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ABSTRACT 
 

Proportional Hazards regression has become an 

exceedingly popular procedure for conducting analysis on 

right-censored, time-to-event data. A powerful, numerically 

stable and easily generalizable model can result from 

careful development of the candidate model, assessment of 

model adequacy, and final validation. Model adequacy 

focuses on overall fitness, validity of the linearity 

assumption, inclusion (or exclusion) of a correct (or an 

incorrect) covariate, and identification of outlier and highly-

influential observations. Due to the presence of censored 

data and the use of the partial maximum likelihood function, 

diagnostics to assess these elements in proportional hazards 

regression compared to most modeling exercises can be 

slightly more complicated. In this paper, graphical and 

analytical methods using a rich supply of distinctive 

residuals to address these model adequacy challenges are 

compared. 

 

 

1.  Introduction  
 

1.1 The Model 

 

Proportional Hazards (PH) Regression using a partial 

maximum likelihood function to estimate the covariate 

parameters in the presence of censored time to failure data 

(Cox, 1972) has become widely used for conducting survival 

analysis. The PHREG procedure in SAS®/STAT (SAS 

Institute, 2016) has appeared as the prevailing procedure 

with which to conduct such analyses. The specification for 

the model is: 

𝜆(𝑡) = 𝜆0(𝑡) 𝑒𝑥𝑝 {∑ βi

𝑝

𝑖=1

xi}  (1.1) 

 

Where, 𝜆0(𝑡) is the baseline hazard function and is a non-

negative arbitrary hazard function when all covariates are 

zero.

The summation in braces, which is sometimes called the risk 

score in proportional hazards, when expanded is given by: 

{∑  βixi

𝑝

𝑖=1

} =  [𝛽1𝑥1 +  𝛽2𝑥2 +  … + 𝛽𝑝𝑥𝑝]  

 (1.2) 

 

1.2 Classes of Model Assumptions 

 

Model adequacy in the PH regression model has two classes 

of assumptions, that when satisfied ordinarily allow one to 

rely on the resultant statistical inferences and predictions. 

The first assumption is that time is independent of the 

covariates in the hazard function. In other words, the ratio of 

the hazard function for two individuals with different 

regression covariates, does not vary with time. This is more 

commonly known as the PH assumption.  

 

The second assumption is that the relationship between log 

cumulative hazard and a covariate is linear. Some research 

methodologists refer to this as the linearity assumption.  

 

Several approaches to detecting, testing and modeling non-

proportional hazards are available in the literature. There are 

several reputable sources providing guidance on identifying 

and modeling non-proportional hazards (Wilson, 2010). 

Those approaches have been extensively evaluated and 

shown to perform satisfactorily (Michael Schemper, 

Wakounig, & Heinze, 2009).  

 

1.3 Verification 

 

Fewer resources are available that focus on verifying the 

second assumption of model adequacy regarding the 

relationship between the log cumulative hazard and the 

covariate. The presence of missing, or incorrect covariates, 

incorrect functional forms and highly influential 

observations are known to produce a violation of this second 

assumption. The application of a statistical method to data in 

which the model assumptions are violated can result in 

wrong conclusions. Fortunately, diagnostics are available in 
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the form of residuals and methods to assess these potentially 

detrimental precursors.  

 

Verifying that assumptions are satisfied for PH models is 

slightly more complicated than it is for general linear 

regression for at least three reasons. Firstly, PH regression 

directly models the hazard function and not simply 

dependent observations. Secondly, estimates of the modeled 

hazard function are difficult to display, so substitutions are 

often used. Thirdly, failure-time data are usually distributed 

by the exponential, the Weibull, or the log-normal, which 

might be less familiar to the analyst than normally-

distributed data. 

 

1.4 Data Patterns and Methods 

 

For illustrative purposes, two synthetic, doubly-censored, 

time-to-event datasets were generated. These datasets are 

patterned after a retrospective chart review of the effect of 

early vs. late tracheostomy on survivorship for 88 

consecutive patients undergoing thoracic surgery at a 

particular research institution (Ladowski, Ladowski, & 

Wilson, 2013).  

 

Tracheostomy is commonly conducted procedure in 

critically ill patients. It has many potential advantages but 

the procedure is not without modest risks. However, the 

effect of the timing of the procedure has on survivability is 

not well documented (Griffiths, Barber, Morgan, & Young, 

2005). The National Association of Medical Directors of 

Respiratory Care recommended that translaryngeal 

(endotracheal) intubation be used only for patients requiring 

less than 10 days of artificial ventilation. They further 

recommended tracheostomy should be placed in patients 

who still require artificial ventilation 21 days after 

admission. These recommendations are based only on expert 

opinion, descriptive review (Kane, Rodriguez, & Luchette, 

1997) and a systematic review (Maziak, Meade, & Todd, 

1998), which did not include a formal meta-analysis of the 

data. 

 

For both the confirmatory (n=500) and pilot (n=120) 

datasets, nine (p=9) covariates were generated including, (1) 

an indicator variable for early vs. late tracheostomy (0, if 

early, or <= 10 days; 1, if late, or > 10 days), (2) serum 

creatinine (in mg/dl), (3) continuous age (in years), (4) body-

mass index (kg/m^2), (5) glycosylated hemoglobin 

(percent), (6) fasting levels of low-density lipoprotein 

(mg/dL), (7) systolic blood pressure (mmHg), (8) pre-

operative Forced Expiratory Volume in one second (FEV1; 

in L), and (9) number of previous surgeries. The continuous 

covariates were generated with balance within the 

categorical covariate. Although in the original dataset, 

statistically significant interactions were observed between 

creatinine and age, these datasets were simulated without it 

or any other interaction. 

 

The failure times were generated from the proportional 

hazards case of the exponential hazard by selecting random 

failure time from the Weibull hazard, h(t) = λγ(λt)γ-1, where 

gamma (γ) is 1. All failure times were non-negative and their 

distribution right skewed. The two censoring mechanisms 

were (1) singly, fixed (Type I) at ten years and (2) random 

with a small, but non-zero λ hazard set to generate a one 

hundredth percent dropout. 

 

A proportional hazards model was fit to these datasets. The 

models were examined for adequacy using several 

diagnostics offered in the PHREG procedure. Admittedly, 

these datasets are for illustrative purposes and are without 

imperfections analysts can possibly find experimentally and 

empirically. Namely these data structures have six agreeable 

features. First, the multiplicative structure (Equation 1.1) of 

the model (Fleming and Harrington, 1991) and not additive 

(Aalen, 1989) is appropriate. Secondly, the effects from 

missing data have been contained (Horstman 2013). Thirdly, 

competing risks have been regulated (Gooley, Leisenring, 

Crowley, & B Storer, 1999) and (Dagis, 2010). Fourthly, 

informative censoring has been reduced (Allison, 1995). 

Fifthly, separation or the problem of monotone likelihood 

has been Firth’s corrected (Tsiatis, 1981) and there are no 

failure to converge. Finally, any non-proportionality has 

been managed (Grambsch & Therneau, 1994). These 

diagnostics might not perform as expected in the presence of 

these structural issues. 

 

The application of generalized, Martingale, deviance, and 

score residuals are explored to assess general lack of fit, 

incorrect or missing covariates, incorrect functional form, 

and impact of extreme observations on the parameter 

estimation. 

 

2. General Lack of Fit 
 

2.1 Estimation of the Cumulative Hazard  

 

In proportional hazards regression, a likelihood function is 

maximized to obtain parameter estimates and estimates of 

the cumulative hazard function or adjusted survival function 

(Equation 2.1). This semi-parametric method of estimation 

for proportional hazards model, properly called the method 

of partial maximum likelihood (PL), is remarkable on its 

own and is one of the most significant ideas of modern 

statistical theory. It is so significant in applied statistics that 

many authors have asserted that its importance eclipsed the 

PH model itself. It is slightly different than the method of 

maximum likelihood estimation (Fisher, 1925) in that the 

number of terms it contains is equal to the number of untied 
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events (D) and none for censored observations. It is semi-

parametric since there is no need to specify the baseline 

hazard function, 𝜆0(𝑡). As indicated earlier, the baseline 

hazard function is a non-negative arbitrary hazard function 

when all covariates are zero. 

 

𝑃𝐿 =  ∏ 𝐿𝑖

𝐷

𝑖=1

 

 (2.1) 
 

The Li terms are a ratio of the hazard function for the ith 

individual who experiences the event at time ti in the 

numerator and the sum of the hazard function for all 

individuals who have not yet experienced the event 

(including some individuals who will be censored later). 

These individuals comprise what is called the risk set at time 

ti.  

  

Similar to many semi- and non-parametric methods, the PL 

depend on the ranks of the event times. So, if the actual event 

times are monotonic transformations like adding a constant, 

multiplying by a constant, or taking the logarithm, the 

estimated coefficients are unchanged. Also, the estimates 

from PL are not fully efficient, so the standard errors are 

slightly larger when compared to using the entire likelihood 

function (Bradley Efron, 1977). 

 

The benefit is that the estimates are robust regardless of the 

actual shape of the baseline hazard function. The beta 

estimates are, however, consistent and asymptotically 

normal.  

 

For each of the D terms, the Li are the hazards for the 

individual subject that has the event in the interval divided 

by the sum of the hazards for all subjects at risk for the event 

in the interval. The denominators for the Li are called Wi and 

are also used in the estimation of the empirical baseline 

cumulative hazard function for discrete failure times given 

in Equation 2.2. 

 

𝐻0̂(𝑡𝑖) =  Λ0̂(𝑡𝑖) = ∑
𝑑𝑖

𝑊𝑖
𝑡𝑖<𝑡

 , 𝑓𝑜𝑟 𝑖 = 1, 2, … , 𝐷. 

 (2.2) 
 

The di are the number of failures in the interval (ti-1, ti). This 

is a step function that jumps at observed failure times. When 

the covariates from the PL are zero, equation 2.2 reduces to 

the Nelson-Aalen estimators, which have been available in 

SAS/STAT 9.4 in PROC LIFETEST. Adjusted survival 

estimates are the Napierian base, e, raised to the arithmetic 

inverse of these values. 

 

2.2 Generalized Residuals 

 

Generalized Residuals sometimes referred to as Cox-Snell 

residuals, can be used to assess the overall fit of a model 

based on a proportional hazards regression. If the PH model 

(Equation 1.1) is correct, the Cox-Snell residual is defined 

as the negative log of the survival estimate for a given 

subject (Equation 2.3). The inverse of this residual is 

precisely provided in PHREG using the OUTPUT statement 

using the keyword=name convention where name is the 

logarithm of survival. 

 

𝑟𝑗 = 𝐻0̂(𝑡𝑗) exp {∑ 𝑍𝑗𝑘

𝑝

𝑘=1

 𝑏𝑘}  , 

𝑓𝑜𝑟 𝑗 = 1, 2, … , 𝑛.           (2.3) 

 

Plots of these residuals can provide an impression of the 

overall fit. The plot of these residuals is similar to the 

empirical cumulative density plots from linear models, 

which include a reference line for the normal distribution. 

When the cumulative hazard rate, given by (Equation 2.4), 

 

Λ̂ (𝑡) =  ∫ 𝜆(𝑥)𝑑𝑥
𝑡

0

 

 (2.4) 

 

is plotted against a sample from a unit exponential 

distribution, it will follow a 45-degree line on Cartesian 

coordinates. If the PH model is correct, then the Generalized 

Residuals will appear to be a censored sample from a unit 

exponential distribution and fall roughly along the 45-degree 

line as shown in Figure 2.1 for a moderate sized study and 

Figure 2.2 for a smaller sized study. Values above the 45-

degree line are those where the model over-predicts failure 

and conversely values below the reference line are those 

where the model under-predicts failure. 

 

Generalized Residuals can be used to examine if separate 

levels of subgroups based on an included covariate share the 

same baseline hazard. Two plots are created based on 

generalized residuals from two PH regression analyses using 

the BY statement in PHREG, each of the levels separately 

and stratified using the STRATA statement (See Table 2.1). 

In the first plot, overlay the residuals from the two separate 

models as in Figure 2.3. In the second plot, overlay the 

residuals from the two strata (Figure 2.4). 
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Table 2.1 SAS Commands to fit the Stratified 

Proportional Hazard Model and Plot the 

Generalized Residuals 

proc phreg data = _cencov01; 

     strata trt; 

     model survtime*event(0) = cc1 cc2 cc3  

           / ties = &ties; 

     output out = _genres08 LOGSURV = h  

           / method = ch;   

             run; 

data _genres09; 

     set _genres08; 

     csresid = -h; 

     cons = 1; 

     run; 

proc sort data = _genres09; 

     by trt; 

     run; 

proc phreg data = _genres09; 

     by trt; 

     model  csresid*event(0) = cons; 

     output out = _genres10 logsurv = ls 

            /method = ch; 

            run; 

data _genres11; 

     set _genres10; 

     if trt = 0 then haz0 = -ls; 

     if trt = 1 then haz1 = -ls; 

     run; 

 

The difference in the height of these Cox-Snell plots for 

separate, or stratified, treatment groups is the difference 

between groups in the empirical cumulative hazard function, 

{Λ̂(𝑡)}. Therefore, it can give you a hint into the group 

differences.  

 

Admittedly, there are at least three limitations of the 

generalized residual plots. Firstly, the interpretation is less 

intuitive again because the shape of the exponential 

distribution is less familiar to the analyst. Secondly, the 

rationale for the expected values of x-prime beta following 

the unit exponential distribution isn’t immediately obvious. 

Finally, the reference line is the expected of the expected. It 

is the expected from the model with the expectation the 

model fits well. 

 

2.4 Generalized R-Squares 

 

Two Generalized Neigelkirke R-Squares have been 

proposed by some authors as a measure of overall fit (Heinzl, 

2000). The SAS code used to calculate them is provided in 

Table 2.3. R-square values are in Table 2.2 for three models. 

 

Table 2.3 SAS Commands required to Calculate the 

Generalized R-Square 

data gt02; 

     set gt01; 

     length str $64.; 

     if lowcase(test) =: 'likelihood'; 

     genrsq01 = 1 - exp(-1*(ChiSq/&nobs)); 

     rsqunadj = 1 - ( exp 

              (-1*(ChiSq/2))**(2/&nobs) ); 

     put 'The Generalized (Cox-Snell)  

          R-Square value is '  genrsq01; 

     str = "The Generalized (Cox-Snell)  

            R-Square value is"; 

     value = genrsq01; 

     run; 

data fs02 fs03; 

     set fs01; 

     length str $64.; 

     if lowcase(criterion) =: '-2'; 

     w01 = exp(-1*WithoutCovariates/2); 

     w02 = exp(-1*WithCovariates/2); 

     w03 = exp(-1*(WithoutCovariates- 

           WithCovariates)/2); 

     w04 = 2/&nobs; 

     r2unadj = 1 - w03**w04; 

     r2max   = 1 - w01**w04; 

     genrsq02 = r2unadj/r2max; 

     put 'The unadjusted Generalized  

          R-Square value is ' r2unadj ; 

     put 'The Generalized (Kent-Oquigley)  

          R-Square value is ' genrsq02 ; 

     output fs02; 

     str = 'The unadjusted Generalized  

            R-Square value is '; 

     value = r2unadj; 

     output fs03; 

     str = 'The Generalized (Kent-Oquigley) 

     R-Square value is '; 

     value = genrsq02; 

     output fs03; 

     run; 

 

Table 2.2 R-square values for the Complete Model, 

the Model including an incorrect covariate 

and the Model with a missing covariate. 

 
Complete 

Model 

Incorrect 

Covariate 

Missing 

Covariate 

Kent-O’Quigley 0.55592 0.55592 0.72319 

Cox-Snell 0.55481 0.55481 0.71977 
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3. Incorrect or Missing Covariates 
 

3.1 Model Selection Procedures 

 

In selecting covariates for any multiple regression model, the 

analyst needs to protect against two different type of errors. 

Firstly, including an incorrect covariate is a false positive, 

Type I error and increases the variability and reduces the 

precision of the model. Secondly, excluding a true predictor 

is a false negative, Type II error and increases the bias of the 

model. So, covariates unrelated to the outcome may reduce 

power but should not introduce bias. Conversely covariates 

spuriously related will. In this selection process, keeping 

several concepts in mind will help including, the modeling 

aim, power, selection size, subject matter expertise, and 

minimizing interactions. 

 

Prior to initiating any assessment of model adequacy, it is 

useful to clarify the purpose or aim of the modeling. There 

are at least three purposes. Firstly, a single covariate is under 

investigation for its association with survival, but several 

other predictors exist for which there is an interest to adjust 

as in a randomized clinical trial. Secondly, a collection of 

factors of known relevance are under investigation for their 

ability to predict survival for example when the interest is in 

developing a prognostic index. Thirdly, where a collection 

of factors is under investigation for their potential 

association with survival, possibly with additional known 

factors as when the interest is in reducing the number of 

covariates. Although this list is not exhaustive, these 

purposes drive the choice of suitable model adequacy 

criterion (Bradburn, Clark, Love, & Altman, 2003). The first 

purpose has been chosen for the illustrative purposes in this 

paper. 

 

In addition, it is important to keep in mind that the power 

and the assessment of model adequacy are related to the 

number of events rather than the number of participants. 

Simulation work has suggested that at least 10 events need 

to be observed for each covariate considered, and anything 

less will lead to problems, for example, the regression 

coefficients become biased (Peduzzi P, Concato J, Feinstein 

AR, 1995) and (Kocak & Onar-Thomas, 2012).  

 

In the case when the number of events is limited, additional 

covariates could be reduced to a single variable using 

principal components or another scaling technique. This 

single variable may not be interpretable, but using a single 

score could be better than deleting all covariates from 

consideration. In addition, it could also reduce potential 

problems with collinearity, as will be seen in the next 

section. 

 

Subject matter knowledge should guide the selection of 

candidate predictors. Early deletion of those with little 

chance of being predictive or of being measured reliably will 

result in models with less over-fitting and greater 

generalizability (Henderson & Velleman, 1981). Too often, 

‘semi-automated’ methods, such as stepwise selection which 

will be discussed more in a moment, are used. However, 

models based purely on statistical significance may not be 

meaningful or useful. 

 

Likewise, careful inclusion of interactions in a statistical 

model is essential so that, if present, interactions represent a 

true phenomenon rather than general lack of fit of the model. 

Lists of types of plausible interactions have been made 

available by some thoughtful authors (M. Schemper, 1988). 

 

As common as it is, stepwise selection less preferable as 

other methods available. Using simulation results, it has 

previously been shown to generate a misleading model with 

known incorrectly included covariates (Derksen & 

Keselman, 1992). On the other hand, the method of Best 

Subsets using Mallows’ C(p) has been recommended 

(Hosmer & Lemeshow, 1999).  

 

3.2 Method of Best Subsets 

 

The method works as follows. Using the candidate terms, all 

possible subsets are fitted and then ranked within the number 

of fixed predictor variables (p) by the value of the Score Test 

chi-square statistic. The Score Test is based on the first 

derivative of the log likelihood, is sometimes called the Rao 

Test and can be used to test the global null hypothesis that 

all betas equal zero (Bera & Bilias, 2001). Each statistic has 

an asymptotic chi-square distribution with p degrees of 

freedom (Cook & DeMets, 2007). The value of p is also the 

number of betas in the model.  

 

Criticisms of the Score Test are based on the idea that it is 

difficult to compare models of different sizes because the 

score test tends to increase with the number of predictors 

variables in the model. However, the Score Test can be used 

to approximate the value of Mallows’ Cp. This statistic is a 

measure of model bias where large values of Mallows’ Cp 

indicate an important variable was omitted from the model. 

For the full model, Cp = p (Mallows, 1973). Mallows’ C(p) 

for reduced models can be approximated using the formula 

below: 

 

𝐴𝑝𝑝𝑟𝑜𝑥𝑖𝑚𝑎𝑡𝑖𝑜𝑛 𝑡𝑜 𝑀𝑎𝑙𝑙𝑜𝑤𝑠′𝐶(𝑝)
=  𝑆𝑐𝑜𝑟𝑒(𝑞) + (𝑝 − 𝑞)     (3.1) 

 

where, p = then number of parameters in the full model,  

q = the difference between p and the number of parameters 

in the subset model. 
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Table 3.1 SAS Commands required to Calculate the 

Mallows’ C(p) 
ods output bestsubsets = bss01; 

proc phreg data = _cencov01; 

     model survtime*event(0) = &cov  

           / ties = &ties selection = score 

             best = 3  ; 

             run; 

data bss02; 

     set bss01; 

     call symput 

('ChisqFullModel',scorechisq); 

     call symput 

('ParmsFullModel',numberinmodel); 

     run; 

%put ChisqFullModel = &ChisqFullModel; 

%put ParmsFullModel = &ParmsFullModel; 

 

data bss03; 

     set bss01; 

     format scoreq MallowsCp 8.4; 

     scoreq = &ChisqFullModel-scorechisq; 

     q = &ParmsFullModel-numberinmodel; 

     MallowsCp = scoreq +  

                (&ParmsFullModel - (2*q)); 

                 run; 

 

The Method of Best Subsets does not necessarily maintain 

model hierarchy. Hierarchically well-formed (HWF) models 

are models that contain all main effects that were involved 

in interaction terms. Choose the first hierarchically well 

formulated model with a Mallow’s C(p) lower than the 

number of variables in the model. Figure 3.1 shows an 

example of a plot of Mallows’ C(p) for a dataset with 18 

covariates.  

 

Figure 3.2 and 3.4 show that when the model is missing a 

covariate the generalized residuals wonder away from the 

reference line. These observations are shuddering under the 

weight of the larger influence they must shoulder when a 

covariate is missing. The Figures 3.5 – 3.7 show the plots of 

Mallows’ C(p) for the complete model, the model including 

an incorrect covariate and the model with a missing 

covariate. The R-square values were shown in Table 2.2. 

 

The most stringent test of a model is an external validation, 

which is the application of the 'frozen' model to a new 

population. Validation is important because over-fitting is 

such a common problem, especially with small datasets. In 

the absence of external validation, using an internal 

validation (or sometimes called a hold-out) dataset, 

bootstrapping or cross-validation will help prevent including 

spuriously related covariates (Harrell, Lee, & Mark, 1996). 

 

Shrinkage coefficient can be used to evaluate possible over-

fitting (Van Houwelingen & Le Cessie, 1990). A 

concordance statistic (Hanley & McNeil, 1982) and Somers’ 

D (Somers, 1962) serve as general discrimination indices. 

Bias can estimated for Somers D by bootstrapping 200 

replicates (B Efron & Tibshirani, 1993). Acceleration can be 

estimated by a jackknife procedure (DiCiccio & Efron, 

1996). The bias-corrected, accelerated confidence interval 

was constructed (Bradley Efron, 1987) as a means to gauge 

internal validity (Harrell et al., 1996). 

 

3.3 Goodness of Fit 

 

Models can be assessed for Overall Goodness-of-Fit. One 

test proposed by Gronnesby and Borgan, which partitions 

the data into G groups based on the ranked values of the 

estimated linear predictors (Gronnesby & Borgan, 1996). 

The test compares the observed number of events in each 

group to the model-based estimate of the expected number 

of events. Because the Gronnesby and Borgan test is 

asymptotically equivalent to the likelihood ratio test (May & 

Hosmer, 1998), it can be simplified to using partial 

likelihood ratio test.  

 

−2 ln [
𝐿(𝛽,̂0)

𝐿(�̂�,�̂�)
] ~ 𝛸2, with F-R df. (3.2) 

 

The problems with this test can identify include, having 

outliers in the data, omitting important terms in the model, 

such as interactions, needing to transform some of the 

predictor variables and having a non-linear relationship 

between the log hazard and the continuous predictor 

variables. 

 

Interestingly, when using the tie-down Brownian process to 

assess the PH assumptions and the model is missing a 

covariate, the Score Process Plots will look like they violate 

the PH assumption. In those cases, you end up chasing a 

phantom problem and might damage the predictive power of 

your model. On the other hand, the ASSESS option are not 

sensitive to the inclusion of an incorrect covariate. 

 

4. Incorrect Functional Form 
 

The partial likelihood will yield parameter estimates for the 

covariates in the proportional hazards model that fit the 

hazard as a linear coefficient. However, this method assumes 

that the predictors operate linearly. If the relationship 

between an included covariate and the model fit is something 

other than linear then the interpretation of the hazard ratio 

would be incorrect. Therefore, the assessment of linearity, or 

sometimes called function form, is important. There are at 

least three methods that can be used to assess linearity, 

including the Method of Categorizing the Covariate, 

assessing the Martingale residuals and plots of the 

cumulative Martingale process. 
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4.1 Method of Categorizing the Covariate 

 

In the Method of Categorizing the Covariate, categorize the 

covariate into k (4 or 5) quantiles. Construct k – 1, zero-one, 

indicator variables. Add them to the model. Plot the k – 1 

parameter estimates against the k – 1 means of the 

categories. Add to the plot a point for the reference category 

(Mean of the reference category and beta = 0). Look for a 

relationship that is linear, quadratic or threshold.  

 

Figure 4.1 shows a linear relationship for a continuous 

covariate that has been categorized into 4 quantiles. 

Although the slope for this linear relationship was generated 

as negative 1, this plot shows a slope of positive 1. This sign 

reversal is not surprising since the data were generated for 

the log-survival format and these estimates from PHREG are 

in the log-hazard format.  

 

4.2 Assessing the Martingale Residuals 

 

The second method is to assess the relationship between the 

Martingale residuals from the model without the covariate 

and the covariate. The Martingale is defined below in 

equation 4.1.  

 

�̂�𝑗 =  𝛿𝑗 − 𝑟𝑗              

 (4.1) 
 

Remember the 𝛿𝑗  are 1 if died, 0 otherwise and the 𝑟𝑗 closely 

approximate to the unit exponential, which has values from 

0 to about 3. So, we can expect the values of the Martingale 

Residual to range between -3 and +1. As can be seen from 

this definition, their interpretation is the difference between 

the observed and expected. An important property of 

Martingale residuals is that they sum to zero, so their mean 

is also zero. In addition, the covariance between any two 

residuals is also zero (See equations 4.2 and 4.3 below). 

 

∑ Mĵ

n

j=1

= 0 

 (4.2) 

 

Cov (M̂i , M̂j) = 0 ,    for all i ≠ j 

 (4.3) 
 

The Martingale residuals have been suggested as possible 

diagnostics for the correct functional form, PH assumption, 

leverage on the beta estimates and for lack of model fit 

(Therneau, Grambsch, & Fleming, 1990).  

 

Plot these Martingale residuals against the value of the 

covariate for each subject. Fit a loess regression to the plot 

and look for relationship that is linear, quadratic or 

threshold. Figure 4.2 shows Martingale residuals against the 

value of the covariate for each subject.  Since these values 

are observed minus expected, those values above the loess 

line are events, specifically failures, not predicted by the 

model. An alternative interpretation is that large positive 

values indicate that the observed death came before the 

model predicted it and large negative values indicate that the 

observed death came after the model predicted it. Looking at 

the figure, notice again how the Martingale residuals have a 

maximum value of +1. Also, the LOESS line with a 

smoothing parameter of 0.6 has been overlaid on this 

scatterplot to show the linear relationship with a continuous 

covariate.  

 

When the functional form of the covariate is quadratic then 

neither the categorized quantile estimates of beta (Figure 

4.3) or the loess line of the martingale residuals (Figure 4.4) 

are no longer linear. Neither diagnostic displays linearity for 

logarithmic function forms (Figure 4.5 and 4.6). Likewise, 

when the functional form of the covariate is z * log(z) then 

neither the categorized quantile estimates of beta (Figure 

4.7) or the loess line of the martingale residuals (Figure 4.8) 

are no longer linear. Interestingly, this has a false negative 

impact on the graphic check for the PH assumption, which 

fails when in fact PH is not violated (Figures 4.9 and 4.10). 

 

If the path of the observed loess line is above the abscissa, 

the covariate needs to be pulled back; this can be done by 

taking the logarithm. If the path is below then the covariate 

needs to be expanded; this can be done by squaring it. 

 

4.3 Cumulative Martingale Process Plots 

 

Finally, some authors have recommended the use of the 

Cumulative Martingale Process Plots, which is implemented 

in PHREG using the ASSESS option (Lin, Wei, & Ying, 

1993). It is a tied-down Brownian Bridge of the cumulative 

sum of the Martingale process versus the covariate. The 

covariate must be in the model that generated the residuals. 

If the observed path crosses the simulated paths, it suggests 

there is a functional form violation. This method is useful for 

showing gross (crude) non-linearity. However, the 

Cumulative Martingales are not very sensitive for fine-

tuning function form and would need to be used in 

conjunction with other checks to suggest a functional 

transformation. For example, the cumulative sum of the 

Martingale processes for the quadratic, logarithmic or 

z*log(z) covariates studied in this paper do not suggest a 

functional transformation. 
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5. Extreme Observations 
 

As in linear models, extreme observations in PH regression 

are to be carefully assessed. Unlike linear models where the 

dependent variable can be evaluated independent of the 

model, all residuals in proportional hazards regression are 

some function or transformation of observed minus expected 

values. But that might be sufficient since the interest is only 

in the influence of the observation on the model anyway. So, 

there are two types of extreme observations in proportional 

hazards regression. The first type is where the individual 

records a relatively extended life and has a high-risk score as 

estimated by the model. The second type is where the 

individual records a relatively short life and has a low-risk 

score. 

 

5.1 Framework for Assessing Extreme Values  

 

The thorough analyst knows the database well, which 

includes having carefully identified extreme observations 

and in particular, and understands what those observations 

mean for the model. A three-step evaluation process is 

recommended, which is similar to the process used in the 

linear models (Thompson, Brunelle, & Wilson, 2002). First, 

determine if the observation is notable, then secondly, 

examine it for accuracy. If accurate then thirdly determine if 

it influences the model.  

 

First, determine if the observation is notable. A notable 

observation is one that is distinguished from the others and 

by any definition, nearly every dataset contains notable 

observations but the decisive critical level must be selected 

judiciously. Large levels over-exclude and smaller levels 

over-include. Many understandably prefer the comfort of the 

0.05 alpha level to identify those observations greater than 

1.96 standard errors from the mean. It has been argued that 

not all data are normally distributed and that a 5% level is 

too exclusive and that 98th percentiles have performed well 

(Wilson, 2000). If not notable then it can be safely included. 

 

Secondly, in practice by far the most common explanation 

for notable observations is that they contain recording, data 

entry, or coding errors. The reason it is recommended that 

all observations be systematically checked for correctness is 

that there is a danger in selectively targeting some 

observations for error checking. If found to be inaccurate 

then it should be corrected or deleted. 

 

Thirdly, if an observation influences the model, attempt to 

understand what it insights it provides for strengthening the 

model. For example, is there another covariate that ought to 

be included or is there some non-linearity that needs that is 

inadequately modeled? If not influential then the observation 

can be considered for down-weighting or dampening (Hogg, 

1979).  

 

In this section, three datasets will be used to illustrate the 

detection of extreme values. The first dataset has no 

extremes values (None). The second dataset has four known 

extreme values two that strengthen each covariate for both 

categorical groups (Strengthen). The third dataset also has 

four known extreme values with two that weaken each 

covariate for both categorical groups (Weaken).  

 

Authors have recommended for the identification of highly 

influential observations (Step 3) several, at least six, 

influence diagnostics: Martingale, Deviance, Score, 

DFBETAs, Leverage Displacement, and LMAX. Perhaps 

some perform better than others. Nevertheless, all are 

provided in the PHREG procedure. 

 

5.2 Martingale Residuals and Extreme Values  

 

In the previous section, it was shown that the Martingale 

residual gave a measure of the difference between the 

observed and the fitted value as expected from the model. 

This measure has been recommended as a candidate for the 

identification of highly influential observations (Therneau et 

al., 1990). A plot of the Martingale residuals from the model 

with no extreme values versus risk score is provided in 

Figure 5.1. The risk score was previously defined in 

Equation 1.2. 

 

𝑅𝑖𝑠𝑘 𝑆𝑐𝑜𝑟𝑒 = ∑  𝛽𝑖𝑥𝑖

𝑝

𝑖=1

 

= [𝛽1𝑥1 + 𝛽2𝑥2 +  … +  𝛽𝑝𝑥𝑝] 

 (5.1) 
 

5.3 Deviance Residuals  

 

As can be seen in Figure 5.1, Martingale residuals are highly 

skewed. Their maximum value is +1 and their minimum 

possible value is negative infinity. On the other hand, the 

Deviance residual, Dj, is defined by a transformation of the 

Martingale has a more normally-shaped distribution than the 

Martingale.  

 

𝐷𝑒𝑣𝑖𝑎𝑛𝑐𝑒 𝑅𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 =  𝐷𝑗 

= 𝑆𝑖𝑔𝑛 [𝑀�̂�]{−2[𝑀�̂� + 𝛿𝑗 log(𝛿𝑗 − 𝑀�̂�)]}
1
2 

 (5.2) 
 

Figure 5.2, shows the relationship between Deviance and 

Martingale residuals. From equation 5.2, it can be seen that 

the Deviance Residual has a value of zero when the 

Martingale is zero. The logarithm tends to inflate the value 
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of the residual when the Martingale is close to one and shrink 

large negative values. In the presence of light to moderate 

censoring and no influential observations, the plots of the 

Deviance residual against the risk score will appear as 

normally-distributed scatter as can be seen in Figure 5.3. 

When there is heavy censoring, a large collection of points 

near zero distort the normally-distributed scatter. 

Nevertheless, possibly influential observations will have 

deviance residuals with large absolute values. 

 

Even though it is a transformation, the Deviance residual, 

like the Martingale, is a measure of observed minus expected 

hazard. Therefore, large positive values indicate that the 

observed death actually came before the model predicted it. 

Likewise, large negative values indicate that the observed 

death came after the model predicted it.  

 

Figure 5.4 and 5.5 show the Martingale and Deviance 

residuals for the dataset with four known extreme values. 

Figure 5.4 does not suggest any potential extreme 

observations with the possible exception of the individual 

with the risk score of 2.8 and who had a Martingale residual 

-3.6. Examination of the Deviance plot shows that this 

individual had a Deviance residual of -2.2, which is within 

the 98th percentile and the acceptable range for Deviance 

residuals. Because this observation has a negative Deviance 

residual that means the observed death came after the model 

predicted it.  

 

The observations with risk scores of -1.2, -1.0, 0.1, and 0.9 

cannot be identified in the plot of the Martingale residuals. 

On the other hand, in the Deviance residual plots they are 

obvious. These residuals were positive so the observed death 

actually came before the model predicted it. 

 

Therneau et al. (1990) conducted Monte Carlo studies which 

show that both types of residuals detect extreme 

observations from subjects that lived longer than expected 

by the model. On the other hand, those individuals who die 

sooner than expected by the model are detected only by the 

deviance residual. 

 

5.4 Method of Deleted Observations 

 

If the sample size is small enough, the preferred method of 

checking the influence of individual observations is, for lack 

of a better term what will be called in this paper, the Method 

of Deleted Observations. In this method, using PHREG, 

estimate the p parameters using all of the n observations, as 

usual. Call those estimates beta-hat(k, n+1), where k = 1, 2, 

. . , p and save them. Then temporarily delete the first 

observation in the dataset and re-estimate the p parameters, 

calling those estimates beta-hat(k, 1). Estimate beta-hat(k, 2) 

by deleting the second observation from the full dataset and 

beta-hat(k, j) by deleting the jth observation from the full 

dataset. Repeat for all n observations. The total number of 

beta-hat estimates generated will be (n+1). The influence of 

an observation, say j, has on the model parameter, k, is 

defined as shown in Equation 5.3: 

 

𝐷𝑖𝑓𝑓 (𝑘, 𝑗) =  [(�̂�(𝑘,𝑛+1)) − (�̂�(𝑘,𝑗))] 

(5.3) 

 

Where k = 1, 2, 3, . . ., p and j = 1, 2, 3, . . ., n. A plot of 

Diff(k, j) against j, the observation number, for each 

parameter k, can gage the influence of the jth observation on 

the kth covariate. If Diff(k, j) is close to zero, the jth 

observation has little influence, conversely large values 

suggest a large influence.  

 

5.5 Score Residuals 

 

The Method of Deleted Observations is not computational 

feasible with larger datasets. Fortunately an approximation 

of Diff(k, j) can be derived based on the score residual, S(k, 

j). The score residuals are a decomposition of the first partial 

derivative of the log likelihood and are defined by:  

𝑆𝑗𝑘(𝑡) =  ∫{𝑍𝑗𝑘(𝑢) − �̅�𝑘(𝑢)}

𝑡

0

𝑑𝑀𝑗(𝑢).̂  

(5.4) 
 

To assess the influence of an observation, first the score 

residual is evaluated at infinity and when all covariates are 

fixed at time 0, which reduces to: 

𝑆𝑗𝑘(∞) =  𝛿𝑗 [𝑍𝑗𝑘 −  �̅�𝑘(𝑇𝑗)] − 

∑ [𝑍𝑗𝑘 −  �̅�𝑘(𝑡𝑛)]

𝑡𝑛≤𝑇𝑗

 ∗ 

exp(𝒃 𝒁𝑗) ∗ 

[𝐻0̂(𝑡𝑛) − 𝐻0̂(𝑡𝑛−1)]. 
(5.5) 

 

Where k = 1, 2, 3, . . ., p and j = 1, 2, 3, . . ., n. The first term 

of the approximation shown in Equation 5.4 is the difference 

between the covariate Z(j,k) at the failure time and the 

expected value of the covariate at this time. This is 

recognizable as Schoenfeld’s partial residual (Schoenfeld, 

1982). Schoenfeld’s partial residual is useful in the graphical 

assessment of non-proportional hazards as has been 

previously discussed and illustrated (Wilson, 2010), but not 

further elaborated here in the discussion of extreme 

observations.  

 

Secondly, the final quantity is the product of Equation 5.5 

and the inverse observed Fisher information. As a whole, 

these covariate-wise residuals gage the influence of the jth 
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observation on the kth covariate. Examples for the three 

covariates in the model without extreme values are provided 

in Figures 5.6, 5.7, and 5.8. Likewise, Figures 5.9, 5.10 and 

5.11 illustrate the effect of the extreme values on each 

covariate for the Strengthen dataset. Finally, Figures 5.12, 

5.13 and 5.14 illustrate the effect of the extreme values on 

each covariate for the Weaken dataset.  

 

5.6 DFBetas 

 

When it is discovered that a few observations seem to have 

an influence on the model, the next step is to estimate the 

size of that influence. DFBETAs are approximations of the 

difference in the parameter estimates Diff(k, j) = [beta-hat(k, 

n+1) – beta-hat(k, j)] when the jth observation is omitted. 

These variables are a weighted transformation of the score 

residual variables and have been shown to be good 

approximations. 

 

The effect of the extreme values that strengthen the effects 

of the continuous covariates as measured by DFBETAs can 

be seen in Figure 5.15 and 5.16. Alternatively, the effect of 

the extreme values that weaker the effects of the continuous 

covariates as measured by DFBETAs can be seen in Figure 

5.17 and 5.18.  

 

5.7 Gharibvand Plots 

 

In a previous tutorial of using SAS for survival analysis, 

Gharibvand suggested a Deviance residual bubble plot by 

risk with the diameter of the bubbles being proportional to 

the LMAX statistic (Gharibvand, 2008). Examples of the 

Gharibvand Plots are provided in Figures 5.19 and 5.20 for 

the strengthening and weakening datasets, respectively. 

 

5.8 Combination Plots for Extreme Values 

 

Here a modified Gharibvand plot is suggested by combining 

three residuals into a single plot. This plot has the percent 

change in the DFBETAs versus observation number using 

the Leverage Displacement statistic in place of the LMAX 

and labeling observations with extreme Deviance values. 

This plot converts the DFBETAs to a percent change scale 

which measure the overall effect an observation has on a 

given covariate and is more intuitive for some clients. The 

Leverage Displacement statistic is also a little easier to 

understand and has almost the same magnitude of the 

LMAX statistic. Finally, only extreme one-percent of 

Deviance values are labeled.  

 

If the observations in the dataset have equal influence the 

plot will appear to be random scatter about the abscissa. 

Observations with the greatest percent changes in 

DFBETAs, with the largest diameter bubble and which are 

labeled are considered the most influential on the model 

parameter estimates. 

 

Examples of the Combined Residual Plots for extreme 

values that strengthen the effects of the two continuous 

covariates dataset can be seen in Figure 5.21 and 5.22 and 

alternatively, the Combined Residual Plots for the extreme 

values that weaken the effects of the two continuous 

covariates dataset can be seen in Figure 5.23 and 5.24. 

 

Interestingly, slightly larger percent change in the 

DFBETAs can be seen when a model is missing a covariate, 

since these observations have to shoulder a larger influence 

when a covariate is missing. So, if adding a covariate to a 

model causes the residuals decrease uniformly, an important 

missing covariate will probably have been found. 

 

6. Clustered and Repeated Events 
 

Until this point in the discussion, only PH regression 

diagnostics for independent events with a single occurrence 

have been considered. However, the analyst is too frequently 

confronted with datasets containing events that are neither.  

 

6.1 Clustered Events 

 

Consider a study of cell-based therapy for subjects with 

critical limb ischemia (CLI) for promoting amputation-free 

survival (Murphy et al., 2011). CLI pathogenesis can be 

systemic, as in the case of diabetes, and these subjects will 

as a result often have disease in their contralateral limb. 

Therefore, the assumption that the index and contralateral 

limb are independence might be suspect. Another example 

of a dataset from a research study of diabetic retinopathy can 

examine the time to macular edema in each of the subjects’ 

eyes (Geraldes, Hiraoka-yamamoto, Matsumoto, & 

Clermont, 2012). The eyes of a single subject are not 

independent of each other and are therefore clustered. 

 

6.2 Repeated Events 

 

Secondly, the same adverse event, such as headache, can be 

reported repeatedly by the same subject over the course of a 

psychopharmacological clinical trial (Goldstein & Wilson, 

1993). The field of clinical oncology has several examples 

of circumstances of repeated events. superficial bladder 

tumors have been known to reoccur (Wie, Lin, & Weissfeld, 

1989). Repeated events from the same subject are likely to 

be correlated (Li & Lagakos, 1997). In the case of events 

with a positive intra-subject correlation, a subject with 

shorter time to first event is likely to have a shorter time to 

the next event. Without adjustment for these correlations the 

standard errors of the betas are incorrect. In general, these 

standard errors for the cluster-level covariates, like event, 
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would be under-estimated and the standard errors for the 

subject-level covariates would be over-estimated. 

Performing the analysis of repeated events without 

adjustment for the correlation of repeated can be misleading 

(Chaichana et al., 2012). 

 

In addition to the analysis of time-dependent covariates, the 

exceptionally useful programming steps available in the 

PHREG procedure available in SAS/STAT, simple cases of 

the analysis of clustered or repeated events can also be 

implemented. When these programming steps are invoked, 

the ASSESS, BASELINE, OUTPUT statements are no 

longer available. Although understandable, no residuals are 

subsequently available for assessing model adequacy.  

 

6.3 Intra-cluster Correlation Adjustment 

 

In clustered events, failure times have an intra-cluster 

correlation. Adjustments for those correlations can be 

achieved by the analysis of a marginal proportional hazard 

model (Lee, Wei, & Amato, 1992) using a robust sandwich 

covariance matrix estimate or alternatively, use a shared 

frailty model where cluster effects are incorporated into the 

model as independently, identically-distributed, normal 

random variables (Lin, 1994) using the RANDOM 

statement, which has been available since SAS/STAT 9.3. 

 

Analysis with PHREG for data with repeated time-to-event 

can be input using Counting Style Process of Input  

(Therneau & Grambsch, 2000). This input style allows for 

multiple records per subject. Ake and Carpenter describe an 

excellent data creation macro as well as an example of the 

PHREG syntax (Ake & Carpenter, n.d.). But again 

understandably, no residuals are available for assessing 

model adequacy. Martingale residuals and score residuals 

can be constructed by accumulating within subject and 

taking the average within covariate.  

 

6.4 Analytic Approaches 

 

In cases of these complex models, multiple analyses are 

recommended. Consider fitting the Intensity Model 

(Andersen & Gill, 1982) and the Proportional Means Model 

(Lin, Wei, Yang, & Ying, 2000). In these models, different 

estimates of the variance are used. In the Intensity Model, 

the COVM option is specified to use the model-based 

covariance estimate. In the Proportional Means Model, the 

COVB(AGGREGATE) option is used to estimate the robust 

sandwich covariance.  

 

Two conditional models for the analysis of repeated events 

has proposed (Prentice, Williams, & Peterson, 1981). First, 

in a total time model, the time-to-event dataset is recoded to 

examine time to the (k+1) occurrence. A subject that 

experiences two occurrences provides the time to the second 

event. However, in the analysis for the third event, this 

subject is censored. Secondly, the time-to-event data can be 

re-coded in the gap time model. 

 

Finally, it has been proposed that recurrent events be 

considered a special case of multivariate failure times and 

use a marginal approach (Wie et al., 1989). Authors have 

shown that the joint distribution of the vector of parameter 

estimates can be approximated by a multivariate normal 

distribution. This WLW method fits a proportional hazards 

model to each of the component times simultaneously and 

assisted by the STRATA ensuring identical baseline hazard 

function. The standard errors of the regression parameters 

are estimated using the robust sandwich covariance again 

with the COVS(AGGREGATE) option.  

 

These models make slightly different assumptions so careful 

interpretation is recommended. Although SAS 

Documentation for provides excellent examples of 

implementing these 5 approaches, the issue of model 

adequacy in those examples is not considered. 

 

Few researchers of statistical methodology provide guidance 

on the assessment of model adequacy for PH regression 

when events are clustered or repeated, although a tutorial on 

the frailty model, with some attention to analytical, non-

graphical, assessment of model adequacy is available 

(Govindarajulu, Lin, Lunetta, & D’Agostino, 2011). 

 

7. Summary 
 

Validity of statistical inferences and predictions in PH 

regression can depend on how appropriate two fundamental 

assumptions are for the data. The first assumption is time 

independence of the covariates in the hazard function, that 

is, the PH assumption. The second assumption is that the 

relationship between log cumulative hazard and a covariate 

is linear.  

 

It is possible or at least suspected that violations of the 

second assumption might be responsible for what appears to 

be violations of the first. Several examples were shown 

where data with known problems were fit to a model 

generating violations of model adequacy. Those models 

were also assessed for the PH assumption and found to have 

violated it also. 

 

Methods for assessing model adequacy for proportional 

hazard regression were described. Several PH regression 

diagnostics were reviewed including the generalized, 

Martingale, deviance, and score. The application of these 

diagnostics to assess overall fit, covariate selection, 

functional form, and the leverage exerted by each subject in 
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parameter estimation. Examples were provided that 

illustrated how these inadequacies can result in misleading 

or invalid models. Some remedial measures for the analyst 

to implement were suggested. 
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10.2 Figures for Section 2 (4 Figures) 

 
Figure 2.1: Overall Generalized Residual Plot for a confirmatory study (n=500), without incorrect or missing covariates, misspecification 

of the functional form, or extreme values. (Dataset = 04 {Confirmatory, No Inadequacies}; Graph Type = Cox-Snell 
Generalized {CS}; Covariates = 01 Categorical Treatment; One Level; [SimExp04_CS01]) 

 
Figure 2.2: Overall Generalized Residual Plot for a small-to-moderate sized study (n=80), without incorrect or missing covariates, 

misspecification of the functional form, or extreme values. (Dataset = 51 {Confirmatory, No Inadequacies}; Graph Type = 

Cox-Snell Generalized {CS}; Covariates = 01 Categorical Treatment; One Level; [SimExp04_CS01])  
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Figure 2.3 Overall Generalized Residual Plot for a confirmatory study (n=500), without incorrect or missing covariates, misspecification 

of the functional form, or extreme values. (Dataset = 42 {Confirmatory, No Inadequacies}; Graph Type = Cox-Snell 

Generalized {CS}; Covariates = 01 Categorical Treatment; Two Levels [SimExp42_CS02]) 

 
Figure 2.4: Overall Generalized Residual Plot for a small-to-moderate sized study (n=80), without incorrect or missing covariates, 

misspecification of the functional form, or extreme values. (Dataset = 42 {Confirmatory, No Inadequacies}; Graph Type = 

Cox-Snell Generalized {CS}; Covariates = 01 Categorical Treatment; Two Levels; [SimExp42_CS02]) 
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10.3 Figures for Section 3 (8 Figures) 

 
 
Figure 3.1:   Mallows’ C(p) is a measure of model bias large values indicate that an important variable was omitted from the model. Value below 

the reference line are a measure of bias [MallowsCp.xlsx]. 

 

 
Figure 3.2:  Cumulative Hazard for a Well-fit model (Dataset 30 [SimExp30_CS01]). 
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Figure 3.3:  Cumulative Hazard for a model with an incorrect covariate included (Dataset 51 [SimExp51_CS01]). 

 
Figure 3.4:  Cumulative Hazard for a model with a missing covariate (Dataset 31 [SimExp31_CS01]). 
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Figure 3.5:  Mallows’ C(p) plot for a well-fit model and shows no models that omitted an important variable since there were no values below the 

reference line are a measure of bias (Dataset 30). 

 
Figure 3.6:  Mallows’ C(p) plot for a for a model with an incorrect covariate included. It shows no important variable has been omitted (Dataset 

51). 

Note: The line of unity is provided for reference.
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Figure 3.7:  Mallows’ C(p) plot for a model with a missing covariate (Dataset 31). 

 

 
 

Figure 3.8:  Standardized Score Process for a model with data whose hazards are proportional but a missing an important covariate (Dataset 31). 
The conclusion of this standardized score process graph alone misinforms the analyst. 

 

Note: The line of unity is provided for reference.
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10.4 Figures for Section 4 (10 Figures) 

 
 

Figure 4.1: Categorized Quantile Estimates of Beta for a linear covariate. (Dataset = 41 {Confirmatory, No Inadequacies}; Graph Type 
= Quantile Categories {QC}; Covariates = 01 Categorical Treatment; Two Levels; [SimExp41_QC01.emf]) 

 

 
Figure 4.2:  Cumulative Hazard for a Well-fit model (Dataset 30). 
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Figure 4.3:  Categorized Quantile Estimates of Beta for a quadratic covariate. Dataset 42; SimExp42. 
 

 
Figure 4.4:  Martingale residuals and loess regression line for a model containing a quadratic covariate. SimExp42 
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Figure 4.5:   Categorized Quantile Estimates of Beta for a logarithmic covariate. SimExp44_QC02 
 

 

 
Figure 4.6:  Martingale residuals and loess regression line for a model containing a logarithmic covariate (Dataset 44). 
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Figure 4.7:  Categorized Quantile Estimates of Beta for a z*log(z) covariate. SimExp43_QC02 

 

 
 
Figure 4.8:  Martingale residuals and loess regression line for a model containing a z*log(z) covariate. SimExp43_MGcc2 
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Figure 4.9:  Graphical Check for Non-proportional Hazards using Schoenfeld’s Residuals for a model containing a z*log(z) covariate using the 
log of the negative log of survival (See Wilson 2010 for more details). SimExp43_GCPH05A 

 

 
Figure 4.10:  Another Graphical Check for Non-proportional Hazards for a model containing a z*log(z) covariate using the log of the negative 
log of survival.) SimExp43_GCPH01 Also see the std score process graph; p = 0.4760. 
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10.5 Figures for Section 5 (24 Figures) 

 
Figure 5.1:   Martingale Residuals Plotted against Risk Score for data with no extreme values. Notice the negatively skewed distribution and the 
logarithmic curve bound by censored observations. Dataset 51. 

 

 
Figure 5.2:  The Relationship between the Deviance and Martingale Residuals. The Deviance Residuals are a logarithmic transformation of the 

Martingales.  
 

event 0 1

M
a
rt

in
g
le

 R
e
s
id

u
a
l

-3.00

-2.00

-1.00

 0.00

 1.00

Risk Score (xbeta)

-4.0 -3.0 -2.0 -1.0 0.0 1.0 2.0 3.0

-6

-4

-2

0

2

-12.0 -10.0 -8.0 -6.0 -4.0 -2.0 0.0 2.0

D
e
vi
an

ce

Martingale

Event = 1

Event = 0



Page 27  MWSUG 2018, Paper HS-038 

Model Adequacy in PH Regression   

 
Figure 5.3:  Deviance Residuals Plotted against Risk Score for data with no extreme values. Dataset 51 
 

 
Figure 5.4:   Martingale Residuals Plotted against Risk Score for a Model with four known extreme values. Dataset 52 
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Figure 5.5:   Deviance Residuals Plotted against Risk Score for a Model with four known extreme values. Dataset 52 

 

 
Figure 5.6:   Score Residuals for the categorical covariate by Observation number for a Model without extreme values. Dataset 51 
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Figure 5.7:   Score Residuals for the first continuous covariate by Observation number for data without extreme values. Dataset 51 

 
Figure 5.8:   Score Residuals for the second continuous covariate by Observation number for data without extreme values. Dataset 51 
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Figure 5.9:   Score Residuals for the first continuous covariate by Observation number for data with known extreme values. Dataset 52 

 
Figure 5.10:   Score Residuals for the second continuous covariate by Observation number for data with known extreme values. Dataset 52 
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Figure 5.11:   Score Residuals for the second continuous covariate by Observation number for data with known extreme values. Dataset 52 

 
Figure 5.12:   Score Residuals for the categorical covariate by Observation number for data with known extreme values. Dataset 53 
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Figure 5.13:   Score Residuals for the categorical covariate by Observation number for data with known extreme values. Dataset 53 
 

 
Figure 5.14:   Score Residuals for the categorical covariate by Observation number for data with known extreme values. Dataset 53 
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Figure 5.15:   DFBETA Residuals for the first continuous covariate by Observation number for data with known strengthening extreme values. 

Dataset 52 

 

 
Figure 5.16:   DFBETA Residuals for the second continuous covariate by Observation number for data with known strengthening extreme values. 

Dataset 52 
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Figure 5.17:   DFBETA Residuals for the first continuous covariate by Observation number for data with known weaken extreme values. Dataset 
53 

 

 
Figure 5.18:   DFBETA Residuals for the second continuous covariate by Observation number for data with known weaken extreme values. 
Dataset 53 
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Figure 5.19:   Gharibvand Plots for the strengthening Dataset 52. SimExp52_DV04 
 

 
Figure 5.20:   Gharibvand Plots for the weakening Dataset 53. SimExp53_DV04 
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Figure 5.21:   Combined Residual Plots for the strengthening dataset for the first continuous covariate by Observation number Dataset 52. 
SimExp52_DFB04 

 
Figure 5.22:   Combined Residual Plots for the strengthening dataset for the second continuous covariate by Observation number. Dataset 52. 

SimExp52_DFB05 
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Figure 5.23:   Combined Residual Plots for the weakening dataset for the first continuous covariate by Observation number. Dataset 53. 
SimExp53_DFB04 

 

 
Figure 5.24:   Combined Residual Plots for the weakening dataset for the second continuous covariate by Observation number. Dataset 53. 
SimExp53_DFB04 
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