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ABSTRACT  

Regression analyses are one of the first steps (aside from data cleaning, preparation, and descriptive 
analyses) in any analytic plan, regardless of plan complexity. Therefore, it is worth acknowledging that the 
choice and implementation of the wrong type of regression model, or the violation of its assumptions, can 
have detrimental effects to the results and future directions of any analysis. Considering this, it is important 
to understand the assumptions of these models and be aware of the processes that can be utilized to test 
whether these assumptions are being violated. Given that logistic and linear regression techniques are two 
of the most popular types of regression models utilized today, these are the are the ones that will be covered 
in this paper. Some Logistic regression assumptions that will reviewed include: dependent variable 
structure, observation independence, absence of multicollinearity, linearity of independent variables and 
log odds, and large sample size. For Linear regression, the assumptions that will be reviewed include: 
linearity, multivariate normality, absence of multicollinearity and auto-correlation, homoscedasticity, and 
measurement level. This paper is intended for any level of SAS® user. This paper is also written to an 
audience with a background in theoretical and applied statistics, though the information within will be 
presented in such a way that any level of statistics/mathematical knowledge will be able to understand the 
content. 

INTRODUCTION  

We can be certain that all parametric tests in a statistical analysis assume some certain characteristics (or 
assumptions) about the data. Depending on the parametric analysis, the assumptions vary. A violation of 
any of these assumptions changes the conclusion of the research and interpretation of the results. 
Therefore, all research, whether for a journal, thesis/dissertation, or report, must check and adhere to these 
assumptions for accurate interpretation and model integrity.  

COMMON ASSUMPTIONS 

The following assumptions are commonly found in statistical research: 

Assumptions of Normality: Most of the parametric tests require that the assumption of normality be met.  
Normality means that the distribution of the test is normally distributed (or bell-shaped) with 0 mean, with 1 
standard deviation and a symmetric bell shaped curve.   

Assumptions of Homogeneity of Variance: The assumption of homogeneity of variance is that the variance 
within each of the populations is equal.  

Assumptions of Homogeneity of Variance-Covariance Matrices: The assumption for a multivariate 
approach is that the vector of the dependent variables follow a multivariate normal distribution, and the 
variance-covariance matrices are equal across the cells formed by the between-subjects effects. 

Assumption of Linear Relationships: The assumption of linear relationships for linear regression states that 
the relationship between independent and dependent variables must be linear. The assumption of linear 
relationships for logistic regression states that the relationship between independent variables and their log 
odds must be linear. 
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Assumption of the Absence of Multicollinearity: Independent variables should not be highly correlated with 
each other. 

Assumption of the Absence of Auto-Correlation: Residuals should be independent from each other. 

INTRODUCTION TO THE DATSET 

The dataset used for this paper is easily accessible by anyone with access to SAS®. It is a sample dataset 
titled “lipids”. The background to this sample dataset states that it is from a study to investigate the 
relationships between various factors and heart disease. In order to explore this relationship, blood lipid 
screenings were conducted on a group of patients. Three months after the initial screening, follow-up data 
was collected from a second screening that included additional information such as gender, age, weight, 
total cholesterol, and history of heart disease. The outcome variable of interest in this analysis is the 
reduction of cholesterol level between the initial and 3-month lipid panel or “cholesterolloss”. The predictor 
variables of interest are age (age of participant), weight (weight at first screening), cholesterol (total 
cholesterol at first screening), triglycerides (triglycerides level at first screening), HDL (HDL level at first 
screening), LDL (LDL level at first screening), height (height of participant), skinfold (skinfold measurement), 
systolicbp (systolic blood pressure) diastolicbp (diastolic blood pressure), exercise (exercise level), and 
coffee (coffee consumption in cups per day). 

DATA CLEANING AND PREPARATION 

As a first step in the examination of our research question – do target health outcome variables contribute 
to the amount of cholesterol lost between baseline and a 3 month follow-up – we must first identify which 
variables will be used in the analysis, what these variables look like, and how these variables will interact 
with each other. In short, we must clean and prepare the data for our analysis. This may seem redundant, 
but it is a worthy note to make considering the type of analysis we are about to conduct. We will begin by 
identifying the dataset and making sure that it is appropriately imported into the SAS environment. At this 
time we will also use the CONTENTS procedure to check the structure and types of variables we will be 
working with: 

 
/* Example of Multicollinearity Findings */ 
libname health 
"C:\ProgramFiles\SASHome\SASEnterpriseGuide\7.1\Sample\Data"; 
 
data health; 
set health.lipid; 
run; 
 
proc contents data=health; 
title 'Health Dataset with High Multicollinearity'; 
run; 

 

ASSUMPTIONS OF LINEAR REGRESSION 

Linear regression is an analysis that assesses whether one or more predictor variables explain the 
dependent (criterion) variable.  This type of regression has five key assumptions. 

• Linear relationship 

• Multivariate normality 
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• No or little multicollinearity 

• No auto-correlation 

• Homoscedasticity 

Additionally, it is necessary to make a note about sample size for this type of regression model. In Linear 
regression the sample size rule of thumb is that the regression analysis requires at least 20 cases per 
independent variable in the analysis.  

ASSUMPTION OF LINEAR RELATIONSHIP 

Linear regression needs the relationship between the independent and dependent variables to be linear.  It 
is also important to check for outliers since linear regression is sensitive to outlier effects.  One way to test 
the linearity assumption can be through the examination of scatter plots. 

ASSUMPTION OF MULTIVARIATE NORMALITY 

Linear regression analyses require all variables to be multivariate normal.  This assumption can best be 
checked with a histogram or a Q-Q-Plot.  Normality can be checked with a goodness of fit test, such as the 
Kolmogorov-Smirnov test.  When the data is not normally distributed a non-linear transformation (e.g., log-
transformation) might fix this issue. 

ASSUMPTION OF ABSENCE OF MULTICOLLINEARITY 

Linear regression assumes that there is little or no multicollinearity in the data.  Multicollinearity occurs 
when the independent variables are too highly correlated with each other. 

As stated above, multicollinearity may be tested with three central criterion: 

• Correlation matrix: when computing the matrix of Pearson’s Bivariate Correlation among all 
independent variables the correlation coefficients should hopefully be smaller than 0.8. 

• Tolerance: the tolerance measures the influence of one independent variable on all other 
independent variables; the tolerance is calculated with an initial linear regression analysis.  
Tolerance is defined as T = 1 – R² for these first step regression analysis.  With T < 0.1 there might 
be multicollinearity in the data and with T < 0.01 there certainly is. 

• Variance Inflation Factor (VIF): the variance inflation factor of the linear regression is defined as 
VIF = 1/T. With VIF > 10 there is an indication that multicollinearity may be present; with VIF > 100 
there is certainly multicollinearity among the variables. 

• Condition Index: the condition index is calculated using a factor analysis on the independent 
variables.  Values of 10-30 indicate a mediocre multicollinearity in the linear regression variables, 
values > 30 indicate strong multicollinearity.  

If multicollinearity is found in the data, centering the data (that is deducting the mean of the variable from 
each score) might help to solve the problem.  However, the simplest way to address the problem is to 
remove the independent variables with high VIF values. Other alternatives to tackle the problems is 
conducting a factor analysis and rotating the factors to insure independence of the factors in the linear 
regression analysis, using ridge regression, LASSO, or Elastic Net techniques.  

ASSUMPTION OF THE ABSENCE OF AUTOCORRELATION 
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Linear regression analyses require that there exists little or no autocorrelation in the data.  Autocorrelation 
occurs when the residuals are not independent from each other.  In other words when the value of y(x+1) 
is not independent from the value of y(x). 

While a scatterplot allows you to check for autocorrelations, you can test the linear regression model for 
autocorrelation with the Durbin-Watson test.  Durbin-Watson’s d tests the null hypothesis that the residuals 
are not linearly auto-correlated.  While d can assume values between 0 and 4, values around 2 indicate no 
autocorrelation.  As a rule of thumb values of 1.5 < d < 2.5 show that there is no auto-correlation in the 
data. However, the Durbin-Watson test only analyses linear autocorrelation and only between direct 
neighbors, which are first order effects. 

ASSUMPTION OF HOMOSCEDASTICITY 

Lastly, linear regression analyses assume the presence of homoscedasticity. Examination of a scatter plot 
is good way to check whether the data are homoscedastic (in other words, the residuals are equal across 
the regression line).  

The Goldfeld-Quandt Test can also be used to test for heteroscedasticity.  The test splits the data into two 
groups and tests to see if the variances of the residuals are similar across the groups.  If homoscedasticity 
is present, a non-linear correction might fix the problem. 

ASSUMPTIONS OF LOGISTIC REGRESSION 

Logistic regression is quite different than linear regression in that it does not make several of the key 
assumptions that linear and general linear models (as well as other ordinary least squares algorithm based 
models) hold so close: (1) logistic regression does not require a linear relationship between the dependent 
and independent variables, (2) the error terms (residuals) do not need to be normally distributed, (3) 
homoscedasticity is not required, and (4) the dependent variable in logistic regression is not measured on 
an interval or ratio scale. 

However, logistic regression still shares some assumptions with linear regression, with some additions of 
its own. 

ASSUMPTION OF APPROPRIATE OUTCOME STRUCTURE 

To begin, one of the main assumptions of logistic regression is the appropriate structure of the outcome 
variable. Binary logistic regression requires the dependent variable to be binary and ordinal logistic 
regression requires the dependent variable to be ordinal. 

ASSUMPTION OF OBSERVATION INDEPENDENCE 

Logistic regression requires the observations to be independent of each other.  In other words, the 
observations should not come from repeated measurements or matched data. 

ASSUMPTION OF THE ABSENCE OF MULTICOLLINEARITY 

Logistic regression requires there to be little or no multicollinearity among the independent variables.  This 
means that the independent variables should not be too highly correlated with each other. 

ASSUMPTION OF LINEARITY OF INDEPENDENT VARIABLES AND LOG ODDS 

Logistic regression assumes linearity of independent variables and log odds. Although this analysis does 
not require the dependent and independent variables to be related linearly, it requires that the independent 
variables are linearly related to the log odds. 
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ASSUMPTION OF A LARGE SAMPLE SIZE 

Finally, logistic regression typically requires a large sample size.  A general guideline is that you need at 
minimum of 10 cases with the least frequent outcome for each independent variable in your model. For 
example, if you have 5 independent variables and the expected probability of your least frequent outcome 
is .10, then you would need a minimum sample size of 500 (10*5 / .10). 

TESTING THE ASSUMPTIONS 

ASSUMPTIONS OF NORMALITY: COMMON TESTS 

To test the assumption of normality, the following measures and tests can be applied: 

Skewness and Kurtosis: To test the assumption of normal distribution, Skewness should be within the range 
±2.  Kurtosis values should be within range of ±7. 

This test can be completed through use of the Univariate procedure: 
/* Testing for Normality */ 
proc univariate data=health plots; 
 var age weight cholesterol triglycerides hdl ldl height skinfold  

systolicbp diastolicbp exercise coffee cholesterolloss; 
run; 

 

 

Figure 1: Results for Testing Skewness & Kurtosis 

Shapiro-Wilk’s W test: Most of the researchers use this test to test the assumption of normality.  Wilk’s test 
should not be significant to meet the assumption of normality. 

Kolmogorov-Smirnov test: In the case of a large sample, most researchers use K-S test to test the 
assumption of normality.  This test should not be significant to meet the assumption of normality. 

Q-Q plot: Most researchers use Q-Q plots to test the assumption of normality.  In this method, observed 
value and expected value are plotted on a graph.  If the plotted value vary more from a straight line, then 
the data is not normally distributed. Otherwise data will be normally distributed. 

The Shapiro-Wilk’s W, Komogorov-Smirnov tests, and Q-Q Plots can be completed through use of the 
Capability procedure: 

/* Testing for Normality - Shapiro-Wilk’s W, Komogorov-Smirnov tests, 
and Q-Q Plots */ 
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proc capability DATA=health NORMAL; 
 var age weight cholesterol triglycerides hdl ldl height skinfold 

systolicbp diastolicbp exercise coffee cholesterolloss; 
 QQPLOT age weight cholesterol triglycerides hdl ldl height 

skinfold systolicbp diastolicbp exercise coffee cholesterolloss  
  /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1); 
 PPPLOT age weight cholesterol triglycerides hdl ldl height 

skinfold systolicbp diastolicbp exercise coffee cholesterolloss  
  /NORMAL(MU=EST SIGMA=EST COLOR=RED L=1); 
 HISTOGRAM /NORMAL(COLOR=MAROON W=4) CFILL = BLUE CFRAME = LIGR; 
 INSET MEAN STD /CFILL=BLANK FORMAT=5.2 ; 
run; 

 

Figure 2: Results for Testing Shapiro-Wilk's W & Komogorov-Smirnov  

 

Figure 3: Checking Q-Q Plots 

ASSUMPTIONS OF HOMOGENEITY OF VARIANCE (HOMOSCEDASTICITY): COMMON 
TESTS 

Levene’s test: To test the assumption of homogeneity of variance, Levene’s test is used.  Levene’s test is 
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used to asses if the groups have equal variances.  This test should not be significant to meet the assumption 
of equality of variances. 

Levene’s test can be completed through use of the GLM procedure: 
/* Testing for Homogeneity of Variance - Levene's Test */ 
proc glm data=health; 
   class exercise coffee; 
   model cholesterolloss = exercise; 
   means exercise / hovtest=levene; /* can specify type=abs|square */ 
run; 

 

Figure 4: Levene's Test for Homogeneity of Variance 

Plot Residuals by Predicted Values: 
/* Plot Residuals by Predicted Values */ 
proc reg data= health; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp exercise coffee; 

 plot r.*p.; 
run; 
quit; 

 

Figure 5: Plot Residuals by Predicted Values 

White Test: This statistic is asymptotically distributed as chi-square with k-1 degrees of freedom, where k 
is the number of regressors, excluding the constant term. Two other tests that can be employed are 
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the Breusch-Pagan Test and Lagrange Multiplier (LM) Test. If you check the P-value of Q statistics and 
LM tests, a P-value greater than .05 indicates homoscedasticity. If the p-value of White test and Breusch-
Pagan test is greater than .05, the homogeneity of variance of the residual has been met 
(Homoscedasticity). 

/* Homoscedasticity Test - White and Breusch-Pagan Test */ 
proc model data= health; 
 parms a1 b1 b2 b3; 
 cholesterolloss = a1 + b1*age + b2*weight + b3*cholesterol; 
 fit cholesterolloss / white pagan=(1 age weight cholesterol) 
 out=resid1 outresid; 
run; 
quit; 

 

Figure 6: Homoscedasticity - White's and Breusch-Pagan Tests 

There are several ways in which violations of this test can be adjusted. You can employ the Box-Cox 
transformations of the dependent variable or through use of Weighted Least Squares. 

Box-Cox Transformation: 
/* Box-Cox Transformation as an Adjustment */ 
proc transreg data=health  test; 
 model boxcox(cholesterolloss) = identity(age weight cholesterol); 
run; 

Transformation Best Lambda 
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Square 1.5 to 2.5 

None 0.75 to 1.5 

Square-Root 0.25 to 0.75 

Natural Log -0.25 to 0.25 

Inverse Square-Root -0.75 to –0.25 

Reciprocal -1.5 to -0.75 

Inverse Square -2.5 to -1.5 

Weighted Least Squares: if variable transformation does not solve this problem, then we can use 
weighted least squares. You can construct these weights through the following steps: (1) compute the 
absolute and squared residuals, (2) find the absolute and squared residuals versus the independent 
variables to get the estimated standard deviation and variance, and (3) compute the weights using the 
estimated standard deviations and variance. 

/* Weighted Least Squares as an Adjustment */ 
proc reg data=health; 
   model cholesterolloss=age weight cholesterol; 
   output out=WORK.PRED r=residual; 
run; 
 
data work.resid; 
  set work.pred; 
  absresid=abs(residual); 
  sqresid=residual**2; 
 
proc reg data=work.resid; 
    model absresid=age weight cholesterol; 
    output out=WORK.s_weights p=s_hat; 
   model sqresid=age weight cholesterol; 
    output out=WORK.v_weights p=v_hat; 
run; 
 
** compute the weights using the estimated standard deviations**; 
data work.s_weights; 
 set work.s_weights; 
  s_weight=1/(s_hat**2); 
 label s_weight = "weights using absolute residuals"; 
 
** compute the weights using the estimated variances**; 
data work.v_weights; 
 set work.v_weights; 
  v_weight=1/v_hat; 
 label v_weight = "weights using squared residuals"; 
 
** Do the weighted least squares using the weights from the estimated 
standard deviation**; 
proc reg data=work.s_weights;  
 weight s_weight;  
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 model cholesterolloss=age weight cholesterol;  
run; 
 
** Do the weighted least squares using the weights from the estimated 
variances**; 
proc reg data=work.v_weights;  
 weight v_weight;  
 model cholesterolloss=age weight cholesterol;  
 run;  
quit; 

 

Figure 7: Weighted Least Squares Adjustment for Homoscedasticity 

ASSUMPTIONS OF HOMOGENEITY OF VARIANCE-COVARIANCE MATRICES: COMMON 
TESTS 

Box’s M test: This test is used to test the multivariate homogeneity of variance-covariance matrices 
assumption.  An insignificant value of Box’s M test shows that those groups do not differ from each other 
and would meet the assumption. It is also worthy to note that Box’s M is extremely sensitive to departures 
from normality. Therefore, if the sample is not normally distributed (an assumption we covered earlier), you 
should not use the Box’s M test. Box’s M also has very little power (Cohen, 2008) for data with small sample 
sizes. If you use the Box’s M test on a small sample and your result is not significant, this does not 
necessarily indicate that the covariance matrices are equal. The test also has issues in the other direction, 
receiving criticism for being overly sensitive to larger sample sizes. It tends to report a statistically significant 
result when one doesn’t actually exist. To address this particular issue, it is recommended that you use a 
smaller alpha level (Hahs-Vaughn, 2016).  

Additionally, Box’s M Test is common in SPSS, but not in SAS. One way to request a Box’s M Test is to 
use the Discrim procedure. Make sure to indicate pool=test and wcov as options. 
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/* Testing for Homogeneity of Variance-Covariance Matrices - Box's M 
Test */ 
proc discrim data=health method=normal pool=test wcov; 
 class exercise; 
 var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp cholesterolloss; 
run; 

SAS also offers Bartlett’s test as a variation of Box’s M, through use of the GLM procedure 
/* Testing for Homogeneity of Variance-Covariance Matrices - Bartlett's 
Test */ 
proc glm data=health; 
   class exercise coffee; 
   model cholesterolloss = exercise; 
   means exercise / hovtest=bartlett; 
run; 

 

Figure 8: Bartlett's Test for Homogeneity of Variance-Covariance Matrices 

Randomness: Most of the statistics assume that the sample observations are random. The Wald-Wolfowitz 
test, also known as the Runs test for randomness, is often used to test this assumption. A run is a set of 
sequential values that are either all above or below the mean. To simplify computations, the data are first 
centered about their mean. To carry out the test, the total number of runs is computed along with the number 
of positive and negative values. A positive run is then a sequence of values greater than zero, and a 
negative run is a sequence of values less than zero. We can then test if the number of positive and negative 
runs are distributed equally in time. 

The following statements create an example data set using the random number generator RANNOR. The 
Wald-Wolfowitz test will be performed on the variable age. 

/* Testing for Randomness - Wald-Wolfowitz Test */ 
data health; 
 drop i; 
  do i=1 to 75; 
   age=rannor(123); 
   output; 
 end; 
run; 

The MEAN=0 option in the PROC STANDARD step below centers the variable age about its mean. 
proc standard data=health out=health_two mean=0; 
 var age; 
run; 

The following DATA step computes the total number of runs (RUNS), the number of positive values 
(NUMPOS), and the number of negative values (NUMNEG). 

data runcount; 
 set health_two nobs=nobs; 
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  if age=0 then delete; 
  if age>0 then n+1; 
  if age<0 then m+1; 
  retain runs 0 numpos 0 numneg 0; 
  previous=lag(age); 
 
  if _n_=1 then do; 
   runs=1; 
   prevpos=.; 
   currpos=.; 
   prevneg=.; 
   currneg=.; 
  end; 
 
  else do; 
   prevpos=( previous > 0 ); 
   currpos=( d > 0 ); 
   prevneg=( previous < 0 ); 
   currneg=( d < 0 ); 
 
   if _n_=2 and (currpos and prevpos) then numpos+1; 
    else if _n_=2 and (currpos and prevneg) then 

numneg+1; 
    else if _n_=2 and (currneg and prevpos) then 

numpos+1; 
    else if _n_=2 and (currneg and prevneg) then 

numneg+1; 
       
   if currpos and prevneg then do; 
    runs+1; 
    numpos+1; 
   end; 
 
   if currneg and prevpos then do; 
    runs+1; 
    numneg+1; 
   end; 
  end; 
run; 
 
data runcount; 
 set runcount end=last; 
 if last; 
run; 

Finally, these steps compute and display the Wald-Wolfowitz (or Runs) test statistic and its p-value. 
data waldwolf; 
 label z='Wald-Wolfowitz Z' 
    pvalue='Pr > |Z|'; 
 set runcount; 
 mu = ( (2*n*m) / (n + m) ) + 1; 
 sigmasq = ( (2*n*m) * (2*n*m-(n+m)) ) / ( ((n+m)**2) * (n+m-1) ); 
 sigma=sqrt(sigmasq); 
 drop sigmasq; 
 
 if N GE 50 then Z = (Runs - mu) / sigma; 
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  else if Runs-mu LT 0 then Z = (Runs-mu+0.5)/sigma; 
  else Z = (Runs-mu-0.5)/sigma; 
 
 pvalue=2*(1-probnorm(abs(Z))); 
run; 
 
title  'Wald-Wolfowitz Test for Randomness'; 
title2 'H0: The data are random'; 
 
proc print data=waldwolf label noobs; 
 var z pvalue; 
 format pvalue pvalue.; 
run; 

 

Figure 9: Wald-Wolfowitz Test for Randomness 

Multicollinearity: Multicollinearity means that the variables of interest are highly correlated, and high 
correlations should not be present among variables of interest.  To test the assumption of multicollinearity, 
VIF and Condition indices can be used, especially in regression analyses.  A value of VIF >10 indicates 
multicollinearity is present and the assumption is violated. 

Our first step is to explore the correlation matrix. We can do this through implementation of the CORR 
procedure: 

/* Assess Pairwise Correlations of Continuous Variables */ 
proc corr data=health; 
var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 
title 'Health Predictors - Examination of Correlation Matrix'; 
run; 
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Figure 10: Multicollinearity - Pearson Correlation Coefficients 

 

Keep in mind, while reviewing these results we want to check to see if any of the variables included have a 
high correlation – about 0.8 or higher – with any other variable. As we can see, upon review of this 
correlation matrix, there seems to be some particularly high correlations between a few of the variables. 
Some relationships of note would be Cholesterol / LDL (0.96) and Weight / Height (0.70). Next we will 
examine multicollinearity through the Variance Inflation Factor, Tolerance, and Collinearity Diagnostics. 
This can be done by specifying the vif, tol, and collin options respectively after the model statement: 

proc reg data=health; 
model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp exercise coffee / vif 
tol collin; 
title 'Health Predictors - Multicollinearity Investigation of VIF 
and Tol'; 

run; 



15 

 

Figure 11: Tolerance and VIF Investigation Results 

When considering tolerance, we want to make sure that no values fall below 0.1. In reviewing our results, 
we can see several variables – namely cholesterol, triglycerides, HDL, and LDL – had values well below 
our 0.1 cutoff value. As for variance inflation, the magic number to look out for is anything above the value 
of 10. This finding is echoed in review of the Variance Inflation results, where these same variables reveal 
values far larger than our 10 cutoff for this column. Next, we will look at the collinearity diagnostics for an 
eigensystem analysis of covariance comparison: 

 

 

Figure 12: Collinearity Investigation Results 

ASSUMPTIONS OF THE ABSENCE OF AUTOCORRELATION: COMMON TESTS 

Another common assumption is the need for independence of error terms. It states that the errors 
associated with one observation are not correlated with the errors of any other observation. It is a problem 
when you use time series data. Autocorrelation inflates significance results of coefficients by 
underestimating the standard errors of the coefficients. Hypothesis testing will therefore lead to incorrect 
conclusions. 
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Durbin Watson Test: PROC REG tests for first-order autocorrelations using the Durbin-Watson coefficient 
(DW). The null hypothesis is no autocorrelation. A DW value between 1.5 and 2.5 confirms the absence of  
first-order autocorrelation. If DW value less than 1.5, it indicates positive autocorrelation. If DW value 
greater than 2.5, it indicates negative autocorrelation 

/* Test for AutoCorrelation - Durbin-Watson */ 
proc reg data = health; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp / dw; 

run; 

 

Figure 13: Durbin-Watson D Test for Autocorrelation Results 

Lagrange Multiplier Test: It can be used for more than one order of auto correlation. It consists of several 
steps. First, regress Y on Xs to get residuals. Compute lag value of residuals up to pth order. Replace 
missing values for lagged residuals with zeros. Rerun regression model including lagged residual variable 
as an independent variable. 

/* Test for AutoCorrelation - Lagrange Multiplier Test */ 
proc autoreg data = health; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp / dwprob godfrey; 

run; 

Correction of Autocorrelation: (1) add lagged transforms (lag value) of the dependent value, and (2) use 
the Autoreg procedure. 

ASSUMPTIONS OF A LINEAR RELATIONSHIP: COMMON TESTS 

[Testing Outliers] Box Plot Method: If a value is higher than the 1.5*IQR above the upper quartile (Q3), 
the value will be considered as outlier. Similarly, if a value is lower than the 1.5*IQR below the lower 
quartile (Q1), the value will be considered as outlier. In SAS, the plots option in the Univariate procedure 
tells SAS to generate Box Plot graph. 

See this website for information on a macro that uses the Box Plot Method. 

[Testing Outliers] Studentized Residuals: Residuals are the difference between the observed value and 
the predicted value. Standardized Residuals are the residuals divided by the standard error of estimate. 
Lastly, studentized Residuals are the residuals divided by the standard error of the residual with that case 
deleted. If an absolute value of studentized residual is greater than 3, the observation is considered as an 
outlier. 

/* Studentized residuals - Check Outliers*/ 
ods graphics on; 
proc reg data=health; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp exercise coffee / stb 
clb; 

https://www.listendata.com/2014/10/identify-and-remove-outliers-with-sas.html
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output out=stdres p= predict r = resid rstudent=r h=lev 
cookd=cookd dffits=dffit; 

run; 
quit; 
ods graphics off; 
 
/* Print only those observations having absolute value of studentized 
residual greater than 3*/ 
proc print data=stdres; 

var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 

 where abs(r)>=3; 
run; 

 

Figure 14: Outlier Results for Studentized Residuals 

[Testing Outliers] Cook’s D: Cook’s D can also be used to test for outliers. The general rule of thumb, is 
the higher the value of Cook’s D, the more influential the point is. Additionally, if the Cook’s D value is 
greater than 4/(number of observations), the value is considered an outlier. 

/* Cook's D - Check Outliers */ 
proc print data=stdres; 
 where cookd > (4/51); 
 var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee cholesterolloss; 
run; 

 

Figure 15: Outlier Results for Cook's D 

[Testing Linearity] Scatter Plot: You can use a scatter plot to test for linearity. Does the scatter plot show 
a linear pattern in the data? 

/* Scatter Plot for Testing Linearity */ 
ods graphics on; 
proc reg data=health; 

model cholesterolloss = age weight cholesterol triglycerides hdl 
ldl height skinfold systolicbp diastolicbp exercise coffee / 
partial; 

run; 
quit; 
ods graphics off; 
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Figure 16: Scotter Plot Results for Testing Linearity 

[Testing Linearity] Correlation Between Independent and Dependent Variable: For linear regression, there 
should be a moderate and SIGNIFICANT correlation score between dependent variable and independent 
variable. 

/* Testing Correlation between Dependent and Independent Variables */ 
proc corr data=health; 

var age weight cholesterol triglycerides hdl ldl height skinfold 
systolicbp diastolicbp exercise coffee; 

 with cholesterolloss; 
run; 

 

Figure 17: Correlation Coefficients for Independent vs Dependent Variables 
 

[Testing Linearity] Linearity Between Independent Variable and Log Odds (Box-Tidwell): Add the 
interaction term (the crossproduct of each independent times its natural logarithm [(x)ln(x)]) to the logistic 
model. If these terms are significant, then there is nonlinearity in the logit. This method has two additional 
notes: (1) it is not sensitive to small linearities, (2) natural logarithm is most common, but you can use 
whichever logarithmic function best matches your data. You can also use the boxtid Macro Program 
available at http://www.datavis.ca/sasmac/boxtid.html.  

data health; 
 set health; 
 ln_age = log(age); 

http://www.datavis.ca/sasmac/boxtid.html
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 ln_weight = log(weight); 
 ln_cholesterol = log(cholesterol); 
 ln_triglycerides = log(triglycerides); 
 ln_hdl = log(hdl); 
 ln_ldl = log(ldl); 
 ln_height = log(height); 
 ln_skinfold = log(skinfold); 
 ln_systolicbp = log(systolicbp); 
 ln_diastolicbp = log(diastolicbp); 
run; 
 
proc logistic data=health; 
 model cholesterolloss = age weight cholesterol triglycerides hdl 

ldl height skinfold systolicbp diastolicbp exercise coffee 
age*ln_age weight*ln_weight cholesterol*ln_cholesterol

 triglycerides*ln_triglycerides hdl*ln_hdl ldl*ln_ldl  
 height*ln_height skinfold*ln_skinfold systolicbp*ln_systolicbp 

diastolicbp*ln_diastolicbp; 
 title 'Health Predictors - Logistic Linearity of Logit'; 
run; 

 

 
Figure 18: Results from Box-Tidwell Exploration 

NOTES ON TRANSFORMING VARIABLES TO MEET AN ASSUMPTION 
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Transforming variables is often done to correct for outliers and assumption failures (normality, linearity, and 
homoscedasticity/homogeneity); however, interpretation is then limited to the transformed scores. 
Examples of different transformations are: taking the square root of the variable(s); taking the natural 
logarithm; multiplicative inverse; for skewed variables, and reflecting the variable before applying the 
desired transformation. 

• Violations of homogeneity usually can be corrected by transforming the DV. If you can not transform 
the DV, then you can use a more stringent alpha level for the untransformed DV 

• Ensure that the transformed variable(s) meets the assumptions (such as normality, little to no 
outliers, etc…).  Often, you are not sure what transformation would work best to meet the 
assumptions; trial and error. 

• Usually, if some variables are skewed and others are not, the transformations provide an 
improvement; however, that is not always the case. 

• To transform for normality: According to some research, taking the inverse of the scores is the best 
of several alternatives for skewed (or J-shaped) distributions.  However, according to Tabachnick 
& Fidell (2007), this alternative may not render the distribution normal. 

• When the error variance appears to be constant (Homoscedasticity), only X needs be 
transformed to linearize the relationship. Transform independent variable to Log10(X), Inverse(X), 
Square root(X), Square(X), Exp(X), 1/X, Exp(-X). When the error variance does not appear 
constant it may be necessary to transform Y or both X and Y. You can then run Box-Cox 
Transformations for Dependent Variable to control for any additional violations. 

• If linearity of logit is violated for logistic regression, the supplementation of the natural log (or log 
variation utilized in the test) of the continuous variable in place of the original independent 
variable should solve the problem.  

Additionally, examining the means for untransformed scores is the same as examining the medians for 
transformed scores; the transformation affects the mean but not the median because the median only 
depends on rank order.  Therefore, the means of transformed variables is the same as the median of 
untransformed variables.  

According to Tabachnick & Fidell (2007), to reflect a variable, find the largest score in the distribution and 
then add 1 to it; this forms a constant that is larger than any other score in the distribution.  Create a new 
variable by subtracting each score from the constant.  Interpret this reflected variable appropriately: reverse 
the direction of the interpretation or re-reflect the variable after transforming it; or, keep in mind that if smaller 
scores represented negative units before the transformation, then after the transformation the smaller 
scores will represent positive units. 

CONCLUSION 

In order to ensure that your model is appropriately interpreted, it is important to make sure that all 
assumptions have been tested and any violations have been corrected. This may seem daunting, but the 
processes to do this are easy and the corrections are not painful. It is always worth it to make sure that the 
results you are reporting are correct! 
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