
very often binary, or have continuous numeric values. The researcher wants to know the effect of the 
treatment on the outcome. This is called the average treatment effect and abbreviated by ATE. Due to the 
non-random assignment of treatments, a simple comparison of outcomes, such as an average per 
treatment group, would be biased. One solution to removing the bias rests on finding covariates for the 
subjects such that the treatment assignment can be regarded as random for subjects having essentially 
equal covariate values. This is called “covariate balance” for the treatments. Although covariate balance is 
virtually a necessary condition when computing ATE, it is not also sufficient. Specifically, the covariate 
collection must also include any covariate which is strongly related to both treatment and outcome. Finding 
such covariates is a central challenge when performing a causal analysis. Once accomplished, then an 
analysis of outcomes can be undertaken. The SAS® procedure PROC PSMATCH provides methods to 
adjust the sample so that the treatment can be regarded as random. An output data set from PROC 
PSMATCH is then used by other SAS procedures to estimate the causal effect. This paper gives hands-on 
experience regarding the assumptions that enable the analysis of causal effects in an observational study 
and gives simple examples of usage of PSMATCH. 

INTRODUCTION  

In an observational study the subjects are assigned to treatments through a non-randomized process. In 
this paper the treatment T will consist of two levels where one will be deemed as “control”. Associated with 
the subjects is an outcome Y which is of interest to the researcher. The outcome could be discrete, very 
often binary, or have continuous numeric values. The researcher wants to know the effect of the treatment 
on the outcome. An analysis of the treatment effect cannot be performed for individual subjects since a 
subject experiences either the treatment or the control but not both. Therefore, this analysis is done at the 
group level. The researcher wants to estimate the “Average Treatment Effect” (ATE) which is the 
difference in the average outcome between the treatment group and the control group. Due to the 
non-random assignment of treatments, a simple comparison of average outcomes would be biased. 

One solution to removing the bias rests on finding covariates for the subjects such that the treatment 
assignment can be regarded as random for subjects having essentially equal covariate values. This is 
called “covariate balance” for the treatments. Although covariate balance is virtually a necessary condition 
when computing ATE, it is not also sufficient. Specifically, the covariate collection must also include any 
covariate which is strongly related to both treatment and outcome. Finding such covariates is a central 
challenge when performing a causal analysis. Once found, an analysis of outcomes can be undertaken. 

PROC PSMATCH was introduced in SAS/STAT 14.2. PSMATCH carries out the balancing of covariates 
so that the treatment can be viewed as random. Additional SAS procedures are then used to measure the 
causal effect. Also in SAS/STAT 14.2 PROC CAUSALTRT was introduced. PROC CAUSALTRT provides 
a “one-stop” process for balancing of covariates and for the measurement of the causal effect. 

PURPOSE OF THIS PAPER 

One purpose of this paper is to give hands-on experience regarding the assumptions that enable the 
analysis of causal effects in an observational study. This is done by giving simple examples and simple 
proofs of several key theorems.1 These proofs employ only elementary rules of probability. In particular, a 
theorem is discussed which gives the “inverse probability weighting” method for computing ATE 

                                                      
1 All theorems in this paper have been known for roughly 35 years. See Lunceford and Davidian (2004) or Angrist, and 
Pischke (2009) or Lamm and Yung (2017) for a list of references and commentary. 
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(Theorem 3). The consequences of the theorem might seem mysterious or even magical. This paper 
examines the “inverse probability weighting” method both in terms of assumptions and conclusions.2 

A second purpose is to connect the “inverse probability weighting” method to the operation of PROC 
PSMATCH and follow-on SAS procedures. Only a small subgroup, however, of the options of PSMATCH 
are illustrated by the examples in this paper. In particular, none of the PSMATCH “matching methods” are 
included. Additionally, PROC CAUSALTRT is briefly discussed. 

This paper might serve as preliminary reading before studying the paper “Propensity Score Methods for 
Causal Inference with the PSMATCH Procedure” by Yuan, Yung, and Stokes (2017). 

CONDITIONAL INDEPENDENCE OF RANDOM VARIABLES 

Let X, T, and E be random variables on a data set S (formally, a probability space S). The random 
variables X, T, E can be vector-valued. For example, X may consist of k random variables X1, …, Xk so 
that X=( X1, …, Xk) maps into Rk. Even though X may consist of k component random variables, the 
notation X and X=x will be used. There will be no need to single out the individual components of X. 

Definition: X and T are conditionally independent given E if the following condition (A) is true: 

(A) P(X=x, T=t | E=e) = P(X=x | E=e) * P(T=t | E=e) for all x, t, and e from S 3 

Consider data set S in Table 1. Each row (each subject) has probability of 1/7 of random selection.  

In Table 1 the random variables X and T are conditionally independent given the random variable E. 
Condition (A) is verified below for the example where X=1, T=1, and E=0.5: 

P(X=1, T=1 | E=0.5) = ¼ = ½ * ½ = P(X=1| E=0.5) * P(T=1| E=0.5) 

Of course, there are other combinations of values for X, T, E that must be tested.  

X T E 

1 0 0.5 

1 1 0.5 

2 0 0.667 

2 1 0.667 

2 1 0.667 

3 0 0.5 

3 1 0.5 

Table 1: Data set S with random variables X, T, and E 

Equivalent Conditions for Conditional Independence: 

Conditions (A), (B), and (C) are equivalent. In each case X and T are conditionally independent given E. 

(A) P(X=x, T=t | E=e) = P(X=x | E=e) * P(T=t | E=e) for all x, t, and e 
(B) P(X=x | T=t, E=e) = P(X=x | E=e) for all x, t, and e 
(C) P(T=t | X=x, E=e) = P(T=t | E=e) for all x, t, and e 

Exhibit 1: Equivalent Conditions for Conditional Independence of X and T given E 

The steps to prove (A) from (C) are shown here (in short-hand notation). By definition of conditional 
probability (twice):  P(X, T | E)= P(X, T, E) / P(E)= P(T | X, E) * P(X, E) / P(E) … It is assumed P(E) > 0 

Using (C) the “X” is removed from P(T | X, E) as shown below:  

P(T | X, E) * P(X, E) / P(E)= P(T | E) * P(X, E) / P(E)= P(T | E) * P(X | E) 

Therefore:  P(X, T | E)= P(T | E) * P(X | E), which is condition (A) 

                                                      
2 Not discussed in this paper is a topic in causal analysis called the “average treatment effect for the treated” (ATT). 
See Yuan, Yung, and Stokes (2017, p. 1) to begin a discussion of this topic. 
3 The comma inside “P(X=x, T=t)” stands for “and”, that is, X=x AND T=t 
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Conditions (A), (B), (C) are given for points (x, z, e), but all these conditions may be restated in terms of 
sets. For example, P(X∈X) indicates the probability statement applies to values of X that belong to a set X. 

Condition (A) becomes: P(X∈X, T∈T | E∈ E) = P(X∈X | E∈E) * P(T∈T | E∈E) for all X, T, and E. 

CONDITIONAL INDEPENDENCE AND PROPENSITY SCORES 

In the following, T is a binary treatment variable where T=1 is “treated” and T=0 is “control”.4 Covariates X 
(where X may denote many variables) are used in predicting T. Such covariates must have values 
determined before the determination of the value of T. Let S be a data set (or probability space) where 
each subject in S has values for T and X and each subject has equal probability of random selection.  

The propensity score model is defined as the probability that T=1 for covariate value X=x. The notation 
e(x) = P(T=1 | X=x) will be used. By definition of e(x), the treated subjects with X=x will account for 
100*e(x)% of the subpopulation of S where X=x. In this sense this theoretical propensity score is perfect.5 

In the following sections, for given x0 the set Ee(x0) will denote the values x taken by X where: 

Ee(x0) = {x: e(x) = e(x0)} 

T AND X ARE CONDITIONALLY INDEPENDENT GIVEN Ee(x0) … or e(x0) 

Given Ee(x0), then T and X are conditionally independent. A proof is given below Table 2. In the probability 
statements below, the short-hand notation Ee(x0) is used to replace the formally correct X∈Ee(x0). Here, 

X∈Ee(x0) indicates that the value of X belongs to Ee(x0). By condition (C) of conditional independence: 

P(T=t | X=x, Ee(x0)) = P(T=t | Ee(x0)) for all values of T and X in data set S, given Ee(x0). 

In shortened notation, e(x0) takes the place of Ee(x0)  and conditional independence is expressed by: 

P(T=1 | X=x, e(x0)) = P(T=1 | e(x0))  

or even more succinctly by:  

T _||_ X | e(x) 

In Table 2, the propensity score is e(x) and it is true that T _||_ X | e(x).6 

X T e(x) Ee(x) 
Y: outcome 

(for later reference) 

1 0 0.5 {1, 3} 2 

1 1 0.5 {1, 3} 3 

2 0 0.667 {2} 1 

2 1 0.667 {2} 4 

2 1 0.667 {2} 2 

3 0 0.5 {1, 3} 5 

3 1 0.5 {1, 3} 0 

Table 2: Data set S with random variables X, T, propensity scores e(x) and sets Ee(x) 

PROOF OF T _||_ X | e(x) USING ELEMENTARY METHODS 

Short proofs of T _||_ X | e(x) are given in books and papers that utilize the notation and ideas of expected 
values.7 The proof below uses basic rules of probabilities and avoids expected values. (References to the 
underlying data set S will be omitted.) 

                                                      
4 Treatments must satisfy common sense but important conditions labeled SUTVA. See Lamm and Yung (2017, p. 5) 
5 But in applications, e(x) is fit from the available analysis data set and would rarely be perfect. 
6 One verification using condition (A): P(X=1, T=1 | e(x) = 0.5) = ¼ = ½ * ½ = P(X=1 | e(x) = 0.5) * P(T=1 | e(x) = 0.5) 
Note: Probability of a row is 1/7 and P(X=1, T=1 | e(x) = 0.5) = P(X=1, T=1, e(x) = 0.5) / P(e(x) = 0.5) = (1/7)/(4/7) = ¼. 
Similarly, applying conditional probability and 1/7 probability for each row gives the right hand side of ½ * ½ = ¼. 
7 Here is the proof from Rosenbaum (2010, p. 73): Taking the case T=1, condition (C) is verified below: 
P(T=1 | e(x)) = E{T | e(x)} = E{E{T | x, e(x) } | e(x)} = E{P{T=1 | x, e(x)} | e(x)} = E{e(x) | e(x)} = e(x) = P(T=1 | x, e(x)) 
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THEOREM 1: If e(x) is the perfect propensity score for covariates X and treatment T, then T _||_ X | e(x)    

In this proof the conditional independence condition (C), given below, will be verified.  

 P( T=1 | X=x’, Ee(x0) ) = P( T=1 | Ee(x0) ) … where Ee(x0) = {x: e(x) = e(x0)} 

It can be assumed that x’ (from X=x’) in the equation above is contained in Ee(x0).8 The verification of 
condition (C) is given by showing that both the right hand side and the left hand side reduce to e(x0).  

Left side:  

P( T=1 | X=x’, Ee(x0) ) = P( T=1 | X=x’ )  … since Ee(x0) ∩ {X=x’} = {X=x’} 

P( T=1 | X=x’ ) = e(x0) … since x’ belongs to Ee(x0)  

Right side: 

P( T=1 | Ee(x0) )  = P( T=1, Ee(x0) )) / P( Ee(x0)) )  

= { ∑  𝑥′∈Ee(x0) P( T=1, X=x’, Ee(x0)) } / P( Ee(x0) )   … sum of probabilities across disjoint subsets 

= { ∑  𝑥′∈Ee(x0) P (T=1, X=x’ ) } / P( Ee(x0))  … since Ee(x0) ∩ {X=x’} = {X=x’} 

= { ∑  𝑥′∈Ee(x0) P( T=1 | X=x’ ) * P( X=x’ ) } / P( Ee(x0) ) 

= { ∑  𝑥′∈Ee(x0) e(x0) * P( X=x’ ) } / P( Ee(x0) )  … since x’ ∈ Ee(x0) 

= { e(x0) / P( Ee(x0)) } * ∑  𝑥′∈Ee(x0) P( X=x’ ) 

⋃ {x′}x′∈Ee(x0)  = Ee(x0) and the formula for the sum of probabilities across disjoint subsets gives … 

= { e(x0) / P( Ee(x0) ) } * P( Ee(x0) )  = e(x0)  

The “trick” was the divide in Ee(x0) into disjoint subsets consisting of the {x} which belong to Ee(x0) (as is 
done in the second line). A similar proof applies when T=0. 

IMPORTANCE AND LIMITATIONS OF THEOREM 1 

By Theorem 1 the probability distributions of covariates X, given a value of e(x), are the same distributions 
for both T=0 and T=1.9 The covariates are “balanced” for treated and control.  

For example, in Table 2 for e(x)=0.50, the distribution of X for T=0 is P(X=1)=0.5, P(X=2)=0, P(X=3)=0.5. 
The same is true for T=1 when e(x)=0.5.  

Perhaps a non-randomized experiment (observational study) may be regarded as randomized if the 
averages of the outcome variable for treated and for control are compared only for subsets of subjects 
which have the same value of e(x)? This allows treated and control outcomes to be compared for subsets 
of subjects having balanced covariates, an apples to apples comparison. 

For example, using the outcome Y in Table 2 the case might be made that the effect of the treatment T on 
Y (the ATE) could be measured as follows: 

e(x) 
Average Y  
for T = 1 

Average Y  
for T = 0 

Difference 
“D” 

% of Sample 
“S” 

Weighted 
= “D” * “S” 

0.5 1.5 3.5 -2.0 0.571 -1.142 

0.667 3.0 1.0 2.0 0.429 0.858 

    ATE = -0.284 

Table 3: Calculation of ATE for subsets of treated and control with the same value of e(x) 

However, for the analysis of Table 3 to be appropriate, the outcome and the treatment must also be 
independent given the covariates. Although covariate balance is virtually a necessary condition when 
computing ATE, it is not also sufficient. Specifically, the covariate collection must include any X which is 
strongly related to both treatment and outcome. The apples to apples comparisons must use the right 
apples. 

                                                      
8 If X=x’ is not contained in Ee(x0), then equivalent condition (A) is satisfied. Both left and right sides of (A) equal zero. 
9 This is due to Condition (B) of the equivalent conditions for conditional independence. 
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Finding all such covariates is a central challenge when performing a causal analysis. 

The earlier statement “the outcome and the treatment must also be independent given the covariates” 
needs quantification. To quantify this statement requires that the straightforward notion of “outcome” be 
refined by the concept of “potential” outcome. The concept of potential outcome is presented in the section 
below. 

Employing the concept of potential outcomes and the “Strong Ignorability Assumption” (SIA), a setting is 
created where an observational study can be regarded as a randomized study. In this setting there are 
formulas for the computation of ATE.  

The discussion of SIA follows the discussion of potential outcomes. 

Stepping back from the theory of Theorem 1, which gives a result about probabilities, a modeler will, 
generally, have only a sample from some larger finite or conceptual population. Each subject in the sample 
will have a treatment and covariates. The modeler, using logistic regression or some other binary-target 
model, will fit an empirical propensity score model to the sample. How does the modeler assess the 
success of the propensity score in obtaining balance? This question is taken up when discussing, in a later 
section, the toolkit provided by PROC PSMATCH. 

POTENTIAL OUTCOMES AND POTENTIAL OUTCOME MEANS (POM) 

Returning to theory, each subject in an observational study data set S will have an outcome Y, treatment 
T, and covariates X. If the ith subject is treated, then the outcome Yi, due to being treated, is observed. But 
this subject had the potential of having a different outcome if this subject had been placed in control. 
Similar statements are made for subjects in control.  

Of course, a potential outcome cannot be observed. It is imagined or missing. Here is the notation to be 
used for outcomes, both real and potential, by treatment: 

 The outcome Yi (1) is the treated outcome for the ith subject, whether or not actually treated  

 The outcome Yi (0) is the control outcome for the ith subject, whether or not actually in control  

Yi (1) is imagined for any subject in control and Yi (0) is imagined for any treated subject.  

The potential outcomes, the actual outcome, and the treatment status are connected by the equation: 

Yi = Ti*Yi (1) + (1-Ti)*Yi (0) 

POTENTIAL OUTCOME MEANS (POM’s) 

The mean of the potential outcomes for the treated group is the average of Yi(1), or E[Y(1)]. This average 
is not directly computable due to imagined (or missing) values of Yi(1) for subjects in control.  

The sections below will discuss assumptions which allow this average to be computed. Likewise, average 
of Yi(0), or E[Y(0)], is not computable without further assumptions. 

AVERAGE TREATMENT EFFECT 

The difference between the average of the actual treated outcomes and the average of the actual control 
outcomes can be computed and forms the “naïve” ATE. 

ATEnaive = (∑  𝑖: 𝑇𝑖=1 Yi) / (∑  𝑖: 𝑇𝑖=1 Ti) - (∑  𝑖: 𝑇𝑖=0 Yi) / (∑  𝑖: 𝑇𝑖=0 (1 −Ti) 

But, treated subjects may be very different than control subjects due to non-random assignment of 
treatment. The effect of the treatment on the outcome is obscured if using ATEnaive.  

In an observational study the challenge to the researcher is to estimate ATE where ATE is the difference 
between the potential outcome means for treated and control: 

ATE = E[Y(1)] - E[Y(0)] 

ATE is an unknown parameter of data set S. ATE is not computable without further assumptions since it is 
the difference of two potential outcome means (POM’s). Such assumptions are given in sections below. 
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CONDITIONAL INDEPENDENCE OF Y(t) AND T, GIVEN X … FOR t = 0, 1 

Continuing with theoretical concepts, a data set S is considered with subjects having Y, T, X and the 
perfect propensity score model e(x) = P(T=1 | X=x).  

The Strong Ignorability Assumption (SIA) is given below:10 

(a) Conditional independence of Y(1) and T given X. This is denoted Y(1) _||_ T | X  

(b) Conditional independence of Y(0) and T given X. This is denoted Y(0) _||_ T | X 

(c) 0 < P(T=1 | X=x) < 1 for all x. This says that if X=x appears for a treated subject, then X=x also 
appears for some subjects in control, and vice versa. 

As a result of assumption (a) of SIA, the version (B) of conditional independence (see Exhibit 1) says: 

P(Y(1)=y | T=t, X=x) = P(Y(1)=y | X=x)  … likewise for Y(0) for assumption (b) 

That is, given X=x, the probability of the potential treated outcome does not depend on the assignment of 
the treatment. The observational study becomes a randomized study, conditional on X.  

If there are important omitted covariates, then SIA fails. For an example of this failure, see Appendix B. 

Strong Ignorability with respect to X implies Strong Ignorability with respect to e(x) as given by Theorem 2. 

THEOREM 2: If Y(1), Y(0), T and X satisfy SIA and e(x) is the perfect propensity score, then 

(a’) Y(1) _||_ T | e(x)   

(b’) Y(0) _||_ T | e(x) 

Proof of THEOREM 2 

Condition (a’) will be proved for T=1 by verifying: 

P( Y(1)=y | T=1, Ee(x0) ) = P( T=1 | Ee(x0) ) … where Ee(x0) = {x: e(x) = e(x0)} 

Begin with: 

P( Y(1)=y | T=1, Ee(x0) ) = P( Y(1)=y, T=1, Ee(x0) ) / P( T=1, Ee(x0) ) 

Consider the denominator:  P( T=1, Ee(x0) ) = ∑  𝑥′∈Ee(x0)  P( T=1, X=x’ )  

= ∑  𝑥′∈Ee(x0) P( T=1 | X=x’ ) * P(X=x’) = e(x0) * ∑  𝑥′∈Ee(x0) P( X=x’ ) = e(x0) * P( Ee(x0) ) 

Consider the numerator:  

P( Y(1)=y, T=1, Ee(x0) ) = ∑  𝑥′∈Ee(x0) P( Y(1)=y | T=1, X=x’ ) * P( T=1, X=x’) 

= ∑  𝑥′∈Ee(x0) P( Y(1)=y | X=x’ ) * P( T=1, X=x’) … by conditional independent of Y and T given X 

= ∑  𝑥′∈Ee(x0) P( Y(1)=y | X=x’ ) * P( T=1 | X=x’) * P( X=x’ ) 

= ∑  𝑥′∈Ee(x0) P( Y(1)=y | X=x’ ) * e(x0) * P( X=x’ ) = e(x0) * ∑  𝑥′∈Ee(x0) P( Y(1)=y, X=x’ ) 

= e(x0) * P( Y(1)=y, Ee(x0) ) 

Now putting numerator over denominator gives: {e(x0) * P( Y(1)=y, Ee(x0) )} / {e(x0) * P( Ee(x0) )} 

= P( Y(1)=y, Ee(x0) ) / P( Ee(x0) ) = P( Y(1)=y | Ee(x0) ) 

Similar proofs apply to T=0 and condition (b’). 

Next, the important Inverse Probability Weighting (IPW) method (Theorem 3) is discussed. It provides a 
practical tool for estimating ATE. The proof relies on the assumption of SIA.  

As shown below, the inverse probability weight for treated subjects is w1(x) = 1/e(x) and for control 
w0(x) = 1 / (1-e(x)). 

                                                      
10 Called the “conditional independence assumption” (CIA) in Angrist and Pischke (2009) 
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INVERSE PROBABILITY WEIGHTING (IPW) METHOD 

THEOREM 3: Under SIA and where e(x) is the perfect propensity score, the ATE is given by: 

ATE = (1/n) * { ∑  𝑛
𝑖=1 yi*ti / e(xi) - ∑  𝑛

𝑖=1 yi*(1-ti) / (1 - e(xi)) } 

where yi is the value of Y for subject “i”, ti is the treatment T for subject “i”, and n is sample size 

This is a surprising result. After all, ATE involves E[Y(1)] and E[Y(0)] with missing values. Yet Theorem 3 
gives a computable formula for ATE. The proof of Theorem 3 is given in Appendix A. 

Importantly, Theorem 3 provides a formula for estimating ATE for a given sample from some larger or 
conceptual population, provided the modeler fits an empirical e(x) and is willing to assume SIA. 

WEIGHTS AND FILLING-IN MISSING VALUES IN THEOREM 3 

Considering treated subjects with weight w1(x) = 1/e(x) = 3, then (since e(x) is perfect 11): 

3 = (total in sample with w1=3) / (treated number in sample with w1=3). 

Each treated subject with w1=3 “stands for” 3 subjects from the total. The sum of the treated weights 
equals “n”, the total sample count.12 Likewise for w0(x) = 1 / (1-e(x)). The treated group is viewed as a 
stratified sample from “n” treated subjects, and, similarly for control group … two conceptual data sets. 

The weighted sum of treated outcomes ∑  𝑛
𝑖=1 & 𝑡=1 yi*ti * w1(xi) has n “weighted terms”. In the sum, each 

weighted treated outcome yi*w1(xi) stands for the sum of “w1(xi) actual and missing yi” where x=xi. In this 
sense, the weighting of the stratified sample “fills-in” the missing treated outcomes. Similarly for control. 

EXAMPLE: COMPUTING ATE USING THEOREM 3 

A calculation of ATE using Theorem 3 is shown below. The reader may work through the calculations. 

Y T X e(x) Y*T Y*T / e(x) Y*(1-T) Y*(1-T)/(1-e(x)) 

1 0 1 0.5   1 2 

2 1 1 0.5 2 4   

3 0 1 0.5   3 6 

1 1 1 0.5 1 2   

1 0 3 0.5   1 2 

1 1 3 0.5 1 2   

4 0 4 0.3333   4 6 

2 0 4 0.3333   2 3 

3 1 4 0.3333 3 9   

2 0 4 0.3333   2 3 

3 0 4 0.3333   3 4.5 

2 1 4 0.3333 2 6   

        

n = 12   E[Y(1)] = 1.917 E[Y(0)] = 2.208 

     ATE = E[Y(1)] - E[Y(0)] = -0.291 

Table 4: Calculation of ATE using Theorem 3 

ALTERNATIVE, USING THEOREM 2 

Since Strong Ignorability with respect to X implies Strong Ignorability with respect to e(x), the calculation of 
ATE for the data set of Table 4 may proceed as given in Table 5. 

                                                      
11 If e(x1) = e0, then the treated observations account for 100*e0% of the subpopulation of S where X=x1 
12 In Table 4 there are 3 treated subjects with w1 = 2 and 2 treated subjects with w1 = 3. So, 2 + 2 + 2 + 3 + 3 = 12 
Generally, let weights be called wgti where “i” indexes the distinct weight values. 
Then ∑i (# treated with wgti) * wgti = ∑i (# treated with wgti) * (# with wgti) / (# treated with wgti) = ∑i (# with wgti) = n 
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e(x) 
Average Y  
for T = 1 

Average Y  
for T = 0 

Difference 
“D” 

% of Sample 
“S” 

Weight 
= “D” * ”S” 

0.5 1.333 1.667 -0.333 0.5 -0.166 

0.333 2.500 2.750 -0.250 0.5 -0.125 

    ATE = -0.291 

Table 5: Alternative Calculation of ATE for the Data of Table 4 

The weights in Table 6 are the same as the weights of Theorem 3 (after dividing by n=12). The weights in 
Table 6 are implicitly used in the calculations of Table 5. The calculation in Table 5 gives the same results 
as in the formula of Theorem 3. 

e(x) 
Divisor 
for T=1 

Divisor 
for T=0 

Fraction 
of Sample 

Treated Weights 
(w1 / n is the right side) 

Control Weights 
(w0 / n is the right side) 

0.5 1/3 1/3 1/2 1/3 * 1/2 = (1/0.5)*(1/12) 1/3 * 1/2 = (1/(1-.05)) *(1/12) 

0.333 1/2 1/4 1/2 1/2 * 1/2 = (1/0.333)*(1/12) 1/4 * 1/2 = (1/(1-0.333))*(1/12) 

Table 6: The Implicit Weights Associated with Table 5 

COMPUTE ATE BY TABLE 4 OR TABLE 5? 

The method of Table 5 could be used to compute ATE when X is comprised of a very few discrete 
covariates so that there are only a few distinct values of e(x). But in actual practice there could be many 
distinct values of e(x) and there could be rows where there are subjects in treated and none in control, or 
conversely.13 In this case the computations of Table 5 cannot be carried out, column D is “missing”. (But 
then, unique values of e(x) could be replaced by strata. See Yuan, Yung, and Stokes (2017).) 

USING PROC TTEST 

The weights for the IPW method imply a stratified sample is taken from the larger sample of treated 
subjects which consists of all actual and missing outcomes. Similarly for control. PROC TTEST can utilize 
these weights to estimate ATE (as the difference of two weighted means) and also provide a confidence 
interval. There is two-step logic for this confidence interval. First, the calculations of means and standard 
errors are computed using weights. Then the weighted sample is assumed to be drawn from an infinite 
population for the purpose of computing a 1 - α confidence interval:  

ATE  +/-  td.f.,α/2 * StdErr 

The d.f. (degrees of freedom) for the t-statistic are computed without weights.  

SUMMARY RELATED TO THEOREM 3 

A disappointment with Theorem 3 is that the assumptions (a) and (b) are aspirational. Given a data 
sample, conditions (a) and (b) are not empirically verifiable. Probability P(Y(1)=y | X=x) cannot be 
computed due to missing values of Y(1). Similarly, probability P(Y(0)=y | X=x) cannot be computed.14  So 
the properties, such as those below, of conditional independence cannot be verified. 

 P(Y(1)=y | T=1, X=x) = P(Y(1)=y | X=x) for all y and x 

 P(Y(0)=y | T=0, X=x) = P(Y(0)=y | X=x) for all y and x 

                                                      
13 Normally, a propensity score model utilizes many covariates so that e(x) would have many distinct values. 
14 The conditions (a), (b) of SIA are satisfied in the following data set if hypothetical values, highlighted in yellow and 
italicized, are added to the table. 

X T Y Y(1) Y(0) 

1 0 2 7 2 

1 0 4 3 4 

1 1 3 3 2 

1 1 7 7 4 
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To sum up, for the conclusions of Theorem 3 to be fully realized for an observational study, the modeler 
must be willing to believe that:  

(1) The propensity score e(x) leads to covariate balance. 

(2) Conditioning on X converts the study of the effect of T on Y to an experiment following the SIA.15  

The modeler can come to believe (1) and (2) by assessing the balance achieved by the covariates 
between treated and control subjects and by using subject matter expertise. 

AN INAPPROPRIATE ASSUMPTION 

Is there reason to consider the assumption Y _||_ T | X? There is no issue with missing data since Y is 
always observable. However, this assumption implies there is no treatment effect. That is, ATE equals 
zero. (The proof of this statement is not provided here.)  

PROC PSMATCH 

The PSMATCH procedure provides tools for fitting a propensity score and then utilizing this propensity 
score to prepare an output data set for the estimation of the causal effect of the treatment using other SAS 
procedures. PSMATCH does not, itself, provide the estimation of the causal effect. The outcome variable 
is not even needed in the input data set for PSMATCH.  

PSMATCH can prepare an output data set for further analysis by each of these three methods: 

 Matching 

 Stratification 

 Weighting 

Matching is heuristic and subjective. This is not to say that Matching is wrong. “Heuristic” is used since the 
matching of treated and control is based on “distances” between their propensity scores (or log-odds of the 
score) and there are many options for using the distances to implement the matching. It is subjective in 
that the success of the matching is judged by assessment of covariate balance. The range of propensity 
scores is, usually, restricted so that matching is done on treated and control subjects with propensity 
scores from a common range. Often, not all control subjects in the common range are used in matching.  

The method of Stratification is now viewed as being superseded by Matching. 

The method of Weighting is a formal statistical model-based approach that creates the inverse probability 
weights. (But PROC PSMATCH does not include the functionality to estimate ATE.) All treated and control 
observations can be used in the weighting method but the preferred approach is to remove subjects whose 
propensity scores are near 0 or 1. 

In this paper the discussion of PSMATCH will limited to its implementation of the method of weighting. 
See Yuan, Yung, and Stokes (2017) for an introduction to propensity score methods and the PSMATCH 
procedure. Matching, stratification, and weighting are discussed in this paper. 

In the example below PSMATCH is applied to the data of Table 4. The propensity score e(x), based on 
CLASS X or dummies X1 and X2, is perfect for this sample.16 

DATA Table4; 

input Y T X; 

X1= (X=1); X2= (X=2); 

datalines; 

1 0 1 

2 1 1 

3 0 1 

1 1 1 

                                                      
15 See Rosenbaum (2010 pp. 86-87) for a roadmap to a discussion of this topic. 
16 The predictors X1, X2 (or the equivalent model CLASS X; PSMODEL T = X;) produce the perfect propensity score 
model. However, in practice, having a perfect propensity score model is very unlikely. 
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1 0 2 

1 1 2 

4 0 4 

2 0 4 

3 1 4 

2 0 4 

3 0 4 

2 1 4 

; 

run; 

The statement PSMODEL T = X1 X2 creates a propensity model with predictors X1 X2. In PSMODEL the 
statement (TREATED=”1”) specifies that T=1 is modeled. PSMATCH creates the weights for estimating 
ATE. These weights (ATEwgt) are included in OUTPUT OUT = OUTTable4. See Table 7. 

PROC PSMATCH DATA= Table4; 

CLASS T; 

PSMODEL T(TREATED="1")= X1 X2; 

OUTPUT OUT= OUTTable4 ATEwgt= ATEwgt; 

PROC PRINT DATA= OUTTable4; 

run; 

If T = 1, then ATEwgt = 1 / _PS_; Else if T = 0, then ATEwgt = 1 / (1 - _PS_). The right-most column 
_ATTwgt_ is automatically added and it gives the weight for a different analysis called “average treatment 
effect for the treated” (ATT). The ATT is not discussed in this paper. 

Obs Y T X X1 X2 _PS_ ATEwgt _ATTwgt_ 

1 1 0 1 1 0 0.5 2 1 

2 2 1 1 1 0 0.5 2 1 

3 3 0 1 1 0 0.5 2 1 

4 1 1 1 1 0 0.5 2 1 

5 1 0 2 0 1 0.5 2 1 

6 1 1 2 0 1 0.5 2 1 

7 4 0 4 0 0 0.3333 1.5 0.5 

8 2 0 4 0 0 0.3333 1.5 0.5 

9 3 1 4 0 0 0.3333 3 1 

10 2 0 4 0 0 0.3333 1.5 0.5 

11 3 0 4 0 0 0.3333 1.5 0.5 

12 2 1 4 0 0 0.3333 3 1 

Table 7: Output Data Set from PSMATCH 

At this point the PSMATCH output is not displayed. This output will be discussed in a later section. 

If it is assumed that Y(1) _||_ T | X and Y(0) _||_ T | X, then ATE can be estimated by computing the 
difference between the weighted treated mean and weighted control mean. PROC TTEST computes ATE 
by finding this difference with weights supplied by ATEwgt. The TC FORMAT puts the CLASS levels in the 
correct order. 

PROC FORMAT; PICTURE TC 

0 = "B_Control" 

1 = "A_Treated"; 

PROC TTEST DATA= OUTTable4 ORDER= formatted;  

CLASS T; VAR Y; WEIGHT ATEwgt; 

FORMAT T TC.; 

run; 
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Potential outcome means are 1.9167 for treated and 2.2083 for control. “Diff(1-2)” agrees with Table 4. 
The t-statistic two-sided tail probability for ATE is 62% (Table 8b). 

T Method Mean 95% CL Mean 

A_Treated 
 

1.917 0.863 2.971 

B_Control 
 

2.208 1.169 3.247 

Diff (1-2) Pooled -0.292 -1.575 0.991 

Diff (1-2) Satterthwaite -0.292 -1.562 0.979 

Table 8a: PROC TTEST Reports 

Method Variances DF t Value Pr > |t| 

Pooled Equal 10 0.51 0.6235 

Satterthwaite Unequal 9.9191 0.51 0.6198 

Table 8b: PROC TTEST Reports 

It is not true, however, that PROC PSMATCH followed by PROC TTEST replicates the formula of 
Theorem 3. The use of the formula of Theorem 3 would generally give a different estimate of ATE. Instead, 
the estimate of ATE that is provided by PROC PSMATCH followed by PROC TTEST is that same as that 
which would be provided by the METHOD = IPWR of PROC CAUSALTRT.17 IPWR is “inverse probability 
weighting with ratio adjustment”. PROC CAUSALTRT is discussed in a later section. 

PSMATCH: COVARIATE ASSESSMENT REPORTS 

The fit of the propensity model, as measured by a c-statistic or log-likelihood, is not reported by PSMATCH 
nor are the coefficients for the covariates. The purpose of the PSMATCH reports is to assess the balance 
achieved for the covariates after adjustment by weighting. Is the distribution of weighted X essentially the 
same for treated and control?  Balance is assessed by analytical and graphical methods (graphical 
methods are not displayed here) when the ASSESS statement is included in PROC PSMATCH. 18 

In this example the PSMODEL statement has just one predictor, X. (Note here, that X is not in CLASS.) 

PROC PSMATCH DATA=Table4; 

CLASS T; /* Treatment T must be included in CLASS */ 

PSMODEL T(TREATED="1")= X; 

ASSESS PS VAR=(X) / VARINFO WEIGHT=ATEwgt; /* PS = propensity score */ 

OUTPUT OUT=OUTTable4 ATEwgt=ATEwgt; 

run; 

                                                      
17 METHOD=IPW of PROC CAUSALTRT implements the formula of Theorem 3. METHOD=IPWR and METHOD=IPW 
both give approximately unbiased estimates of ATE (under SIA), assuming a good propensity score model. Their 
estimates of ATE would be similar for large samples. For details about METHOD=IPWR and METHOD=IPW of PROC 
CAUSALTRT, see SAS/STAT 14.3 User’s Guide, Chapter 34, p. 2166. 
18 If the modeler wants to fully manage the fitting of a propensity model, then the PSMODEL statement can be 
replaced by the PSDATA statement. Prior to running PSMATCH the modeler will have developed a propensity model 
using a modeling technique of the modeler’s choosing and saved the propensity scores as part of the input data set to 
PSMATCH. 

In the PSDATA statement the modeler must specify these options: Treatment Variable, Treated Level for Modeling, 
and the name of the Propensity Score (or its Logits). The ASSESS statement still applies. The input data set must 
include any covariates that are specified in the VAR list of ASSESS. 

Here is the code to replace PSMODEL with PSDATA. It is assumed that the propensity score has been added to the 
input data set “Table4” as the variable “e”. 

PROC PSMATCH DATA= Table4; 

CLASS T; 

PSDATA TREATVAR=T(TREATED="1") PS= e; 

ASSESS PS VAR=(X1 X2) / VARINFO WEIGHT=ATEwgt; 

OUTPUT OUT=OUTTable4 ATEwgt=ATEwgt; 

run; 
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Table 9 provides a summary report. 

Data Information  

Data Set WORK.TABLE4  

Output Data Set WORK.OUTTABLE4  

Treatment Variable T  

Treated Group 1  

All Obs (Treated) 5  

All Obs (Control) 7  

Support Region All Obs All observations for OUTPUT OUT= 

Lower PS Support 0.338401 The minimum propensity score 

Upper PS Support 0.515201 The maximum propensity score 

Support Region Obs (Treated) 5 The support region is “All Obs” 

Support Region Obs (Control) 7 The support region is “All Obs” 

In the reports below the rows for “Region” information have been removed since these are redundant with 
“All Obs”. The option VARINFO produces the table below (some columns were removed to fit the page). 

Variable Information 

  Treated (T=1) Control (T=0) Treated - Control 

Variable Obs N Wgt Mean Std Dev N Wgt Mean Std Dev Mean Difference 

Prop Score All 5   0.4323 0.0893 7   0.4055 0.0861 0.0268 

  Wgted 5 12 0.4169 0.0837 7 12 0.4169 0.0851 0 

X All 5   2.4000 1.5166 7   2.8571 1.4639 -0.4571 

  Wgted 5 12 2.6619 1.4233 7 12 2.6636 1.4464 -0.0017 

Table 9: PSMATCH Reports 19 

HOW TO ASSESS COVARIATE BALANCE 

The ASSESS statement for the example was:  

ASSESS PS VAR=(X) /* PS = propensity score */ 

In Table 10 below there are two numeric measures for the assessment of balance. These measures will be 
discussed for the covariate X.20 No discussion is given regarding PS in the following. 

(1) Standardized Difference 
(2) Variance Ratio 

The definitions of Standardized Difference and Variance Ratio are given next: 

Standardized Difference of a Covariate 

The Standardized Difference = Mean Difference / Standard Deviation … where: 

 Mean Difference: Difference of the mean of treated subjects and the mean of control subjects 

 Standard Deviation: The square root of { (Treated Variance + Control Variance) / 2 } 

The standard deviation is computed using all observations in Table 4. 

For covariate X the Standardized Difference is computed as shown: 

For All Obs: 

Mean Difference = 2.4000 - 2.8571 = -0.4571 … See Table 9 and 10 
Standard Deviation = sqrt ( (1.5166**2 + 1.4639**2) / 2) ) = 1.4904 … See Table 9 and 10 
Standardized Difference = -0.4571 / 1.4904 = -0.3067 … See Table 10 

                                                      
19 The weighted means for X are given by: Treated subjects  x*w1 /  w1 and control  x*w0 /  w0 
For discussion see: https://blogs.sas.com/content/iml/2016/01/06/weighted-mean-in-sas.html 
For other formulas to compute weighted statistics, including the standard deviation, see: 
http://support.sas.com/documentation/cdl/en/procstat/68142/HTML/default/viewer.htm#procstat_univariate_details03.htm 
20 Additionally, other covariates not used in fitting the propensity score could also be included in ASSESS. 
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For Weighted Obs: 

Mean Difference = 2.6619 - 2.6636 = -0.0017 … See Table 9 and 10  
Standardized Difference = -0.0017 / 1.4904 = -0.0012 … See Table 9 and 10 
Percent Reduction = 100% * (| -0.3067 | - | -0.0012 |) / | -0.3067 | = 99.62% 

Variance Ratio of a Covariate: {Standard Deviation (Treated) / Standard Deviation (Control) }**2 

For covariate X for All Obs … See Table 9 above 

{Standard Deviation (Treated) / Standard Deviation (Control) }**2 = {1.5166 / 1.4639}**2 = 1.0733 

For covariate X for Weighted Obs … See Table 9 above 

 {Standard Deviation (Treated) / Standard Deviation (Control) }**2 = {1.4233 / 1.4464}**2 = 0.9682 

Standardized Mean Differences (Treated - Control) 

Variable Observations 

Mean 
Difference 

Standard 
Deviation 

Standardized 
Difference 

Percent 
Reduction 

Variance 
Ratio 

Standard deviation of All observations used to compute standardized differences 

Prop Score All 0.0268 0.0877 0.3060   1.0749 

  Weighted 0.0000   0.0005 99.84 0.9675 

X All -0.4571 1.4904 -0.3067   1.0733 

  Weighted -0.0017   -0.0012 99.62 0.9682 

Table 10: PSMATCH Covariate Assessment Reports 

Documentation for PSMATCH version 14.3 gives guidelines for acceptable Standardized Mean Difference 
and Variance Ratio.21 The guidelines are given below and are easily met by weighted X. 

Absolute Value of Standardized Mean Difference ≤  0.25 

0.5 ≤ Variance Ratio ≤ 2.0 … with 1.0 being the perfect variance ratio 

REMOVING SUBJECTS WITH HIGH OR LOW PROPENSITY SCORES 

But there is a problem when an empirical propensity score model has values of e(x) near 0 or 1. In this 
case the weight w1 for treated or the weight w0 for control can be very large. In applications, the estimate 
of ATE could be distorted. This leads to the idea removing subjects where e(x) is near 0 or 1. Such 
removal can be implemented using PSMATCH. 

DATA REMOVE; 

DO I = 1 TO 500; 

 X= rannor(1); 

 XBETA= X + 0.5* rannor(4); 

 PROB= EXP(XBETA)/(1 + EXP(XBETA)); 

 T= (PROB < 0.5); 

 OUTPUT; 

 END; 

run; 

The REGION statement with ALLOBS is qualified by PSMIN=0.05 and PSMAX=0.95. Only subjects where 
0.05 ≤ Propensity Score ≤ 0.95 are output to OUTREMOVE. This in example, there were 500 subjects 
used in fitting the propensity score model but only 304 had scores within the range of 0.05 to 0.95. 

PROC PSMATCH DATA=REMOVE REGION= ALLOBS (PSMIN=.05 PSMAX=.95); 

CLASS T; 

PSMODEL T(TREATED="1")= X; 

OUTPUT OUT= OUTREMOVE ATEwgt= ATEwgt; 

run; 

                                                      
21 See https://support.sas.com/documentation/onlinedoc/stat/142/psmatch.pdf, page 7714 
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Data Information 

Data Set WORK.REMOVE 

Output Data Set WORK.OUTREMOVE 

Treatment Variable T 

Treated Group 1 

All Obs (Treated) 246 

All Obs (Control) 254 

Support Region PS Bounded Obs 

Lower PS Support 0.05 

Upper PS Support 0.95 

Support Region Obs (Treated) 154 

Support Region Obs (Control) 150 

 Table 12: PSMATCH Report Showing Effect of Removal 

PROC CAUSALTRT 

PROC CAUSALTRT combines some of the functionality of PROC PSMATCH together with analytical 
methods to compute the causal effect for an observational study. This paper only very briefly discusses 
PROC CAUSALTRT. See Lamm and Yung (2017) for an introduction to PROC CAUSALTRT. 

An example of PROC CAUSALTRT is given below. See the PROC CAUSALTRT code. 

When METHOD=IPWR the “outcome model” (see MODEL statement) is not fit (even if predictors are 
provided in the MODEL statement). The statement MODEL Y is required in order to identify the outcome 
variable Y. The PSMODEL statement fits the logistic propensity score model CLASS X; PSMODEL T= X;  
Then ATE is computed by following a formula similar to that of Theorem 3.22 An output data set is, 
optionally, created. 

PROC CAUSALTRT DATA= Table4 METHOD= IPWR; 

CLASS X; 

PSMODEL T (descending)= X; /* PROPENSITY MODEL */ 

MODEL Y; /* OUTCOME MODEL */ 

BOOTSTRAP BOOTCI(NORMAL) SEED= 1234; 

OUTPUT OUT= causalout IPW= IPW PS= PS; 

run; 

Analysis of Causal Effect 

Para 
meter 

Treat 
ment 
Level 

Est- 
imate 

Robust 
Std Err 

Boot 
strap 

Std Err 

Wald 95% 
Confidence 

Limits 

Bootstrap Wald 
95% Confidence 

Limits Z Pr > |Z| 

NOTE: 889 out of 1000 bootstrap samples are used to calculate standard errors. 

POM 1 1.917 0.275 0.331 1.377 2.456 1.267 2.566 6.96 <.0001 

POM 0 2.208 0.364 0.379 1.496 2.921 1.466 2.951 6.07 <.0001 

ATE  -0.292 0.382 0.428 -1.041 0.458 -1.131 0.547 -0.76 0.446 

Table 13: PROC CAUSALTRT Reports 

Z-stats are computed using the Robust Std Err’s. There are two confidence intervals computed by 
CAUSALTRT, one using Robust Std Err and the other using bootstraps.23  In Table 14 these are compared 

                                                      
22 For details about METHOD=IPWR of PROC CAUSALTRT, see SAS/STAT 14.3 User’s Guide, Chapter 34, p. 2166. 
23 See SAS/STAT 14.3 User’s Guide, Chapter 34, p. 2149. 
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with the confidence interval produced by PROC TTEST (taken from Table 8a).  

For this small sample there is a noticeable difference in 95% confidence intervals for ATE between PROC 
TTEST and the two confidence intervals from CAUSALTRT. (Further study of this issue is merited.) 

METHOD 95% confidence interval for ATE 

Robust Std Err -1.041 to 0.458 

Bootstrap Std Err -1.131 to 0.547 

TTEST (see Table 8) -1.562 to 0.979 

Table 14: Comparison of Confidence Intervals 

SUMMARY  

Conditional independence is illustrated by examples. Conditional independence of outcome and treatment, 
given covariates, is a central concept in analysis of observation studies. Simple proofs are given of key 
theorems including the IPW method. Calculations of ATE by inverse probability weighting are illustrated by 
applying PROC PSMATCH / PROC TTEST and PROC CAUSALTRT to a small data set. 

 Indianapolis, IN, MWSUG 2018, version 26 
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APPENDIX A 

THEOREM 3: Under SIA and where e(x) is the perfect propensity score, the ATE is given by: 

(1/n) * { ∑  𝑛
𝑖=1  yi*ti / e(xi) - ∑  𝑛

𝑖=1  yi*(1-ti) / (1 - e(xi)) } 

where yi is the value of Y for subject “i”, ti is the treatment T for subject “i”, and n is sample size 

Proof of THEOREM 3 24 

Begin with (1/n) * { ∑  𝑛
𝑖=1 yi*ti / e(xi) } 

Note that: y*t = { y(1)*t + y(0)*(1-t) } * t = y(1)*t  …  since t2 = t and t*(1-t) = 0 for values of t = 0, 1 

This gives: (1/n) * {  ∑  𝑛
𝑖=1 yi*ti / e(xi) } = (1/n) * {  ∑  𝑛

𝑖=1 yi(1)*ti / e(xi) } 

The probability of the ith subject (ith term in sum) is 1/n = P( Y(1)=yi, T= ti ). This gives: 

(1/n) * {  ∑  𝑛
𝑖=1 yi(1)*ti / e(xi) } =  ∑  𝑛

𝑖=1 yi(1)*ti * P( Y(1)=yi(1), T= ti ) / e(xi) 

Let a unique value of e(x) be denoted by e(xj) and let Ej = {x: e(x) = e(xj)}. The {Ej} partition the values of X 
into disjoint subsets. It does not matter which “xj” is chosen to represent a partition member. In the 
example data set there are 2 unique e(xj) … 0.5 and 0.333 … these will be called E1 and E2. 

= ∑   Ej ∑  i:xi∈Ej yi(1) * ti * P( Y(1)=yi(1), T= ti ) / e(xj) 

Y T Y(1) X e(x) 

1 0  1 0.5 
2 1 2 1 0.5 
3 0  1 0.5 
1 1 1 1 0.5 
1 0  3 0.5 
1 1 1 3 0.5 

4 0  4 0.333 
2 0  4 0.333 
3 1 3 4 0.333 
2 0  4 0.333 
3 0  4 0.333 
2 1 2 4 0.333 

Table 15: Example Data Set for the Proof of Theorem 3 

In the example, the outside sum has two terms. Within the first term of the outside sum, the inside sum has 
3 non-zero terms (blue colors in Table 15). For the second outside term there are 2 non-zero terms in the 
inside sum (pink colors in Table 15). 

= ∑   Ej ∑  i:xi∈Ej yi(1) * P( Y(1)=yi(1), T= 1 ) / e(xj)  +  Zero-terms (those where t = 0) 

The expansion is shown below: 

= 2*(1/12)*(1/0.5) + 1*(1/12)*(1/0.5) + 1*(1/12)*(1/0.5)  +  3*(1/12)*(1/0.333) + 2*(1/12)*(1/0.333) + 0’s 

Going forward, the zero terms are ignored.25 

Condition (c): 0 < P(T=1 | X=x) < 1 insures that the same Ej and xi ∈ Ej appear in the summation where 

T=1 (below) as in the sum with all T values. That is, ∑   Ej ∑  i:xi∈Ej is the same index of summation. 

Next, group together common y(1) within each Ej.  

The index "y(1): Ej" is read as “values of y(1) in the rows which occur in Ej” 

= ∑   Ej ∑  y(1):Ej y(1) * P( Y(1)=y(1), T=1 )  / e(xj) 

                                                      
24 Here is a proof from Angrist and Pischke (2009, p. 82) of (1/n) * { ∑  𝑛

𝑖=1 yi*ti / e(xi) } = E[Y(1)]. [Alternatively, see 

proof by Lunceford and Davidian (2004, on-line PDF version, top of p. 7).] 

First: E[Y*T/e(x)] = E{ E[Y*T/e(x) | X=x] }.  
Taking inside expectation of the right-side: E[Y*T/e(x) | X=x] = E[Y | T=1, X] * e(x) / e(x) = E[Y(1) | T=1, X] = E[Y(1) | X] 
Finally, E{ E[Y(1) | X] } = E[Y(1)] 
25 The apparent loss of information about y(1) where t=0 is compensated by the use of 1/e(x) as a weight when t=1. 
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The probabilities in E1, after grouping, are P( Y(1)=1, T=1 ) = 2/12 and P( Y(1)=2, T=1 ) = 1/12 

Including Ej into the Probability adds no new restriction 

= ∑   Ej ∑  y(1):Ej  y(1) * P( Y(1)=y(1), T=1, Ej ) / e(xj) … Ej means x∈Ej where x is a value of X. 

Applying the formula for conditional probability: [P(A,B,C] = P(A|B,C)*P(B,C)] 

= ∑   Ej ∑  y(1):Ej  y(1) * P( Y(1)=y(1) | T=1, Ej ) * P(T=1, Ej ) / e(xj) 

Now the formula for the sum of probabilities of disjoint sets is applied to P( T=1, Ej )  

P( T=1, Ej ) = ∑  y(1):Ej P( T=1, X=xi ) = ∑  y(1):Ej P( T=1 | X=xi ) * P( X=xi ) = e(xj) * P( Ej ) 

Substituting into the entire expression and canceling e(xj) from top and bottom: 

= ∑   Ej ∑  y(1):Ej  y(1) * P( Y(1)=y(1) | T=1, Ej ) * P( Ej ) 

Finally, conditional independence is applied to remove T=1 from P( Y(1)=y(1) | T=1, Ej ) 

= ∑   Ej ∑  y(1):Ej  y(1) * P( Y(1)=y(1) | Ej ) * P(Ej ) … all references to T are removed 

= ∑   Ej ∑  y(1):Ej  y(1) * P( Y(1)=y(1), Ej ) 

The summation is over all rows of the original data set. Rows where t=0 contribute zeros. 

Table 16 shows 4 non-zero terms in y(1) * P( Y(1)=y(1), Ej ) that comprise the double summation. 

Y T Y(1) X e(x) P(e(X)) P(Y=y | e(X)) P(Y=y, e(X)) Y * P(Y=y, e(X)) 

1 0  1 0.5     

2 1 2 1 0.5 0.5 0.333 0.167 0.333 
3 0  1 0.5     

1 1 1 1 0.5 0.5 0.667 0.333 0.333 

1 0  3 0.5     

1 1 1 3 0.5 0.5    

4 0  4 0.333     

2 0  4 0.333     

3 1 3 4 0.333 0.5 0.5 0.250 0.750 
2 0  4 0.333     

3 0  4 0.333     

2 1 2 4 0.333 0.5 0.5 0.250 0.500 

         
      Total =  1.917 

Table 16: Calculation of ATE following the formula of Theorem 3 

For E1 where e(x) = 0.5 the inner sum is: 1*0.333 + 2*0.167 … where y(1) = 1, 2 

For E2 where e(x) = 0.333 the inner sum is 2*0.25 + 3*0.25 … where y(1) = 2, 3 

Reverse the order of summation. The outside sum is over values of y(1) and, for a value of y(1), the inside 
sum is over the disjoint sets Ej where this y(1) appears. 

= ∑   y(1) ∑  y(1):Ej  y(1) * P( Y(1)=y(1), Ej ) 

For this example: 1*0.333 + (2*0.167 + 2*0.25) + 3*0.25 = 1.917 

Summing probabilities across the Ej for common values of y(1) gives marginal probabilities.  

= ∑   y(1) y(1) * P( Y(1)=y(1) ) … potential treatment outcomes y(1), where t=0, contribute zero to the sum. 

1*0.333 + 2*(0.167+0.25) + 3*0.25 = 1.917 

So, finally: ∑   y(1) y(1) * P( Y(1)=y(1) ) = E[Y(1)]  

This sum is over all values of y(1) as required by the definition of E[Y(1)]. The factors P(Y(1)=y(1)) are not 
dependent on the treatment T. Potential treatment outcomes y(1), where t=0, contribute zero to the sum. 

Still seems magical. 

The proof that ∑  𝑛
𝑖=1  yi*(1-ti) / (1 - e(xi)) } = E[Y(0)] is similar. 
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APPENDIX B 

In this example of a causal analysis the covariate set will omit a covariate which is strongly related to both 
the treatment and the outcome. 

The treatment has two values (with non-random selection into the treatment): 

T=0: Attending State University 
T=1: Attending Ivy University 

The outcome Y will be the graduate’s annual income when the graduate is age 35. 

Ivy University has high tuition.  

Does Ivy University improve the graduates outlook for having higher income at age 35?  

The two covariates to support this analysis are: 

X1: Gender 
X2: Religion 

It is certainly true that comparisons of the outcome across the treatments could be made for subgroups of 
subjects with exactly the same values of X1 and X2. 

However: X3 = Parent’s Income is not included. X3 is strongly related both to treatment (high tuition 
requires high parent income) and Outcome (high parent income leads to high paying jobs / businesses for 
the graduate). 

So the “treatment effect” may be nothing other than measuring the effect of parent income on the outcome, 
and not the effect of the university. Expressed in the framework of SIA the condition (a) would fail: 

P(Y(1)=high | T=1, X=(x1, x2)) > P(Y(1)=high | X=(x1, x2)) 

Having T=1 (Ivy U.) implies high parent income as well as high graduate income at age 35 … so a high 
value of P(Y(1)=high | T=1, X=(x1, x2)). 

But for the right side of the inequality, there are some subjects with T=1 and some with T=0. Parent 
Income would be lower for T=0. So the potential treated outcome would tend to be lower … so a lower 
value for P(Y(1)=high | X=(x1, x2)). 


