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ABSTRACT

Regression analyses are one of the first steps (aside from data cleaning, preparation, and descriptive
analyses) in any analytic plan, regardless of plan complexity. Therefore, it is worth acknowledging that the
choice and implementation of the wrong type of regression model, or the violation of its assumptions, can
have detrimental effects to the results and future directions of any analysis. Considering this, it is important
to understand the assumptions of these models and be aware of the processes that can be utilized to test
whether these assumptions are being violated. Given that logistic and linear regression techniques are two
of the most popular types of regression models utilized today, these are the are the ones that will be covered
in this paper. Some Logistic regression assumptions that will reviewed include: dependent variable
structure, observation independence, absence of multicollinearity, linearity of independent variables and
log odds, and large sample size. For Linear regression, the assumptions that will be reviewed include:
linearity, multivariate normality, absence of multicollinearity and auto-correlation, homoscedasticity, and
measurement level. This paper is intended for any level of SAS® user. This paper is also written to an
audience with a background in theoretical and applied statistics, though the information within will be
presented in such a way that any level of statistics/mathematical knowledge will be able to understand the
content.

INTRODUCTION

We can be certain that all parametric tests in a statistical analysis assume some certain characteristics (or
assumptions) about the data. Depending on the parametric analysis, the assumptions vary. A violation of
any of these assumptions changes the conclusion of the research and interpretation of the results.
Therefore, all research, whether for a journal, thesis/dissertation, or report, must check and adhere to these
assumptions for accurate interpretation and model integrity.

COMMON ASSUMPTIONS
The following assumptions are commonly found in statistical research:
Assumptions of Normality: Most of the parametric tests require that the assumption of normality be met.

Normality means that the distribution of the test is normally distributed (or bell-shaped) with 0 mean, with 1
standard deviation and a symmetric bell shaped curve.

Assumptions of Homogeneity of Variance: The assumption of homogeneity of variance is that the variance
within each of the populations is equal.

Assumptions of Homogeneity of Variance-Covariance Matrices: The assumption for a multivariate
approach is that the vector of the dependent variables follow a multivariate normal distribution, and the
variance-covariance matrices are equal across the cells formed by the between-subjects effects.

Assumption of Linear Relationships: The assumption of linear relationships for linear regression states that
the relationship between independent and dependent variables must be linear. The assumption of linear
relationships for logistic regression states that the relationship between independent variables and their log
odds must be linear.




Assumption of the Absence of Multicollinearity: Independent variables should not be highly correlated with
each other.

Assumption of the Absence of Auto-Correlation: Residuals should be independent from each other.

INTRODUCTION TO THE DATSET

The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample dataset
titted “lipids”. The background to this sample dataset states that it is from a study to investigate the
relationships between various factors and heart disease. In order to explore this relationship, blood lipid
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data
was collected from a second screening that included additional information such as gender, age, weight,
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The predictor
variables of interest are age (age of participant), weight (weight at first screening), cholesterol (total
cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at first
screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold measurement),
systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise (exercise level), and
coffee (coffee consumption in cups per day).

DATA CLEANING AND PREPARATION

As a first step in the examination of our research question — do target health outcome variables contribute
to the amount of cholesterol lost between baseline and a 3 month follow-up - we must first identify which
variables will be used in the analysis, what these variables look like, and how these variables will interact
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant,
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this
time we will also use the CONTENTS procedure to check the structure and types of variables we will be
working with:

/* Example of Multicollinearity Findings */
libname health
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data";

data health;

set health.lipid;

run;

proc contents data=health;

title "Health Dataset with High Multicollinearity”;
run;

ASSUMPTIONS OF LINEAR REGRESSION

Linear regression is an analysis that assesses whether one or more predictor variables explain the
dependent (criterion) variable. This type of regression has five key assumptions.

e Linear relationship

e  Multivariate normality



e No or little multicollinearity
e No auto-correlation
e Homoscedasticity
Additionally, it is necessary to make a note about sample size for this type of regression model. In Linear

regression the sample size rule of thumb is that the regression analysis requires at least 20 cases per
independent variable in the analysis.

ASSUMPTION OF LINEAR RELATIONSHIP
Linear regression needs the relationship between the independent and dependent variables to be linear. It

is also important to check for outliers since linear regression is sensitive to outlier effects. One way to test
the linearity assumption can be through the examination of scatter plots.

ASSUMPTION OF MULTIVARIATE NORMALITY
Linear regression analyses require all variables to be multivariate normal. This assumption can best be
checked with a histogram or a Q-Q-Plot. Normality can be checked with a goodness of fit test, such as the

Kolmogorov-Smirnov test. When the data is not normally distributed a non-linear transformation (e.g., log-
transformation) might fix this issue.

ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY

Linear regression assumes that there is little or no multicollinearity in the data. Multicollinearity occurs
when the independent variables are too highly correlated with each other.

As stated above, multicollinearity may be tested with three central criterion:

e Correlation matrix: when computing the matrix of Pearson’s Bivariate Correlation among all
independent variables the correlation coefficients should hopefully be smaller than 0.8.

e Tolerance: the tolerance measures the influence of one independent variable on all other
independent variables; the tolerance is calculated with an initial linear regression analysis.
Tolerance is defined as T = 1 — R2 for these first step regression analysis. With T < 0.1 there might
be multicollinearity in the data and with T < 0.01 there certainly is.

e Variance Inflation Factor (VIF): the variance inflation factor of the linear regression is defined as
VIF = 1/T. With VIF > 10 there is an indication that multicollinearity may be present; with VIF > 100
there is certainly multicollinearity among the variables.

e Condition Index: the condition index is calculated using a factor analysis on the independent
variables. Values of 10-30 indicate a mediocre multicollinearity in the linear regression variables,
values > 30 indicate strong multicollinearity.

If multicollinearity is found in the data, centering the data (that is deducting the mean of the variable from
each score) might help to solve the problem. However, the simplest way to address the problem is to
remove the independent variables with high VIF values. Other alternatives to tackle the problems is
conducting a factor analysis and rotating the factors to insure independence of the factors in the linear
regression analysis, using ridge regression, LASSO, or Elastic Net techniques.

ASSUMPTION OF THE ABSENCE OF AUTOCORRELATION



Linear regression analyses require that there exists little or no autocorrelation in the data. Autocorrelation
occurs when the residuals are not independent from each other. In other words when the value of y(x+1)
is not independent from the value of y(x).

While a scatterplot allows you to check for autocorrelations, you can test the linear regression model for
autocorrelation with the Durbin-Watson test. Durbin-Watson’s d tests the null hypothesis that the residuals
are not linearly auto-correlated. While d can assume values between 0 and 4, values around 2 indicate no
autocorrelation. As a rule of thumb values of 1.5 < d < 2.5 show that there is no auto-correlation in the
data. However, the Durbin-Watson test only analyses linear autocorrelation and only between direct
neighbors, which are first order effects.

ASSUMPTION OF HOMOSCEDASTICITY

Lastly, linear regression analyses assume the presence of homoscedasticity. Examination of a scatter plot
is good way to check whether the data are homoscedastic (in other words, the residuals are equal across
the regression line).

The Goldfeld-Quandt Test can also be used to test for heteroscedasticity. The test splits the data into two
groups and tests to see if the variances of the residuals are similar across the groups. If homoscedasticity
is present, a non-linear correction might fix the problem.

ASSUMPTIONS OF LOGISTIC REGRESSION

Logistic regression is quite different than linear regression in that it does not make several of the key
assumptions that linear and general linear models (as well as other ordinary least squares algorithm based
models) hold so close: (1) logistic regression does not require a linear relationship between the dependent
and independent variables, (2) the error terms (residuals) do not need to be normally distributed, (3)
homoscedasticity is not required, and (4) the dependent variable in logistic regression is not measured on
an interval or ratio scale.

However, logistic regression still shares some assumptions with linear regression, with some additions of
its own.

ASSUMPTION OF APPROPRIATE OUTCOME STRUCTURE

To begin, one of the main assumptions of logistic regression is the appropriate structure of the outcome
variable. Binary logistic regression requires the dependent variable to be binary and ordinal logistic
regression requires the dependent variable to be ordinal.

ASSUMPTION OF OBSERVATION INDEPENDENCE

Logistic regression requires the observations to be independent of each other. In other words, the
observations should not come from repeated measurements or matched data.

ASSUMPTION OF THE ABSENCE OF MULTICOLLINEARITY

Logistic regression requires there to be little or no multicollinearity among the independent variables. This
means that the independent variables should not be too highly correlated with each other.

ASSUMPTION OF LINEARITY OF INDEPENDENT VARIABLES AND LOG ODDS
Logistic regression assumes linearity of independent variables and log odds. Although this analysis does

not require the dependent and independent variables to be related linearly, it requires that the independent
variables are linearly related to the log odds.



ASSUMPTION OF A LARGE SAMPLE SIZE
Finally, logistic regression typically requires a large sample size. A general guideline is that you need at
minimum of 10 cases with the least frequent outcome for each independent variable in your model. For

example, if you have 5 independent variables and the expected probability of your least frequent outcome
is .10, then you would need a minimum sample size of 500 (10*5 / .10).

TESTING THE ASSUMPTIONS
ASSUMPTIONS OF NORMALITY: COMMON TESTS
To test the assumption of normality, the following measures and tests can be applied:

Skewness and Kurtosis: To test the assumption of normal distribution, Skewness should be within the range
+2. Kurtosis values should be within range of +7.

This test can be completed through use of the Univariate procedure:

/* Testing for Normality */

proc univariate data=health plots;
var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

run;

The UNIVARIATE Procedure

Variable: Age
Moments
N 95  Sum Weights 95
Mean 24 3157895 | Sum Observations 2310
Std Deviation 3.26901364  Variance 10.6864502
Skewness 2.01555274 | Kurtosis 5.34546659
Uncorrected 55 57174 Corrected S5 1004 52632

Coeff Variation | 13.4439955  Std Error Mean 033539372

Figure 1: Results for Testing Skewness & Kurtosis

Shapiro-Wilk’s W test: Most of the researchers use this test to test the assumption of normality. Wilk's test
should not be significant to meet the assumption of normality.

Kolmogorov-Smirnov_test: In the case of a large sample, most researchers use K-S test to test the
assumption of normality. This test should not be significant to meet the assumption of normality.

Q-Q plot: Most researchers use Q-Q plots to test the assumption of normality. In this method, observed
value and expected value are plotted on a graph. If the plotted value vary more from a straight line, then
the data is not normally distributed. Otherwise data will be normally distributed.

The Shapiro-Wilk’'s W, Komogorov-Smirnov tests, and Q-Q Plots can be completed through use of the
Capability procedure:
/* Testing for Normality - Shapiro-Wilk’s W, Komogorov-Smirnov tests,
and Q-Q Plots */



proc capability DATA=health NORMAL;
var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;
QQPLOT age weight cholesterol triglycerides hdl 1dl height
skinfold systolicbp diastolicbp exercise coffee cholesterolloss
/NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);
PPPLOT age weight cholesterol triglycerides hdl Idl height
skinfold systolicbp diastolicbp exercise coffee cholesterolloss
/NORMAL(MU=EST SIGMA=EST COLOR=RED L=1);
HISTOGRAM /NORMAL(COLOR=MAROON W=4) CFILL = BLUE CFRAME = LIGR;
INSET MEAN STD /CFILL=BLANK FORMAT=5.2 ;
run;

Tests for Normality
Test Statistic p Value
ShapiroWilk W 0.771653 Pr=W <0.0001
Kolmogorov-Smirnov | D 0235291 Pr=D =0.0100

Cramer-von Mises W-5q | 1.308633 Pr = W-5q | <0.0050
Anderson-Darling A-5q | 7.082537 Pr=A-5q | <0.0050

Figure 2: Results for Testing Shapiro-Wilk's W & Komogorov-Smirnov
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Figure 3: Checking Q-Q Plots

ASSUMPTIONS OF HOMOGENEITY OF VARIANCE (HOMOSCEDASTICITY): COMMON
TESTS

Levene's test: To test the assumption of homogeneity of variance, Levene’s test is used. Levene’s test is



used to asses if the groups have equal variances. This test should not be significant to meet the assumption
of equality of variances.

Levene's test can be completed through use of the GLM procedure:

/* Testing for Homogeneity of Variance - Levene®"s Test */
proc glm data=health;

class exercise coffee;

model cholesterolloss = exercise;

means exercise / hovtest=levene; /* can specify type=abs|square */
run;

Levene's Test for Homogeneity of CholesterolLoss Variance
ANOVA of Squared Deviations from Group Means

Source | DF | Sum of Squares | Mean Square F Value | Pr=F
Exercise 4 h9797a3 1494946 144 02444
Error 30 31093925 1036464

Figure 4: Levene's Test for Homogeneity of Variance

Plot Residuals by Predicted Values:
/* Plot Residuals by Predicted Values */
proc reg data= health;
model cholesterolloss = age weight cholesterol triglycerides hdl

Idl height skinfold systolicbp diastolicbp exercise coffee;
plot r.*p.;

run;
quit;

Chelesterelloss = §,7348 -0,6764 Rge -0.3074 Weight -163,69 Cholesteral +2,911% Triglyserides +182 .75 DL
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+0.0517 Exeroise +3.9936 Coffen
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Figure 5: Plot Residuals by Predicted Values

White Test: This statistic is asymptotically distributed as chi-square with k-1 degrees of freedom, where k
is the number of regressors, excluding the constant term. Two other tests that can be employed are



the Breusch-Pagan Test and Lagrange Multiplier (LM) Test. If you check the P-value of Q statistics and
LM tests, a P-value greater than .05 indicates homoscedasticity. If the p-value of White test and Breusch-

Pagan test is greater than .05, the homogeneity of variance of the residual has been met
(Homoscedasticity).

/* Homoscedasticity Test - White and Breusch-Pagan Test */
proc model data= health;
parms al bl b2 b3;
cholesterolloss = al + bl*age + b2*weight + b3*cholesterol;

fit cholesterolloss / white pagan=(1 age weight cholesterol)
out=residl outresid;

run;
quit;

The MODEL Procedure

Nenlinear OL 5 Summary of Resdual Errors
Equaticn OF Model DF Error 55E MSE Root MSE R-Sguare AdjR-5q
CholesterclLos 4 25 248098 6387 28728 0.2220 018622

Menlinear OLS5 Parameter Estimates

Approx
Parameter Edimate Approx 5td Em tValue Pr=|f
al -4 TE0IT 247714 014 08520
b1 -0.04588 1.3803 0.03 05731
b2 -0.25581 01567 -1.83 01108
b3 0.301201 01174 2857 0.0140

Number of Observations Statistics for System
Used 43 Objective 578.2971
Missing 2 Objective*N 24810

Heteroscedadicity Test

Equaticn Test Statigic DOF Pr>= ChiSg Variables
CholederolLos Whites Test 8629 9 0.7101 Cross of all vars
Breus ch-Pagan 238 3 0.5015 1, Age, Weight, Cholestercl

Figure 6: Homoscedasticity - White's and Breusch-Pagan Tests

There are several ways in which violations of this test can be adjusted. You can employ the Box-Cox
transformations of the dependent variable or through use of Weighted Least Squares.

Box-Cox Transformation:

/* Box-Cox Transformation as an Adjustment */
proc transreg data=health test;

model boxcox(cholesterolloss) = identity(age weight cholesterol);

run;

Transformation Best Lambda




Square 1.5t025

None 0.75t0 1.5
Square-Root 0.25t0 0.75
Natural Log -0.251t0 0.25

Inverse Square-Root | -0.75to —0.25

Reciprocal -1.5t0-0.75

Inverse Square -251t0-1.5

Weighted Least Squares: if variable transformation does not solve this problem, then we can use
weighted least squares. You can construct these weights through the following steps: (1) compute the
absolute and squared residuals, (2) find the absolute and squared residuals versus the independent
variables to get the estimated standard deviation and variance, and (3) compute the weights using the
estimated standard deviations and variance.

/* Weighted Least Squares as an Adjustment */
proc reg data=health;
model cholesterolloss=age weight cholesterol;
output out=WORK.PRED r=residual;
run;

data work.resid;
set work.pred;
absresid=abs(residual);
sgresid=residual**2;

proc reg data=work.resid;
model absresid=age weight cholesterol;
output out=WORK.s weights p=s_hat;
model sgresid=age weight cholesterol;
output out=WORK.v_weights p=v_hat;
run;

** compute the weights using the estimated standard deviations**;
data work.s weights;
set work.s_weights;
s_weight=1/(s_hat**2);
label s weight = "weights using absolute residuals";

** compute the weights using the estimated variances**;
data work.v_weights;
set work.v_weights;
v_weight=1/v_hat;
label v_weight = "weights using squared residuals';

** Do the weighted least squares using the weights from the estimated
standard deviation**;
proc reg data=work.s weights;

weight s_weight;



model cholesterolloss=age weight cholesterol;
run;

** Do the weighted least squares using the weights from the estimated
variances**;
proc reg data=work.v_weights;
weight v_weight;
model cholesterolloss=age weight cholesterol;
run;
quit;

Weight: w weight vweightsusing squared resduals

Analy ss of Variance
Sum of  Mean

Source OF Squares Square F Value Pr>F
Model 3 2537382 B.42481 7.04 | 0.0007
Error 38 48.64862 1.194814

Corrected Total 42 | 71.92244

Root MSE 1.08288 R-Square 0.3514
Dependent Mean 40.70855 AdjR-5g 0.3018
Coeff Var -154.35553

Pammeter Estimates

Parameter Standard

Variable OF Estimate Error tValue Pr= [t
Intercept 1 -3415771 2088832  -1.85 0.1088
Age 1 0.34253  1.08795 0.32 0.751
Weight 1 014338 011784 -1.22 0.2314
Cholesterol 1 0.30281 007072 438 <001

Figure 7: Weighted Least Squares Adjustment for Homoscedasticity

ASSUMPTIONS OF HOMOGENEITY OF VARIANCE-COVARIANCE MATRICES: COMMON
TESTS

Box's M test: This test is used to test the multivariate homogeneity of variance-covariance matrices
assumption. An insignificant value of Box’s M test shows that those groups do not differ from each other
and would meet the assumption. It is also worthy to note that Box’s M is extremely sensitive to departures
from normality. Therefore, if the sample is not normally distributed (an assumption we covered earlier), you
should not use the Box’s M test. Box’s M also has very little power (Cohen, 2008) for data with small sample
sizes. If you use the Box’s M test on a small sample and your result is not significant, this does not
necessarily indicate that the covariance matrices are equal. The test also has issues in the other direction,
receiving criticism for being overly sensitive to larger sample sizes. It tends to report a statistically significant
result when one doesn’t actually exist. To address this particular issue, it is recommended that you use a
smaller alpha level (Hahs-Vaughn, 2016).

Additionally, Box’'s M Test is common in SPSS, but not in SAS. One way to request a Box’s M Test is to
use the Discrim procedure. Make sure to indicate pool=test and wcov as options.
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/* Testing for Homogeneity of Variance-Covariance Matrices - Box"s M
Test */
proc discrim data=health method=normal pool=test wcov;

class exercise;

var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp cholesterolloss;
run;

SAS also offers Bartlett’s test as a variation of Box’s M, through use of the GLM procedure
/* Testing for Homogeneity of Variance-Covariance Matrices - Bartlett"s
Test */
proc glm data=health;
class exercise coffee;
model cholesterolloss = exercise;
means exercise / hovtest=bartlett;
run;

Bartlett's Test for Homogeneity of
CholesterollLoss Variance

Source | DF | Chi-Square | Pr = ChiSq
Exercise b 8.0566 02340

Figure 8: Bartlett's Test for Homogeneity of Variance-Covariance Matrices

Randomness: Most of the statistics assume that the sample observations are random. The Wald-Wolfowitz
test, also known as the Runs test for randomness, is often used to test this assumption. A run is a set of
sequential values that are either all above or below the mean. To simplify computations, the data are first
centered about their mean. To carry out the test, the total number of runs is computed along with the number
of positive and negative values. A positive run is then a sequence of values greater than zero, and a
negative run is a sequence of values less than zero. We can then test if the number of positive and negative
runs are distributed equally in time.

The following statements create an example data set using the random number generator RANNOR. The
Wald-Wolfowitz test will be performed on the variable age.
/* Testing for Randomness - Wald-Wolfowitz Test */
data health;
drop i;
do i=1 to 75;
age=rannor(123);
output;
end;
run;

The MEAN=0 option in the PROC STANDARD step below centers the variable age about its mean.

proc standard data=health out=health_two mean=0;
var age;
run;

The following DATA step computes the total number of runs (RUNS), the number of positive values
(NUMPOS), and the number of negative values (NUMNEG).

data runcount;
set health_two nobs=nobs;
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if age=0 then delete;

if age>0 then n+1;

if age<0 then m+1;

retain runs O numpos O numneg O;
previous=lag(age);

if _n =1 then do;
runs=1;
prevpos=.;
CUrrpos=.;
prevneg=.;
currneg=.;
end;

else do;
prevpos=( previous > 0 );
currpos=( d > 0 );
prevneg=( previous < 0 );
currneg=( d < 0 );

if _n =2 and (currpos and prevpos) then numpos+1;
else if _n =2 and (currpos and prevneg) then
numneg+1;
else if _n_=2 and (currneg and prevpos) then
numpos+1;
else if n =2 and (currneg and prevneg) then
numneg+1;

if currpos and prevneg then do;
runs+1;
numpos+1;

end;

if currneg and prevpos then do;
runs+1;
numneg+1;
end;
end;
run;

data runcount;
set runcount end=last;
if last;

run;

Finally, these steps compute and display the Wald-Wolfowitz (or Runs) test statistic and its p-value.
data waldwolf;
label z="Wald-Wolfowitz Z*
pvalue="Pr > |Z]";
set runcount;
mu=C@nNn*m) / (n+m) ) + 1;
sigmasq = ( (2*n*m) * (2*n*m-(n+m)) ) 7/ ( ((n+m)**2) * (n+m-1)
sigma=sqrt(sigmasq);
drop sigmasq;

if N GE 50 then Z = (Runs - mu) / sigma;
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else if Runs-mu LT 0 then Z = (Runs-mu+0.5)/sigma;
else Z = (Runs-mu-0.5)/sigma;

pvalue=2*(1-probnorm(abs(2)));
run;

title “Wald-Wolfowitz Test for Randomness”®;
title2 "HO: The data are random®;

proc print data=waldwolf label noobs;
var z pvalue;
format pvalue pvalue.;

run;

Wald-Wolfowitz Test for Randomness
HO: The data are random

Wald-Wolfowitz Z | Pr = |Z|
001550389 0.9988

Figure 9: Wald-Wolfowitz Test for Randomness

Multicollinearity: Multicollinearity means that the variables of interest are highly correlated, and high
correlations should not be present among variables of interest. To test the assumption of multicollinearity,
VIF and Condition indices can be used, especially in regression analyses. A value of VIF >10 indicates
multicollinearity is present and the assumption is violated.

Our first step is to explore the correlation matrix. We can do this through implementation of the CORR
procedure:

/* Assess Pairwise Correlations of Continuous Variables */

proc corr data=health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;

title "Health Predictors - Examination of Correlation Matrix";
run;
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Pearson Correlation Coefficients
Prob = jr] under HO: Rho=0
Number of Observations

Age Waight Cholestero! Triglyeerides  HDL LDL | Haight | Skinfold SystolicBP DiastolicBP Exercise  Goffes | Cholesteroll oss

Age 100000 006S35 076202 021967 020310 021560 002080 010626 002304 006384 012193 025089 008514
0.3892 00101 0.0395 00484 00366 00413 03055 0916 016398 02392 0042 05270

95 95 95 % 95 % 9% % % % 95 9% It

Weight 008935 100000  -0.02188 00757 027555 0.05743 | 0.65794| 007427 015740 013627 0.03254 0.05720 Q24221
03392 08333 02934 00069 05804 <0001 04748 01277 01679 07542 05819 11176

95 95 95 9% 9% 95 95 9% 9% 95 95 95 43

Cholesterol 026282 002188 1.00000 040081 035246 096170 -007521| D.07588 004103 015969 0.01305 | -0.01157 040318
00101 0633 <0001 00006 <0001 04688 04549 086930 01221 09001 D914 0.0073

8% 95 95 96 9% 95 95 96 35 95 95 95 43

Triglycerides p2167 010767 040081 1.00000 -0.278368 048904 | 0.04071| 009292 014545 014073 -0.11162 | -0.00350 0 11396
00395 02994 <0001 00063 <0001 06951 03704 015 01737 02815 08731 04669

35 95 95 9% E 9 £ 95 %5 95 9% 9% 43

HDL 020310 -0.27565  0.35246| 027838 1.00000 0.0840 -D.24465 D.11716  -0.06008  0.02410 0.03055 0.10965 0.19099
00434 00069 0.0005 0.0083 0417 00169 02835 05630 08167 07688 02906 0.2199

9% o 05 9 9% o 45 a5 % a8 o 0 43

Lot 021588 005743 0.96170 048904 008340 100000 |-D.00777 | DO4547 003028 016118 002672 -0.04585 037389
00356 05804 <0001 <0001 04217 0M04| 06617 07708 0187 07972 06591 10136

95 95 3 9% 96 % 9 9 % 95 % % a

Height 0.02080 06WM 007521 004071 028465 -D.ONTTT | 100000 | 013762 0.08432  0.06327 0.00521 0.07165 027042
08414 <0001 0.4688 0695 00169 0.3404 L1835 04165 05424 09600 0.4902 0.0735

95 9 95 % 9 9 3 9% ] 95 % 5 43

Skinfold 010825 D.O7427  0.07588 005292 011116 004547 | -D13762| 100000 -0.09901 003847 026581 007833 003538
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Figure 10: Multicollinearity - Pearson Correlation Coefficients

Keep in mind, while reviewing these results we want to check to see if any of the variables included have a
high correlation — about 0.8 or higher — with any other variable. As we can see, upon review of this
correlation matrix, there seems to be some particularly high correlations between a few of the variables.
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics.
This can be done by specifying the vif, tol, and collin options respectively after the model statement:

proc reg data=health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp exercise coffee / vif
tol collin;
title "Health Predictors - Multicollinearity Investigation of VIF
and Tol";

run;
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Parameter Estimates

Parameter Standard Variance
Variable DF Estimate Error tValue Pr>|t| Tolerance Intlation
Intercept 1 572484 103.12844 0.05 0.9531 0
Age 1 {67645 2 20644 0.31| 07613 032637 3 06405
Weight 1 020743 027789 075 04612 0.32763 3.06224

Cholesterol 1 -182 68577 170 82886 -107| 02934 4 326797E-7 2311178
Triglycerides 1 291187 27321 107 | 02951 000034921 | 2863 60930

HDL 1 182.76031 170.71293 1.07 | 0.2929  0.00000516 193966
LD 1| 18305303 170 82561 1.07 | 0.2925 | 5. 113026E-7 1955789
Height 1 0.18956 161295  -0.12 0.9072 0.43561 229616
Skinfold 1 007347 053443 014 08918 0.77820 1.28502

SystolicBP 1 007945 063738 012 09016 0 66694 149939
DiastolicBP 1 008111  0.43028 0.19  0.8518 0.68583 1.501%0
Exercise 1 0.05167  0.05513 054 03562 0.77863 128430
Coffee 1 3.99259  3.68202 1.08 0.2868 0.44992 222261

Figure 11: Tolerance and VIF Investigation Results

When considering tolerance, we want to make sure that no values fall below 0.1. In reviewing our results,
we can see several variables — namely cholesterol, triglycerides, HDL, and LDL — had values well below
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an
eigensystem analysis of covariance comparison:

Collinoary Diagnostics
Proportion of t
Candiifen roportion of Varistion
Number Eigenvalee Index Imtercept Age Weight Chobesteral  Triglycesides HDL LoL Heaght Skinfold SystolicBP DiastolicBP | Exescise Coffee
1 1129459 100000 000001138 000004637 000006086 1 169G5E-10 6 58ME2E-T 2 11T859E9 2001E-10  0.00001048 D 0D0SS1T0 | 00002146 0 00011281 000154 0 00092480

06662 405704 000000331 00000701 000001442 1.10830E-10 1.14M653E8 218204E-10 | 4.01522E-10  0.00000233 000417 | 0.00000916  0.00000136 0.14242 0.26041

3 047052 469952 170761229 000000475 0.00006283 1.43701E-10 Q00007230 €.693990E-9 | 6.815B4E-10 7 O9MIME-T 000922 | 0.00000131  0.00000201 03511 0.11353
L] 0.2157 640053 0 O000T3SD Q00002441 0 0OOGGS63 4 12089E-15 000024185 6 0S2I16E-8 | 3 TO2M4E-10 D.00ODG01D 00587 0.00011457 0 DO033936 017510 0.07292
5 DWB5T 8T7543 000009651 Q00053911 0 00029359 1 554499E-9 000000506 7 219312E-8 | 1634574E-9  0.00014602 077592 | 000025960 0215 013373 000009012
6 0 06145 1385776 0 00032045 000016295 002554 L AESRIES 000000217 000000126 | 6 611965E-3 0 00162 001238 0 02304 00411 000501 000073513
r 002723 2036502 000093349 0.00170 004781 4702T02E3 000025889 0.00000293 2 325254E-7  0.00015620 000302 000331 ooz7e3 000756 0.08354
L] 002053 2325002 000003043 004483 002385 45953312E-3 000064015 DODOODIZS |4 BRSSG5ES D DOOMAI1Z 000851 0.00D11118 084175 001539 000722
L] Do0E2% 36 97381 003667 000022313 032353 T 9BSS49ES 000012325  0.00000321 | 1.02153E-T 0 00897 000304 004529 021593 Qor2eT 0.041971
10 00053 45 5W79 0.0063% 074848 010288 1B01143EG Q00013411 D.0DDOOISO | § G254ED 0 28l Q01628 Q 00308 013539 000271 0.23169
" D001 76 09944 oorzs 0.17866 011829 2005126E4 S5 G0TSES 6 6S220ZE-7 | ZB6BMES 0 13026 00041 0 85602 Q14837 | D.00DGAT41 016438
12 (0d00850s4 1157048 0870ea 0.01200 027550 CROOSAZES 000002858 1490124E.7 2E20126E 8 0 706u 010713 00a244  0.DO0PES13 002725 000004376
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Figure 12: Collinearity Investigation Results
ASSUMPTIONS OF THE ABSENCE OF AUTOCORRELATION: COMMON TESTS

Another common assumption is the need for independence of error terms. It states that the errors
associated with one observation are not correlated with the errors of any other observation. It is a problem
when you use time series data. Autocorrelation inflates significance results of coefficients by
underestimating the standard errors of the coefficients. Hypothesis testing will therefore lead to incorrect
conclusions.
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Durbin Watson Test: PROC REG tests for first-order autocorrelations using the Durbin-Watson coefficient
(DW). The null hypothesis is no autocorrelation. A DW value between 1.5 and 2.5 confirms the absence of
first-order autocorrelation. If DW value less than 1.5, it indicates positive autocorrelation. If DW value
greater than 2.5, it indicates negative autocorrelation
/* Test for AutoCorrelation - Durbin-Watson */
proc reg data = health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp / dw;

run;

The REG Procedure
Model: MODEL1
Dependent Variable: CholegerolLoss

Dwrbin-Watson D 1.822
Number of Observations 43
1st Order Autocorrelation 0187

Figure 13: Durbin-Watson D Test for Autocorrelation Results

Lagrange Multiplier Test: It can be used for more than one order of auto correlation. It consists of several
steps. First, regress Y on Xs to get residuals. Compute lag value of residuals up to pth order. Replace
missing values for lagged residuals with zeros. Rerun regression model including lagged residual variable
as an independent variable.
/* Test for AutoCorrelation - Lagrange Multiplier Test */
proc autoreg data = health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp / dwprob godfrey;

run;

Correction of Autocorrelation: (1) add lagged transforms (lag value) of the dependent value, and (2) use
the Autoreg procedure.

ASSUMPTIONS OF A LINEAR RELATIONSHIP: COMMON TESTS

[Testing Outliers] Box Plot Method: If a value is higher than the 1.5*IQR above the upper quartile (Q3),
the value will be considered as outlier. Similarly, if a value is lower than the 1.5*IQR below the lower
guartile (Q1), the value will be considered as outlier. In SAS, the plots option in the Univariate procedure
tells SAS to generate Box Plot graph.

See this website for information on a macro that uses the Box Plot Method.

[Testing Outliers] Studentized Residuals: Residuals are the difference between the observed value and
the predicted value. Standardized Residuals are the residuals divided by the standard error of estimate.
Lastly, studentized Residuals are the residuals divided by the standard error of the residual with that case
deleted. If an absolute value of studentized residual is greater than 3, the observation is considered as an
outlier.
/* Studentized residuals - Check Outliers*/
ods graphics on;
proc reg data=health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp exercise coffee / stb
clb;

16


https://www.listendata.com/2014/10/identify-and-remove-outliers-with-sas.html

output out=stdres p= predict r = resid rstudent=r h=lev
cookd=cookd dffits=dffit;

run;

quit;

ods graphics off;

/* Print only those observations having absolute value of studentized
residual greater than 3*/
proc print data=stdres;
var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;
where abs(r)>=3;
run;

Obs Age Weight Cholesterol Triglycerides HDL LDL Height Skinfold SystolicBP | DiastolicBP Exercise Coffee CholesterolLoss
23 23 182 189 47 B0 1382 755 10 124 73 60 1 -73

Figure 14: Outlier Results for Studentized Residuals

[Testing Outliers] Cook’s D: Cook’s D can also be used to test for outliers. The general rule of thumb, is
the higher the value of Cook’s D, the more influential the point is. Additionally, if the Cook’s D value is
greater than 4/(number of observations), the value is considered an outlier.

/* Cook®"s D - Check Outliers */
proc print data=stdres;
where cookd > (4/51);
var age weight cholesterol triglycerides hdl Idl height skinfold
systolicbp diastolicbp exercise coffee cholesterolloss;
run;

Obs Age Weight Cholesterol Triglycerides HDL | LDL Height  Skinfold SystolicBP | DiastolicBP  Exercise Coffee Cholesterolloss

9 23 178 234 307 28 2011 735 5 124 82 60 1 59
11 26 188 258 299 30 2232 73 19 130 86 0 1 -18
12 22 150 212 52 69 1422 64.25 18 120 74 0 0 -16
13 22 123 137 198 | 29 1055 64.25 21 120 74 0 4 28
23 23 182 189 47 80 138.2 75.5 10 124 73 60 1 -73
29 28 150 228 480 29 1913 66 22 138 82 120 0 4
M40 217 277 240 71 2022 75 30 128 80 0 5 34

Figure 15: Outlier Results for Cook's D

[Testing Linearity] Scatter Plot: You can use a scatter plot to test for linearity. Does the scatter plot show
a linear pattern in the data?

/* Scatter Plot for Testing Linearity */

ods graphics on;

proc reg data=health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp exercise coffee /
partial;

run;
quit;
ods graphics off;
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Residual by Regressors for CholesterolLoss
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Figure 16: Scotter Plot Results for Testing Linearity

[Testing Linearity] Correlation Between Independent and Dependent Variable: For linear regression, there

should be a moderate and SIGNIFICANT correlation score between dependent variable and independent

variable.

/* Testing Correlation between Dependent and Independent Variables */

proc corr data=health;

var age weight cholesterol triglycerides hdl 1dl height skinfold
systolicbp diastolicbp exercise coffee;

with cholesterolloss;
run;

Pearson Correlation Coefficients
Prob = |r] under H0: Rho=0
Number of Observations

Age | Weight Cholesterol Triglycerides HDL LDL | Height | Skinfold @ SystolicBP | DiastolicBP | Exercise | Coffee

CholesterolLoss | 0.09914 | -0.24221 0.40318 0.11396 | 0.19099  0.37389 | -0.27042 -0.03538 -0.07917 013192 0.22724 0.08732
0.5270  0.1176 0.0073 0.4669 02199 00135| 0.0795  0.8218 0.6138 0.3991 0.1428 05777

43 43 43 43 43 43 43 43 43 43 43 43

Figure 17: Correlation Coefficients for Independent vs Dependent Variables

[Testing Linearity] Linearity Between Independent Variable and Log Odds (Box-Tidwell): Add the

interaction term (the crossproduct of each independent times its natural logarithm [(x)In(x)]) to the logistic
model. If these terms are significant, then there is nonlinearity in the logit. This method has two additional
notes: (1) it is not sensitive to small linearities, (2) natural logarithm is most common, but you can use
whichever logarithmic function best matches your data. You can also use the boxtid Macro Program
available at http://www.datavis.ca/sasmac/boxtid.html.

data health;
set health;
In_age = log(age);
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In_weight = log(weight);

In_cholesterol = log(cholesterol);

In_triglycerides = log(triglycerides);

In_hdl = log(hdl);

In_Idl = log(ldl);

In_height = log(height);

In_skinfold = log(skinfold);

In_systolicbp = log(systolicbp);

In_diastolicbp = log(diastolicbp);
run;

proc logistic data=health;
model cholesterolloss = age weight cholesterol triglycerides hdl
Idl height skinfold systolicbp diastolicbp exercise coffee
age*In_age weight*In_weight cholesterol*In_cholesterol
triglycerides*In_triglycerides hdl*In_hdl I1di*In_Idl
height*In_height skinfold*In_skinfold systolicbp*In_systolichp
diastolicbp*In_diastolichp;
title "Health Predictors - Logistic Linearity of Logit~";

run;

Age 1 -21.5242 6.3703 11.4168 0.0007
Weight 1 1.4583 1.0401 1.5658 0.180%
Cholegerol 1 T.5813 149923 02667 0.8131
Triglycerides 1 0.1488 0.1584 0.5584 0.4557
HOL 1 -25987 150752 0.0297 0.58932
LOL 1 81385 145838 0.3123 0.5783
Height 1 384318 17.3082 44308 0.0353
Skinfold 1 02798 0.5009 031 0.5
SystolicBP 1 -23.7795 7.4329 10.2351 0.0014
DiadolicBP 1 -B1274 1.7934 B.1738 0.0042
Exercise 1 000403 0.00478 0.7083 0.4000
Coffee 1 07337 0.387 5.2020 0.0212
Age*ln_age 1 4 9935 1.4742 11.4740 0.0007
Weight*In_weight 1 402380 0.1699 1.9788 0.1585
Cholegerin_cholest 1 401388 0.2488 0.2088 0.5728
Triglycertln_triglyc 1 0030 0.0189 40253 0.0448
HOL®n_hdl 1 D845 0.4443 3.5388 0.0584
LOL*In_ldI 1 0.2285 0.1527 2241 0.1244
Height*In_height 1 -7.0200 33274 44510 0.0245
Skinfold®*In_skinfold 1 400851 0.1308 0.5297 0.4588
SystolicB®In_systoli 1 41389 1.2873 10.2423 0.0013
Diadolic®fn_diastol 1 0.9171 0.3189 8.3720 0.0040

Figure 18: Results from Box-Tidwell Exploration

NOTES ON TRANSFORMING VARIABLES TO MEET AN ASSUMPTION

19



Transforming variables is often done to correct for outliers and assumption failures (normality, linearity, and
homoscedasticity/homogeneity); however, interpretation is then limited to the transformed scores.
Examples of different transformations are: taking the square root of the variable(s); taking the natural
logarithm; multiplicative inverse; for skewed variables, and reflecting the variable before applying the
desired transformation.

¢ Violations of homogeneity usually can be corrected by transforming the DV. If you can not transform
the DV, then you can use a more stringent alpha level for the untransformed DV

e Ensure that the transformed variable(s) meets the assumptions (such as normality, little to no
outliers, etc...). Often, you are not sure what transformation would work best to meet the
assumptions; trial and error.

e Usually, if some variables are skewed and others are not, the transformations provide an
improvement; however, that is not always the case.

e To transform for normality: According to some research, taking the inverse of the scores is the best
of several alternatives for skewed (or J-shaped) distributions. However, according to Tabachnick
& Fidell (2007), this alternative may not render the distribution normal.

e When the error variance appears to be constant (Homoscedasticity), only X needs be
transformed to linearize the relationship. Transform independent variable to Log10(X), Inverse(X),
Square root(X), Square(X), Exp(X), 1/X, Exp(-X). When the error variance does not appear
constant it may be necessary to transform Y or both X and Y. You can then run Box-Cox
Transformations for Dependent Variable to control for any additional violations.

e If linearity of logit is violated for logistic regression, the supplementation of the natural log (or log
variation utilized in the test) of the continuous variable in place of the original independent
variable should solve the problem.

Additionally, examining the means for untransformed scores is the same as examining the medians for
transformed scores; the transformation affects the mean but not the median because the median only
depends on rank order. Therefore, the means of transformed variables is the same as the median of
untransformed variables.

According to Tabachnick & Fidell (2007), to reflect a variable, find the largest score in the distribution and
then add 1 to it; this forms a constant that is larger than any other score in the distribution. Create a new
variable by subtracting each score from the constant. Interpret this reflected variable appropriately: reverse
the direction of the interpretation or re-reflect the variable after transforming it; or, keep in mind that if smaller
scores represented negative units before the transformation, then after the transformation the smaller
scores will represent positive units.

CONCLUSION
In order to ensure that your model is appropriately interpreted, it is important to make sure that all
assumptions have been tested and any violations have been corrected. This may seem daunting, but the

processes to do this are easy and the corrections are not painful. It is always worth it to make sure that the
results you are reporting are correct!
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