MWSUG 2018 - Paper SP-057

Macro that Can Get Geo Coding Information from the Google Maps API

Ting Sa, Cincinnati Children's Hospital Medical Center, Cincinnati, OH

ABSTRACT

This paper introduces a macro that can automatically get the geo coding information from the Google Maps API for the user. The macro can get the longitude, latitude, standard address, and address components like street number, street name, county or city name, state name, ZIP codes, and so on for the user. To use the macro, the user needs to provide only simple SAS® input data. The macro then automatically gets the data and saves it to a SAS data set for the user. This paper includes all the SAS codes for the macro and provides the input data example to show you how to use the macro.

INTRODUCTION

In this paper a macro is introduced that can help the user to get the geo coding information from the Google map API. Figure 1, Figure 2 are the screenshots for a sample output SAS data set. I will give more detailed explanation for the output data set in the "The Output SAS Data Set" section.

	address	status	location_type	no	result_no	goog_lat	goog_lng	formatted_address	street_number
1	Alabama A & M University	OK	ROOFTOP	1	1	34.7846326	-86.572031	4900 Meridian St N, Huntsville, AL 35811, USA	4900
2	Administration Bldg Suite 1070	OK	ROOFTOP	2	1	32.7772264	-117.0726966	Administration, #1070, San Diego, CA 92182, USA	
3	1200 Taylor Rd,Montgomery,AL36117-3553	OK	ROOFTOP	3	1	32.3626934	-86.1740338	1200 Taylor Rd, Montgomery, AL 36117, USA	1200
4	University of Alabama in Huntsville	OK	ROOFTOP	4	1	34.7246819	-86.6405671	301 Sparkman Dr NW, Huntsville, AL 35899, USA	301
5	915 S Jackson Street	OK	ROOFTOP	5	1	32.3794436	-86.293899	Alabama State Univesity, 915 S Jackson St, Montgomery, AL 36104, USA	915
6	915 S Jackson Street	OK	ROOFTOP	5	2	32.3650918	-86.2956923	915 S Jackson St, Montgomery, AL 36104, USA	915
7	915 S Jackson Street	OK	ROOFTOP	5	3	39.6997022		915 S Jackson St, Denver, CO 80209, USA	915
8	915 S Jackson Street	OK	ROOFTOP	5	4	33.7358766	-117.9155783	915 S Jackson St, Santa Ana, CA 92704, USA	915
9	915 S Jackson Street	OK	ROOFTOP	5	5	38.2399459	-85.746127	915 S Jackson St, Louisville, KY 40203, USA	915
10	915 S Jackson Street	OK	ROOFTOP	5	6	31.955611	-95.266784	915 S Jackson St, Jacksonville, TX 75766, USA	915
11	915 S Jackson Street	OK	ROOFTOP	5	7	44.5005416	-88.0147242	915 S Jackson St, Green Bay, WI 54301, USA	915
12	915 S Jackson Street	OK	ROOFTOP	5	8	41.8394061	-88.317655	915 S Jackson St, Batavia, IL 60510, USA	915
13	915 S Jackson Street	OK	ROOFTOP	5	9	42.23928	-84.408354	915 S Jackson St, Jackson, MI 49203, USA	915
14	915 S Jackson Street	OK	RANGE_INTERPOLATED	5	10	47.5989099	-122.320285	915 S Jackson St, Seattle, WA 98104, USA	915
15	401 Queen City Ave, Tuscaloosa, AL35401	OK	ROOFTOP	6	1	33.2128418	-87.5601445	401 Queen City Ave, Tuscaloosa, AL 35401, USA	401

Figure 1. Part of the Output SAS Data Set Result

	street_number	route	locality	postal_code	postal_code_suffix	administrative_area_level_1	administrative_area_level_2	country
1	4900	Meridian St N	Huntsville	35811		AL	Madison County	US
2			San Diego	92182		CA	San Diego County	US
3	1200	Taylor Rd	Montgomery	36117	3520	AL	Montgomery County	US
4	301	Sparkman Dr NW	Huntsville	35899		AL	Madison County	US
5	915	S Jackson St	Montgomery	36104		AL	Montgomery County	US
6	915	S Jackson St	Montgomery	36104		AL	Montgomery County	US
7	915	S Jackson St	Denver	80209	5013	CO	Denver County	US
8	915	S Jackson St	Santa Ana	92704	2318	CA	Orange County	US
9	915	S Jackson St	Louisville	40203		KY	Jefferson County	US
10	915	S Jackson St	Jacksonville	75766		TX	Cherokee County	US
11	915	S Jackson St	Green Bay	54301	3517	WI	Brown County	US
12	915	S Jackson St	Batavia	60510	3031	L	Kane County	US
13	915	S Jackson St	Jackson	49203	3100	MI	Jackson County	US
14	915	S Jackson St	Seattle	98104	3013	WA	King County	US
15	401	Queen City Ave	Tuscaloosa	35401	1551	AL	Tuscaloosa County	US

Figure 2. Part of the Output SAS Data Set Result

To use the macro, the user needs to provide a simple SAS input data and also needs to get a Google map API key which is free and easy to get from the Google website. To know how to get the API key, check this web address https://developers.google.com/maps/documentation/javascript/get-api-key for more information. In this paper, the macro uses the newest json libname engine to parse the json data sent by the API to get the geo coding information. All the macro SAS codes will be included at the end of the paper.

THE INPUT DATA SET FOR THE MACRO

Figure 3 shows the structure of the input data set that can be used by the macro. The column "address" contains the address information. The "apikey" column contain the map API key provided by the Google.

	address	apikey
1	Alabama A & M University	Demo
2	Administration Bldg Suite 1070	Demo
3	1200 Taylor Rd,Montgomery,AL36117-3553	Demo
4	University of Alabama in Huntsville	Demo
5	915 S Jackson Street	Demo
6	401 Queen City Ave, Tuscaloosa ,AL35401	Demo
7	The University of Alabama	Demo
8	1675 Cherokee Rd	Demo
9	300 N Beaty St, Athens, AL35611	Demo

Figure 3. A Sample Input Data Set for the Macro

The sample input data set is the "Higher Education Datasets" I've downloaded from the website https://inventory.data.gov/dataset/032e19b4-5a90-41dc-83ff-6e4cd234f565/resource/38625c3d-5388-4c16-a30f-d105432553a4. It is a free data set and you can click the link to download the CSV data file

"higheducationdata.csv". Below are the SAS codes I've used to create the sample input data set using the downloaded csv file.

```
PROC IMPORT OUT=education
DATAFILE= "C:\higheducationdata.csv"
DBMS=CSV REPLACE;
GETNAMES=YES;
DATAROW=2;
RUN;
data test;
set education;
if n \ll 30;
address full=catx(",",ADDR,CITY,cats(STABBR,zip));
length address $100.;
if mod(n,3)=1 then address=INSTNM;
else if mod(n,3)=2 then address=ADDR;
else if mod(n,3)=0 then address=address full;
keep INSTNM ADDR address full address LONGITUD LATITUDE;
data testdata;
set test;
apikey="Demo";
keep address apikey;
run;
```

Once you get your own API key, you can replace the "Demo" with your API key value.

THE GETGEOINFO MACRO

You can find all the macro codes at the end of the paper. Immediately below is the structure of the macro: %macro getGeoInfo(libnm=, datanm=);

- The "libnm" is used to indicate the library name for the input dataset.
- The "datanm" is used to indicate the input SAS dataset names.

Below is an example showing you how to call the macro:

```
%getGeoInfo(libnm=work,datanm=testdata);
```

The result of the geo coding information will be saved into a SAS data set called "result_geocode" which can be found in the "work" library.

THE OUTPUT SAS DATA SET

The output SAS data set contains the following variables in the data set. Below are the descriptions for each variable:

- a. The "address" contains the address from the input data set.
- b. The "status" contains the status of the request, and may contain the following values:
 - "OK" indicates that no errors occurred; the address was successfully parsed and at least one geocode was returned.
 - "ZERO_RESULTS" indicates that the geocode was successful but returned no results. This may occur if the geocoder was passed a non-existent address.
 - "OVER_QUERY_LIMIT" indicates that you are over your quota.
 - "REQUEST_DENIED" indicates that your request was denied.
 - "INVALID_REQUEST" generally indicates that the query (address, components or lating) is missing.

- "UNKNOWN_ERROR" indicates that the request could not be processed due to a server error. The request may succeed if you try again.
- c. The "location_type" stores additional data about the specified location and may contain the following values:
 - "ROOFTOP" indicates that the returned result is a precise geocode for which we have location information accurate down to street address precision.
 - "RANGE_INTERPOLATED" indicates that the returned result reflects an approximation (usually on a road) interpolated between two precise points (such as intersections).
 Interpolated results are generally returned when rooftop geocodes are unavailable for a street address.
 - "GEOMETRIC_CENTER" indicates that the returned result is the geometric center of a result such as a polyline (for example, a street) or polygon (region).
 - "APPROXIMATE" indicates that the returned result is approximate.
- d. The "no" contains the address row number in the input data set.
- e. The "result_no" contains the parsed address counting number. Because for a given address, the API may return several results, this variable is created to indicate multiple returns.
- f. The "goog lat" contains the latitude information.
- g. The "goog_Ing" contains the longitude information.
- h. The "formatted_address" contains the standardized address based on the returned latitude and longitude.
- i. The "street number" indicates the precise street number.
- j. The "route" indicates a named route.
- k. The "locality" indicates an incorporated city or town political entity.
- I. The "postal code" indicates a postal code as used to address postal mail within the country.
- m. The "postal_code_suffix" indicates a postal code suffix.
- n. The "administrative_area_level_1" indicates a first-order civil entity below the country level. Within the United States, these administrative levels are states.
- o. The "administrative_area_level_2" indicates a second-order civil entity below the country level. Within the United States, these administrative levels are counties.
- p. COUNTRY contains the country information.

There are more information that have been returned by the Google map API. In this macro, it only extracts the common information. You can go to Google website to get more information about the output using this web address https://developers.google.com/maps/documentation/geocoding/intro#geocoding.

THE GETGEOINFO MACRO CODES

Presented below are the SAS codes for the getGeoInfo macro.

```
options NOSLEEPWINDOW;
%macro getGeoInfo(libnm=,datanm=);
%macro GeoInfo(no=,address=,apikey=);
%let
url=%nrbquote(')%nrstr(https://maps.googleapis.com/maps/api/geocode/json?ad
dress=)&address.%nrstr(&key=)&apikey.%nrbquote(');
filename in url &url.;
libname in json;

data _null_;
*rc=sleep(1,0.001);
call sleep(1,0.001);
run;
proc datasets library=in;copy out=work;run;quit;

data tmp0;
```

```
set Root;
keep status;
run;
proc sql;
create table tmp1 as
select r1.ordinal results, lat as goog lat, lng as goog lng,
formatted address length=150, location type length=30
from Geometry location as g, results as r, Results geometry as r1
where r1.ordinal geometry=g.ordinal geometry and
r1.ordinal results=r.ordinal results;
create table tmp2 as
select ordinal results, ordinal types, long name, short name length=100, types1
from Results address components as r, Address components types as a
where r.ordinal address components=a.ordinal types
order by ordinal results, ordinal types;
quit;
proc transpose data=tmp2 out=tmp2(drop= name); by ordinal results; id
types1; var short name; run;
data tmp3;
merge tmp1 tmp2;
by ordinal results;
rename ordinal results=result no;
run;
proc sql;
create table geores&no. as
select &no. as no, status, t.*
from tmp0, tmp3 as t
order by result no;
proc datasets lib=work nolist; save geores: testdata; quit; run;
libname in clear;
%mend;
data testdata;
set &libnm..&datanm.;
rowno=put( n , z5.);
address1=tranwrd(strip(address)," ","+");
length sascodes $500.;
sascodes=cats('%GeoInfo(no=',rowno,',address=%str(',address1,'),apikey=',ap
ikey,');');
run;
data null;
set testdata;
call execute(sascodes);
run:
data all geocode;
set geores:;
run;
proc sql;
create table result geocode as
select t.address,a.*
```

```
from &libnm..&datanm. as t, all_geocode as a
where input(t.rowno,best.)=a.no
order by a.no,a.result_no;
quit;

data result_geocode;
format address status location_type no result_no goog_lat goog_lng
formatted_address street_number
route locality postal_code postal_code_suffix administrative_area_level_1
administrative_area_level_2 country;
set result_geocode;
run;
%mend;
```

CONCLUSION

The macro presented in this paper can be used as an easy tool to get the geo coding information from the Google map API. Currently the macro only extracts the common information from the returned results. The user can update the macro to extract more information based on the user's needs.

ACKNOWLEDGMENTS

The author wishes to thank the Division of Biostatistics and Epidemiology at Cincinnati Children's Hospital Medical Center for its support.

CONTACT INFORMATION

Do not change the heading style or the text "CONTACT INFORMATION" of the preceding heading. Do not change the text of the following paragraph. Replace all fields that are shown in angle brackets.

Your comments and questions are valued and encouraged. Contact the author at:

Ting Sa
Division of Biostatistics and Epidemiology, Cincinnati Children's Hospital Medical Center 5136363674
Ting.Sa@CCHMC.ORG

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.