

1

MWSUG 2018 - Paper SB-040

Conversion of CDISC Specifications to CDISC Data – Specifications Driven
SAS® Programming for CDISC Data Mapping

Yurong Dai, Eli Lilly and Company, Indianapolis, IN

ABSTRACT

This is for a metadata driven approach that utilize SAS® programming techniques for SDTM and ADaM
data mapping. Metadata extracted from specifications are converted into data set’s attributes, format,
variable names and their order and sorting order for specification implementation in our reference code. It
increases code’s reusability, efficiency and consistency between data specifications and output data, and
reduced re-work after data specification’s update, during code development for SDTM mapping and
ADaM data sets derivation.

INTRODUCTION

As CDISC data are required for NDA submission to FDA, it is very important to initiate an efficient way in
SAS® programming to keep high consistence between data specifications and output data for CDISC
SDTM mapping and ADaM data derivation, in terms of speeding up submission and saving cost.

According to CDISC implementation guides, CDISC’s data specs have to include 3 levels of metadata:
data set, variable and value’s metadata/definition. And the derived data set has to follow the specs. In
order to avoid the repeat work in data derivation, our strategy was grabbing as most variable & value
level’s metadata as possible from specs into resulted data set. Detailed procedures are importing
specification sheets to SAS® data sets, and then automatically converting variables’ attributes, variables’
order, and variables used for sorting defined in specs into resulted data set, using our macros.

1. CONVERT THE SPECS FOR VARIABLE’S DEFINITION TO VARIABLE’S ATTRIBUTE

First we have variable level metadata or specification. An example can be as follows in Table 1:

VARIABLE LABEL ORDER SASLENGTH DISPLAY_FORMAT SORTORDER SASTYPE

STUDYID Study Identifier 1 12 1 C

USUBJID Unique Subject
Identifier

2 22 2 C

AESEQ Sequence
Number

3 8 3 N

AEGRPID Group ID 4 4 C

AEDECOD Dictionary-
Derived Term

5 200 C

AESOC Primary System
Organ Class

6 100 C

AETERM Reported Term
for the Adverse
Event

7 200 C

AESEV Severity/Intensity 8 8 C

AESEVN Severity/Intensity
(N)

9 8 N

ASEV Analysis
Severity/Intensity

10 10 C

ASEVN Analysis 11 8 N

2

Severity/Intensity
(N)

AESER Serious Event 12 1 C

AEREL Causality 13 20 C

…… …….

AESPID Sponsor-Defined
Identifier

19 4 C

ASTDT Analysis Start
Date

100 8 date9. N

…… …….

Table 1. Variable level metadata

1.1 A straight-forward way is to generate a macro as follows using the above metadata.

 %macro specs;

 DATA all;

 attrib

 STUDYID label= 'Study Identifier' length = $12

 USUBJID label= 'Unique Subject Identifier' length = $22

 AESEQ label= 'Sequence Number'

 AEGRPID label= 'Group ID' length = $4

 AEDECOD label= 'Dictionary-Derived Term' length = $200

 AESOC label= 'Primary System Organ Class' length = $100

 AETERM label= 'Reported Term for the Adverse Event' length = $200

 AESER label= 'Serious Event' length = $1

 AEREL label= 'Causality' length = $20

 ……

AESPID label= ' Sponsor-Defined Identifier' length = $4

 ASTDT label= 'Analysis Start Date' format = date9.

 ;

 set all;

 run;

 %mend specs;

Then call this macro at final programming step for generating this ADaM data set. So the specs for
variable’s definition become variable’s attribute. This saves typing time if we copy the specs to SAS®
code.

The following SAS® code creates the above SAS® macro %specs:

 /*==

 the following macro is to generate a macro named as $specs, for adding

 variable’s label, format, length to variables defined in specs into

 resulted final data

 &specsdata: data set name for specs for variable’s metadata

 &dset: the data set name to be put on variable’s attribute

 ¯olib: the directory in which macro $specs to be output

 ===*/

 *FEXIST Function: Verifies the existence of an external file by its

 fileref;

 *FDELETE Function: Deletes an external file or an empty directory;

 %macro attrib(specsdata, dset);

 DATA specs; set &specsdata;

 length label_ $200; *this variable contains all attributes;

 if DISPLAY_FORMAT ^= " " and upcase(SASTYPE)^= "C" then

3

 label_ = "'"||strip(LABEL)||"' format = "||strip(DISPLAY_FORMAT);

 else if upcase(SASTYPE)= "C" and SASLENGTH >. then

 label_ = "'"||strip(LABEL)||"' length =

 $"||strip(put(SASLENGTH,best.));

 else label_ = "'"||strip(LABEL)||"'";

 run;

 filename specs "¯olib.\specs.sas"; *Associates a SAS fileref with an

 external file;

 DATA _null_;

 set specs end=last;

 if fexist("specs") then rc=fdelete("specs");

 FILE "¯olib.\specs.sas";

 if _n_=1 then do;

 put @1 "%nrstr(*This macro and file is output from macro %attrib;)";

 put @1 "%nrstr(*Generated or overridden when calling %attrib;)";

 put @1 "%nrstr(%macro specs;)";

 put @1 "DATA &dset;";

 put @5 "attrib";

 end;

 if label ^= ' ' then PUT @5 VARIABLE "label= " label_ ;

 if last then do;

 put @5 ";";

 put @5 "set &dset;";

 put @1 "run;";

 put @1 "%nrstr(%mend specs;)";

 end;

 run;

 %mend attrib;

If our specs data set for variable’s attribute is named as adlb (it is from variable’s metadata), then call
%attrib(specs, adlb) first; %specs is generated. Then we call %specs after our derived data set (named
all, which is from raw data) is created, and then variable’s attribute is put in our final CDISC data set.

1.2 Another of our ways is to create an empty data set from variable level metadata - a data set

with variable names and attributes without any record. Here is the SAS® code:

 /*===

 The following macro is to create an empty data set from the variable definition of specs.

 &input_meta: the variable definition SAS data set.

 &domain: the domain name.

 &var_num: global macro variable containing all the numeric variable names in the output data set.

 &var_txt: global macro variable containing all the character variable names in the output data set.

 ==*

 %macro zmshell(input_meta=, domain=);

 %global var_num var_txt;

 PROC SORT data= &input_meta out=meta__; by ORDER;

 where not missing(variable);

 run;

 %let dsid=%sysfunc(open(meta__,i));

 %let fmt_exist=%sysfunc(varnum(&dsid,DISPLAY_FORMAT));

 %if &dsid > 0 %then %let rc=%sysfunc(close(&dsid));

4

 DATA meta_; set meta__ end=eof;

 length var_def $50 var_def_final $5000 var_label $100 var_label_final

 var_fmt_final $30000 var_fmt $50 var_num var_txt $30000;

 retain var_def_final 'length ' var_label_final 'label '

 var_fmt_final 'format ' var_num var_txt ' ';

 if lowcase(SASTYPE)='c' then var_def=

 ' '||strip(VARIABLE)||' $'||strip(put(SASLENGTH,best.));

 else if lowcase(SASTYPE)='n' then var_def=

 ' '||strip(VARIABLE)||' '||strip(put(SASLENGTH,best.));

 %if &fmt_exist>0 %then %do;

 if not missing(DISPLAY_FORMAT) then var_fmt=

 ' '||strip(VARIABLE)||' '||strip(DISPLAY_FORMAT);

 %end;

 %else %do;

 var_fmt='';

 %end;

 var_label=' '||strip(VARIABLE)||" = '"||strip(LABEL)||"'";

 var_def_final=catx(' ', var_def_final, var_def);

 var_label_final=catx(' ',var_label_final, var_label);

 var_fmt_final=catx(' ',var_fmt_final, var_fmt);

 if lowcase(SASTYPE)='n' then var_num=catx(' ',var_num, variable);

 else if lowcase(SASTYPE)='c' then var_txt=catx(' ',var_txt, variable);

 if eof then do;

 call symput('var_def_final',strip(var_def_final)||';');

 call symput('var_label_final',strip(var_label_final)||';');

 call symput('var_fmt_final',strip(var_fmt_final)||';');

 call symput('var_num',strip(var_num));

 call symput('var_txt',strip(var_txt));

 end;

 run;

 DATA &domain._shell;

 &var_def_final;

 %if %length(&var_num)>0 %then %do;

 array var_num{*} &var_num;

 %end;

 array var_txt{*} &var_txt;

 stop;

 &var_label_final;

 %if &fmt_exist>0 %then %do;

 &var_fmt_final;

 %end;

 run;

 %mend zmshell;

After calling %zmshell, for example, %zmshell(input_meta=adae_meta, domain=adae); the data set with
variable’s attribute (adae_shell) without any record is generated.

The final CDISC data set is created by appending the derived data set from raw data to this empty data
set (for example, adae_shell), so the variable’s attributes defined in the specs have been converted into
our final CDISC data.

2. CONVERT VALUE LEVEL METADATA TO CDISC VARIABLE’S VALUES

Per CDISC standard, variable’s controlled terms have to be clearly documented in the specs. Some
controlled terms (CTs) have 1 to 1 value matched from one variable to another/or multiple variable(s).
Examples are PARAMCD to PARAM and PARAMN, AVISIT to AVISITN in ADaM; LBTESTCD to
LBTEST, VISITNUM to VISIT in SDTM, etc. or vice versa.

5

An example for controlled terms defined in specs for value level metadata is in table 2. Here we want to
use AVISIT’s value to get AVISITN’s value atomically.

DATASET VARIABLE SUBMISSION_VALUE DECODE

ADLB AVISITN 1 SCREENING

ADLB AVISITN 2 WEEK0

ADLB AVISITN 3 WEEK2

ADLB AVISITN 4 WEEK4

ADLB AVISITN 5 WEEK8

ADLB AVISITN 6 WEEK12

ADLB AVISITN 7 WEEK16

ADLB AVISITN 801 FOLLOW UP1

ADLB AVISITN 802 FOLLOW UP2

ADLB AVISITN 803 FOLLOW UP3

ADLB AVISITN 5001 BASELINE LAST

ADLB AVISITN 5002 BASELINE MIN

ADLB AVISITN 5003 BASELINE MAX

ADLB AVISITN 6001 POST BASELINE LAST

ADLB AVISITN 6002 POST BASELINE MIN

ADLB AVISITN 6003 POST BASELINE MAX

Table 2. Value level metadata

What we need are: 1. to derive one set of variable’ values from raw data, 2. To use SAS® PROC
FORMAT, to output format names for all 1 to 1 matched controlled terms, 3. To apply FORMAT names
using put SAS® function.

2.1 An intuitive way is to convert the controlled terms by variable names into a macro as follows:

 %macro getfmt;

 PROC FORMAT cntlout = cntlout;

 VALUE $AVISITN

 'BASELINE LAST' ='5001'

 'BASELINE MAX' ='5003'

 'BASELINE MIN' ='5002'

 'FOLLOW UP1' ='801'

 'FOLLOW UP2' ='802'

 'FOLLOW UP3' ='803'

 'POST BASELINE LAST' ='6001'

 'POST BASELINE MAX' ='6003'

 'POST BASELINE MIN' ='6002'

 'SCREENING' ='1'

 'WEEK0' ='2'

 'WEEK12' ='6'

 'WEEK16' ='7'

 'WEEK2' ='3'

 'WEEK4' ='4'

 'WEEK8' ='5'

 ;

 VALUE $ANRINDN

6

 'ABNORMAL' ='4'

 'HIGH' ='3'

 'LOW' ='1'

 'NORMAL' ='2'

 'NOT APPLICABLE' ='5'

 'NOT EVALUABLE' ='6'

 run;

 %mend getfmt;

From this created macro, we may check whether all wanted formats are generated and ready to use. AS
we showed in above example, we can use format $AVISITN, to derive AVISITN’s values from AVISIT’s
value, using AVISITN = input(put(AVISIT, $AVISITN.), best.) in a data step.

Similar to creating the macro %specs for variable’s attribute, we used the following code to write the
above macro %getfmt using controlled terms defined in specs:

 /*==

 The following macro will generate macro %getfmt for converting CTs from a

 CT file into format names

 ¯olib: the directory where the %getfmt file is written to

 &indata: the controlled terms’ data set name(from specs

 &fromvar: its value on the left side in format definition, its values

 Exist in derived data and controlled terminology. Will be used to derive

 another variable’s value by 1-1 matching in format

 &tovar: its values on the right side in format definition

 ==*/

 %macro zvintofmt(indata, fromvar, tovar);

 filename getfmt "¯olib.\getfmt.sas"; /*Associates a SAS fileref with

 an external file;*/

 DATA _null_;

 set &indata end=last;

 by variable;

 if fexist("getfmt") then rc=fdelete("getfmt");

 FILE "¯olib.\getfmt.sas";

 if _n_=1 then do;

 PUT @1 "%nrstr(*This macro and file is output from macro %zvintofmt;)";

 PUT @1 "%nrstr(*It is generated/overriden whencalling% zvintofmt;)";

 PUT @1 "%nrstr(%macro getfmt;)";

 PUT @1 "%nrstr(proc format /*fmtlib*/ cntlout = cntlout;)";

 end;

 if first.variable then

 PUT @5 "VALUE $" variable;

 PUT @9 &fromvar "=" &tovar;

 if last.variable then

 put @5 ";";

 if last then do;

 PUT @1 "run;";

 PUT @1 "%nrstr(%mend getfmt;)";

 end;

 run;

 %mend zvintofmt;

After call %zvintofmt(ctdata, DECODE, SUBMISSION_VALUE); where ctdata is the CTs data set defined
in specs, formats will be generated in %getfmt. After we call macro %getfmt, the formats are ready to use.

2.2 Another of our format creation from our CTs data set is using the CNTLIN= option in PROC

7

FORMAT. We rearrange or rename our CT data from specs into the required variables and names,
i.e. we converted CTs in the following data format, and here we name this data set as ct_data:

Table 3. Example for rearranged Controlled terms, named as ct_data, ready for proc format to output
format names

START END LABEL FMTNAME TYPE

SCREENING SCREENING 1 AVISITN_FMT C

WEEK0 WEEK0 2 AVISITN_FMT C

WEEK2 WEEK2 3 AVISITN_FMT C

WEEK4 WEEK4 4 AVISITN_FMT C

WEEK8 WEEK8 5 AVISITN_FMT C

WEEK12 WEEK12 6 AVISITN_FMT C

WEEK16 WEEK16 7 AVISITN_FMT C

FOLLOW UP1 FOLLOW UP1 801 AVISITN_FMT C

FOLLOW UP2 FOLLOW UP2 802 AVISITN_FMT C

FOLLOW UP3 FOLLOW UP3 803 AVISITN_FMT C

BASELINE LAST BASELINE LAST 5001 AVISITN_FMT C

BASELINE MIN BASELINE MIN 5002 AVISITN_FMT C

BASELINE MAX BASELINE MAX 5003 AVISITN_FMT C

POST BASELINE
LAST

POST BASELINE
LAST

6001 AVISITN_FMT C

POST BASELINE
MIN

POST BASELINE
MIN

6002 AVISITN_FMT C

POST BASELINE
MAX

POST BASELINE
MAX

6003 AVISITN_FMT C

After applying the following code:
 PROC FORMAT cntlin=ct_data;

 run;

Then the formats will be ready to use.

3. AUTOMATION FOR KEEPING THE VARIABLES ONLY IN THE SPECS AND APPLYING
DATA SORTING IN FINAL DERIVED CDISC DATA

In data derivation step, we usually keep much more variables than the specs defined in the intermediate
data step. At final data step, we keep the variables defined in specs only. Copying and pasting these
variables into SAS® code is time consuming. In addition, whenever specs change, the SAS® code has to
change accordingly. We like a way in that our code can take care of it automatically. Whenever specs
change, what we do is re-running our code only.

In order to achieve automation, we read these variables from the specs into SAS® data set and sort in
order, and then put them into a macro variable, we name it &VARLIST.

In the same way, we put the variables for sorting order in a macro variable too, we name it

8

&SORTORDER.

Here is the code for defining macro variables &VARLIST and &SORTORDER:
 *==
 &specsdata: the variable level metata, from specs, as in Table 1

 &varlist: it contains all variables in specs and in the specified order

 &sortorder: it contains the sort variables in the specified order

 ==*/

 %macro varlist(specsdata);

 %global varlist sortorder

 PROC SORT data = &specsdata out=specs; by order; run;

 DATA null;

 retain var;

 set specs end = last;

 by order;

 length var $2000;

 if _n_ = 1 then var = strip(VARIABLE);

 else var = strip(var)||", "||strip(VARIABLE);

 if last then call symput('VARLIST',strip(VAR));

 run;

 DATA sort; set specs;

 where SORTORDER ^in (".", " ");

 keep variable SORTORDER;

 run;

 PROC SORT data = sort;

 by SORTORDER;

 run;

 DATA null;

 retain var;

 set sort end = last;

 length var $2000;

 if _n_ = 1 then var = strip(VARIABLE);

 else var = strip(var)||", "||strip(VARIABLE);

 if last then call symput('SORTORDER',strip(VAR));

 run;

 %mend varlist;

In one step of sql as follows, and the final CDISC data will include the specified variables only and in
specified sorting order:
 PROC SQL;

 create table adae(label = 'Adverse Event Analysis) as

 select &VARLIST

 from allae

 order by &SORTORDER;

 quit;

CONCLUSION

In summary, the derived CDISC data sets are inherently consistent with the metadata (specification) by
this metadata driven programming approach, because the metadata automatically come from specs. It
not only increases programming efficiency and our code reusability, but also keeps highly consistence
between data set’s specifications and final output data.

9

ACKNOWLEDGMENTS

Thank Mei Zhao for reviewing this paper

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Yurong Dai
Eli Lilly and Company
Lilly Corporate Center
Indianapolis, IN 46285
myydai@yahoo.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

