
1

MWSUG 2018 – Paper SP-066

Merge with Caution: How to Avoid Common
Problems when Combining SAS Datasets

Joshua M. Horstman, Nested Loop Consulting

ABSTRACT

Although merging is one of the most frequently performed operations when manipulating SAS datasets,
there are many problems which can occur, some of which can be rather subtle. This paper examines
several common issues, provides examples to illustrate what can go wrong and why, and discusses best
practices to avoid unintended consequences when merging.

INTRODUCTION

Anyone who has spent much time programming with SAS has likely found themselves needing to
combine data from multiple datasets into a single dataset. This is most commonly performed by using the
MERGE statement within a DATA step. While the merge seems like a relatively simple and
straightforward process, there are many traps waiting to snare the unsuspecting programmer.

In a seminal pair of papers, Foley (1997, 1998) catalogs some 28 potential traps related to merging.
These range from rather mundane syntactical oversights to more esoteric matters relating to the inner
workings of SAS. Some can be rather subtle and pernicious. In this paper, we will examine seven
examples that highlight common problems, moving from the basic to the more complex:

1. Missing BY statement

2. Use of a SET statement instead of a MERGE statement

3. Unmatched BY variable values

4. The many-to-many merge

5. Mismatched BY variable lengths

6. Overlapping variables

7. The automatic retain

EXAMPLE 1: MISSING BY STATEMENT

THE DATA

For our first example, we have the following two SAS datasets:

PLANET_SIZE Dataset

PLANET DIAM_MI

Earth 7918

Jupiter 86881

Mars 4212

Mercury 3032

Neptune 30599

Saturn 72367

Uranus 31518

Venus 7521

PLANET_DIST Dataset

PLANET DIST_AU

Jupiter 4.2

Mars 0.52

Mercury 0.61

Neptune 29.06

Saturn 8.54

Uranus 18.14

Venus 0.28

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

2

The PLANET_SIZE dataset contains information about the diameter (in miles) of each of the primary
planets in the solar system. The PLANET_DIST dataset includes the distance (in astronomical units) of
each planet from Earth. Naturally, there is no record in the PLANET_DIST dataset corresponding to
Earth itself.

THE MERGE

We perform a simple merge on these two datasets, but we neglect to include a BY statement.

data merge1;

 merge planet_size planet_dist;

run;

This produces the resulting MERGE1 dataset shown to
the right. Observe that MERGE1 has eight records, but
there are two for Venus and none for Earth. Also, note
that Jupiter’s diameter has shrunk drastically, while that
of Mars has increased. Clearly, this result is
undesirable.

THE EXPLANATION

Since we did not include a BY statement, SAS performs
what is sometimes called a one-to-one merge. Rather
than matching up observations based on the value of
one or more BY variables, observations are simply
paired based on their positions within the original datasets.

This is very rarely what is wanted. The one-to-one merge should only be used very carefully and in
situations where there is no need to match observations based on any sort of relationship between the
two datasets. The vast majority of circumstances call for a match-merge, which requires a BY statement.

THE CORRECTION

By simply including a BY statement in our merge, we can ensure that information is matched up based on
the variable PLANET. Note that we need to make sure all input datasets are sorted before we can make
use of any BY group processing in a DATA step. In our case, both datasets were already sorted, but
here we choose to do so anyway to make the code more robust.

proc sort data=planet_size; by planet; run;

proc sort data=planet_dist; by planet; run;

data merge1b;

 merge planet_size planet_dist;

 by planet;

run;

This modified code produces a correctly merged dataset:

MERGE1 Dataset

PLANET DIAM_MI DIST_AU

Jupiter 7918 4.2

Mars 86881 0.52

Mercury 4212 0.61

Neptune 3032 29.06

Saturn 30599 8.54

Uranus 72367 18.14

Venus 31518 0.28

Venus 7521 .

MERGE1B Dataset

PLANET DIAM_MI DIST_AU

Earth 7918 .

Jupiter 86881 4.2

Mars 4212 0.52

Mercury 3032 0.61

Neptune 30599 29.06

Saturn 72367 8.54

Uranus 31518 18.14

Venus 7521 0.28

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

3

THE LESSON

Obviously, it’s critical that we include a BY statement whenever our intention is to perform a match-
merge. Note that SAS did not issue any kind of WARNING or ERROR in response to our missing BY
statement. That’s because, as mentioned, there are situations where one might choose to do this
deliberately.

However, because this is so rare, it may be wise to consider using the MERGENOBY system option to
prevent this from happening inadvertently. The MERGENOBY system option can be set to NOWARN,
WARN, or ERROR. Using MERGENOBY=WARN will cause SAS to generate a warning whenever a
merge is attempted without a corresponding BY statement. Similarly, MERGENOBY=ERROR will
generate an error in such cases. The default is MERGENOBY=NOWARN, which will do nothing.

EXAMPLE 2: SET STATEMENT INSTEAD OF MERGE

THE DATA

Our second example is based on the following two datasets.

The SALES dataset contains a sales amount for each of several regions. The MANAGERS dataset
contains the last names of the manager for each of the same regions. Conveniently, these datasets are
already sorted by REGION, so there is no need for us to sort them prior to combining.

THE MERGE

We combine the two datasets, but we inadvertently use a SET statement instead of a MERGE statement.
Such mistakes can occur when programmers are working under pressure and without appropriate quality
processes in place, especially when old code is being repurposed for something it wasn’t originally
designed to do.

data merge2;

 set sales managers;

 by region;

run;

This code produces the dataset MERGE2 shown to the
right. Notice that there are a total of eight records, two for
each region. Furthermore, SALES is missing on every
other record while MANAGER is missing on the other
records.

THE EXPLANATION

Because we used a SET statement rather than a MERGE
statement, SAS made no attempt to match up
observations based on the values of the BY variable.
When a SET statement is used with multiple datasets, those datasets are concatenated. The number of
rows in the resulting dataset is the sum of the numbers of rows in the input datasets. When this syntax is
used with a BY statement, the concatenation is performed separately for each BY group, resulting an a
dataset in which records are interleaved based on the values of the BY variable.

SALES Dataset

REGION SALES

Midwest 3700

Northeast 6100

South 4600

West 5500

MANAGERS Dataset

REGION MANAGER

Midwest Miller

Northeast Nelson

South Smith

West Williams

MERGE2 Dataset

REGION SALES MANAGER

Midwest 3700

Midwest . Miller

Northeast 6100

Northeast . Nelson

South 4600

South . Smith

West 5500

West . Williams

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

4

THE CORRECTION

Using a MERGE statement instead of a SET statement
will result in records being matched up based on the
value of our BY variable, REGION.

data merge2b;

 merge sales managers;

 by region;

run;

This will produce the desired output, which is a dataset with one row per REGION that contains the
appropriate values for both SALES and MANAGER.

THE LESSON

As with our first example, SAS did not issue any kind or ERROR or WARNING as a result of our mistake.
That’s because both the SET statement and the MERGE statement are valid ways to combine SAS
datasets (among many others). However, they do not generally produce the same results, so it’s
important to understand how each one works and be careful to use the correct syntax for your situation.

It’s a good practice to review the SAS log and verify that each output dataset contains the number of rows
you expected. Anomalous row counts are often an indication of programming errors or data issues.

EXAMPLE 3: UNMATCHED BY VALUES

THE DATA

For our third example, we will make use of the following datasets.

The ORDERS dataset includes an order number, ORDERNUM, and an ITEMCODE for each item that is
part of the order. The PRODUCTS dataset associates a PRICE with each ITEMCODE.

THE MERGE

To facilitate the calculation of a total price for each order, the ORDERS and PRODUCTS datasets are
merged together using the following code. Note that the datasets are first sorted on the common variable
ITEMCODE prior to the merge:

proc sort data=products; by itemcode; run;

proc sort data=orders; by itemcode; run;

data merge3;

 merge orders products;

 by itemcode;

run;

MERGE2B Dataset

REGION SALES MANAGER

Midwest 3700 Miller

Northeast 6100 Nelson

South 4600 Smith

West 5500 Williams

ORDERS Dataset

ORDERNUM ITEMCODE

1 A1

1 B2

2 A1

PRODUCTS Dataset

ITEMCODE PRICE

A1 5

A2 7.5

B1 10

B2 12.5

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

5

The resulting dataset, MERGE3, is shown to the right.
Note that there are four records, one of which has a
missing value for ORDERNUM. Since this record does not
pertain to an actual order, we don’t want it in our dataset.

THE EXPLANATION

When datasets are merged using the MERGE statement in
a DATA step, a given record in one input dataset may not
have corresponding counterparts with matching BY
variable values in the other input datasets. However, the DATA step merge selects both records with
matching BY variable values as well as nonmatching records from any input dataset. Any variables
occurring only in datasets having no records to contribute for a given BY group will simply be missing.
For those readers familiar with the terminology typically used when combining datasets in PROC SQL,
this is what would be called a full outer join.

THE CORRECTION

In this example, we do not wish to include records from the PRODUCTS dataset having an ITEMCODE
that does not match any ITEMCODE in the ORDERS dataset. These records correspond to products that
were not ordered and are not relevant. In SQL parlance, we would like a left outer join, not a full outer
join.

While there are many ways this can be accomplished in the DATA step, a common approach is to use the
IN= dataset option in conjunction with a subsetting IF statement as follows:

data merge3b;

 merge orders(in=ordered) products;

 by itemcode;

 if ordered;

run;

Here, the IN= dataset option creates a temporary variable
that indicates whether the corresponding dataset
contributed to the current observation. We can specify
any valid SAS variable name, but here we chose the
name ORDERED. Any records with a value of
ITEMCODE that did not appear in the ORDERS dataset
will have a value of 0 for ORDERED. Those observations will fail the subsetting IF statement and will not
be written to the output dataset. The resulting output dataset, MERGE3B, will have only the three records
desired.

THE LESSON

Anytime datasets are being merged, consider whether the output dataset should include any
nonmatching observations. You might wish to include all nonmatching records, only nonmatching records
originating from a certain dataset or datasets, or no nonmatching records at all. Even if you don’t expect
nonmatching records, it’s a good practice in most settings to anticipate future code reuse and proactively
handle situations that might reasonably be expected to arise in the future.

MERGE3 Dataset

ORDERNUM ITEMCODE PRICE

1 A1 5

. A2 7.5

2 B1 10

1 B2 12.5

MERGE3B Dataset

ORDERNUM ITEMCODE PRICE

1 A1 5

2 B1 10

1 B2 12.5

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

6

EXAMPLE 4: MANY-TO-MANY MERGE

THE DATA

Our fourth example will involve
the two datasets shown at right.

Each dataset contains nine
records. The MENU dataset
contains three foods for each of
the three meals – breakfast,
lunch, and dinner. Similarly, the
DRINKLIST dataset contains
three drinks associated with
each of one of the three meals.

THE MERGE

Our goal in this exercise is to
create a list of all the food and
drink combinations that are
available at each meal. We sort each dataset by MEAL and then perform a merge using MEAL as the BY
variable.

proc sort data=menu; by meal food; run;

proc sort data=drinklist; by meal drink; run;

data merge4;

 merge menu drinklist;

 by meal;

run;

The resulting dataset, MERGE4, is shown to the right.

Notice that the output dataset has only nine records, three for
each meal. There are actually nine possible food and drink
combinations for each meal, for a total of 27 combinations.
The MERGE4 dataset does not contain all the results we were
expecting. For example, we see “omelet” and “coffee”
together in the first record, but we do not find “omelet”
matched up with either of the other breakfast drinks.

THE EXPLANATION

To understand why we get this result, it is useful to keep in mind that the DATA step is really an implied
loop. Each time through the loop, the MERGE statement reads in one additional record from each
dataset listed, so long as there are still additional records remaining in the current BY group.

When this DATA step first executes, it begins with the BY group corresponding to MEAL=”breakfast”. It
reads in the first record from MENU (FOOD=“omelet”) and the first record from DRINKLIST
(DRINK=“coffee”). When the DATA step loop executes for the second time, it finds that there are still
additional records remaining in each dataset for the current BY group, so it reads in the next record from
MENU (FOOD=“pancakes”) and the next record from DRINKLIST (DRINK=“juice”).

In this manner, the records are paired up based solely upon their position within each BY group. In fact,
this behavior is exactly what we saw in the one-to-one merge from the first example, except that here it
occurs separately within each BY group. Thus, omelet and coffee are paired up even though there is no

MENU Dataset

MEAL FOOD

breakfast pancakes

breakfast waffles

breakfast omelet

lunch hamburger

lunch salad

lunch pizza

dinner chicken

dinner salmon

dinner pasta

DRINKLIST Dataset

MEAL DRINK

breakfast milk

breakfast juice

breakfast coffee

lunch tea

lunch lemonade

lunch water

dinner beer

dinner wine

dinner soda

MERGE4 Dataset

MEAL FOOD DRINK

breakfast omelet coffee

breakfast pancakes juice

breakfast waffles milk

dinner chicken beer

dinner pasta soda

dinner salmon wine

lunch hamburger lemonade

lunch pizza tea

lunch salad water

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

7

particular relationship between the two except that they both happen to come alphabetically first among
breakfast items within their respective datasets.

It’s worth noting that SAS does provide a useful note in the SAS log which gives us some indication that
things might not be proceeding as we had intended. This note should not be disregarded lightly:

NOTE: MERGE statement has more than one data set with repeats of BY values.

THE CORRECTION

What we are really looking for here is often referred to as a “Cartesian product” of the two datasets – that
is, every possible combination consisting of one record from the first dataset and one record from the
second dataset. While there are several ways to perform a Cartesian product within a DATA step, they
involve the use of more advanced techniques.

The simplest and most common way of obtaining the
Cartesian product of two datasets in SAS is by performing a
join using the SQL procedure. In this case, we actually only
want a Cartesian product of each respective BY group, which
can be accomplished as follows:

 proc sql noprint;

 create table merge4b as

 select a.meal, a.food, b.drink

 from menu as a join drinklist as b

 on menu.meal = drinklist.meal;

 quit;

This code produces an output dataset containing 27 rows as
shown to the right.

Note that our SELECT statement specifies the MEAL column
from the MENU dataset (internally referenced as A), but we
could select the MEAL column from the DRINKLIST dataset
instead. However, if we simply refer to the MEAL column
without specifying a source dataset, we will receive an error
indicating an ambiguous column reference has been
detected. While it is possible to avoid this error by using the
NOWARN option on the PROC SQL statement, this may
inadvertently suppress messages we wish to see.
Accordingly, it is advisable to explicitly specify the dataset
from which each column originates.

THE LESSON

They key lesson here is that the many-to-many merge in the
DATA step operates much like the one-to-one merge we saw
in the first example. In both cases, observations are paired
based on their positions in the datasets being merged. While
there may be unique applications where this is desirable, it
generally does not result in the outcome being sought.

MERGE4B Dataset

MEAL FOOD DRINK

breakfast omelet milk

breakfast omelet coffee

breakfast omelet juice

breakfast pancakes milk

breakfast pancakes coffee

breakfast pancakes juice

breakfast waffles milk

breakfast waffles coffee

breakfast waffles juice

dinner chicken beer

dinner chicken soda

dinner chicken wine

dinner pasta beer

dinner pasta soda

dinner pasta wine

dinner salmon beer

dinner salmon soda

dinner salmon wine

lunch hamburger water

lunch hamburger lemonade

lunch hamburger tea

lunch pizza water

lunch pizza lemonade

lunch pizza tea

lunch salad water

lunch salad lemonade

lunch salad tea

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

8

EXAMPLE 5: MISMATCHED BY VARIABLE LENGTHS

THE DATA

For our fifth example, we have the following two SAS datasets:

For the purposes of this example, it is important to note that the variable LASTNAME has different lengths
in the two datasets. In the EMPLOYEES dataset, the length of LASTNAME is 6, while in the SALARIES
dataset it is 10.

Notice also that the SALARIES dataset contains an extra record that is not in the EMPLOYEES dataset.
Perhaps it is an old record from a terminated employee that was not properly purged from the database.
Data is not always as clean in the real world as we would like it to be.

THE MERGE

We perform a simple merge of these two datasets using LASTNAME as the BY variable. Since the
datasets are already sorted by LASTNAME, it is not necessary to sort them prior to the merge.

data merge5;

 merge employees salaries;

 by lastname;

run;

The resulting dataset is not what we were expecting:

We have two records with the last name of Brooks, but one of them has the salary information associated
with Brookstein. What has gone wrong here? Fortunately, in this case, the SAS log provides a clue:

WARNING: Multiple lengths were specified for the BY variable lastname by
input data sets. This might cause unexpected results.

Furthermore, if we inspect the properties of the MERGE5 dataset, we will find that the LASTNAME
variable there has a length of 6. Thus, the value “Brookstein” was truncated to 6 characters and is now
indistinguishable from “Brooks”.

EMPLOYEES Dataset

LASTNAME TITLE

Brooks Secretary

Howard President

Slagle Custodian

SALARIES Dataset

LASTNAME SALARY

Brooks 50000

Brookstein 75000

Howard 100000

Slagle 25000

MERGE5 Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000

Brooks Secretary 75000

Howard President 100000

Slagle Custodian 25000

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

9

THE EXPLANATION

 In order to explain these strange results, we need to take a look under the hood of the DATA step and
discuss the program data vector. The program data vector (PDV) is a temporary location in memory that
SAS uses during the normal processing of a DATA step.

The structure of the PDV is determined during DATA step compilation by scanning the DATA step code
that was submitted. In our example, since the EMPLOYEES dataset appears first in the code, the
variables from the EMPLOYEES dataset and their associated attributes are added first to the PDV. Thus,
the variable LASTNAME is assigned a length of 6 in the PDV.

As the scanning continues and the SALARIES dataset is encountered, the compiler recognizes that the
PDV already includes a variable called LASTNAME and takes no further action with respect to that
variable. The fact that the variable has a different length has no impact on the PDV at that point.

Once the compilation phase is complete and DATA step execution begins, data which are read in using
our MERGE statement are placed into the appropriate locations in the PDV. If a value is too long to fit
into the corresponding variable in the PDV, it is simply truncated. Thus, in our case, “Brookstein”
becomes “Brooks”.

THE CORRECTION

One might think this code could be corrected by using the IN= dataset option discussed earlier to ensure
that only records with a corresponding entry in the EMPLOYEES dataset are present in the output
dataset. That code would look like this:

data merge5b;

 merge employees(in=a) salaries;

 by lastname;

 if a;

run;

However, this produces the same result as the original DATA step code. Because of the truncation, SAS
matches up the Brookstein salary record with the Brooks employee record. Thus, as far as SAS is
concerned, both input datasets contributed to the resulting record.

Of course, one could solve this problem by altering the input datasets to ensure that then lengths of
shared BY variables match. Another simple solution is to reverse the order of the datasets on the
MERGE statement so that the dataset having the longer length associated with the BY variable comes
first. However, this may not always be possible in situations with multiple BY variables that have
mismatched lengths.

A more proactive solution is to take control of the process by explicitly declaring the desired variable
length using a LENGTH statement. It is important that the LENGTH statement appear prior to the
MERGE statement in the DATA step so that it will be encountered first by the compiler during the process
of constructing the PDV.

data merge5c;

 length lastname $10;

 merge employees salaries;

 by lastname;

run;

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

10

This produces the dataset one might have expected in
the first place, shown at right.

If one did not wish to include observations based only
on one of the input datasets, one could modify the
above code using the IN= dataset option and a
subsetting IF statement as shown earlier.

THE LESSON

The key lesson from this example is to avoid merging datasets on BY variables having mismatched
lengths. Instead, use a LENGTH statement to explicitly control the process. A second lesson is to
always check the SAS log carefully and don’t just ignore SAS warnings. See Virgile (2003) for additional
discussion of this topic.

EXAMPLE 6: OVERLAPPING VARIABLES

THE DATA

Our sixth example is based on the following two datasets.

The BASELINE dataset contains one observation for each subject, SUBJID, in a research study with a
baseline laboratory test value, LBSTRESN. The POSTBASE dataset contains multiple observations for
each subject. Each record includes a visit number (VISIT), a lab result from that visit (LBSTRESN), as
well as a response variable, RESP.

THE MERGE

Suppose we wish to perform some computation or derivation involving the response at each visit and the
baseline lab result. Since it is commonly taught that variables from a dataset further to the right on the
MERGE statement overwrite the values of variables from datasets listed earlier, we might be tempted to
merge these datasets using the following code.

data merge6;

 merge postbase baseline;

 by subjid;

run;

MERGE5C Dataset

LASTNAME TITLE SALARY

Brooks Secretary 50000

Brookstein 75000

Howard President 100000

Slagle Custodian 25000

BASELINE Dataset

SUBJID LBSTRESN

1 90.0

2 75.5

POSTBASE Dataset

SUBJID VISIT LBSTRESN RESP

1 1 85.7 SD

1 2 94.3 SD

1 3 71.2 PD

2 1 66.6 SD

2 2 88.8 PR

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

11

The result of this operation is not what was intended.

Notice that the first and fourth rows of the resulting dataset include the value of LBSTRESN from the
BASELINE dataset while the other rows still include the values from the POSTBASE dataset.

THE EXPLANATION

Once again, the explanation of these results involves the Program Data Vector (PDV). As we discussed
earlier, the structure of the PDV is determined during DATA step compilation. At execution time, data
which are read in using statements such as SET, MERGE, and INPUT are placed into the appropriate
locations in the PDV. DATA step statements that manipulate the values of dataset variables are actually
interacting with the PDV. When it is time for an output record to be written, the contents of the PDV are
copied to the output dataset.

When the first record is read from the POSTBASE dataset, the value of LBSTRESN in the PDV is 85.7.
Next, the first record from the BASELINE dataset is read and the value of LBSTRESN in the PDV is
overwritten with 90.0. Since this DATA step contains no other executable statements, the PDV is written
to the output dataset. Thus, the first record in MERGE6 contains a value of 90.0.

During the next iteration of the DATA step, the MERGE statement reads the second record from
POSTBASE. This record contains a value of 94.3 for LBSTRESN, and that value is written to the PDV.
Since all of the record for the current BY group (SUBJID=1) have already been read from the BASELINE
dataset, the MERGE statement does not read any additional records from BASELINE. As a result, the
value of 94.3 for LBSTRESN remains in the PDV, and that is what is written to the output dataset as the
second record.

THE CORRECTION

If our intention was for the value of LBSTRESN from BASELINE to overwrite all of the values from
POSTBASE, we will need to modify our code. One way to solve this problem is to simply drop (or
rename) LBSTRESN from the POSTBASE dataset before merging. This can be accomplished as follows.

data merge6b;

 merge postbase(drop=lbstresn) baseline;

 by subjid;

run;

When the MERGE statement reads records from POSTBASE, there will be no LBSTRESN variable to
read since it has already been dropped from the input dataset. Consequently, all values of LBSTRESN in
the output dataset will be those read from BASELINE.

THE LESSON

When merging datasets, it is necessary that there be some variables in common on which to merge.
These are the BY variables. When the datasets have additional variables in common aside from the BY
variables, these are often referred to as overlapping variables. In general, it is best to avoid overlapping

MERGE6 Dataset

SUBJID VISIT LBSTRESN RESP

1 1 90.0 SD

1 2 94.3 SD

1 3 71.2 PD

2 1 75.5 SD

2 2 88.8 PR

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

12

variables to prevent problems like the one described above. Drop (or rename) any overlapping variables
so that each occurs in only one of the datasets being merged.

EXAMPLE 7: AUTOMATIC RETAIN

THE DATA

For our final example, we have two SAS datasets containing
data, once again pertaining to medical research. The
DEMOG dataset contains demographic information such as
the patient’s age and weight. This information is recorded
only once at the beginning of the study, so there is only one
record per patient. The VITALS dataset contains vital signs
measurements such as heart rate. These measurements are
recorded at each study visit, so there can be multiple records
per patient.

Both datasets include a patient identification number which
provides a unique key to the data. The VITALS dataset also
includes a visit number. The combination of the patient
identification number and the visit number uniquely identifies
a particular record.

THE MERGE

We wish to merge these two datasets. We also wish to
convert the patient’s weight from pounds to kilograms. We
write the following SAS code:

data merge7;

 merge demog vitals;

 by subjid;

 weight = weight / 2.2;

run;

As expected, the dataset resulting from the merge contains 5 variables and 6 records.

Unfortunately, a careful inspection of the WEIGHT variable reveals a serious error. Notice that the value
of WEIGHT changes for each record, even within the same patient. This is clearly not the desired result.

DEMOG Dataset

SUBJID AGE WEIGHT

1 42 185

2 55 170

3 30 160

VITALS Dataset

SUBJID VISIT HEART

1 1 60

1 2 58

2 1 74

2 2 72

2 3 69

3 1 71

MERGE7 Dataset

SUBJID AGE WEIGHT VISIT HEART

1 42 84.090909091 1 60

1 42 38.223140496 2 58

2 55 77.272727273 1 74

2 55 35.123966942 2 72

2 55 15.965439519 3 69

3 30 72.727272727 1 71

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

13

THE EXPLANATION

Once again, we turn our attention to the Program Data Vector (PDV). As mentioned previously, there are
two distinct phases to running SAS code: compilation and execution. To understand what has gone
wrong, we’ll walk step-by-step through the process of compiling and executing this code.

Compilation

As SAS compiles our example code above, the first statement that affects construction of the PDV is the
MERGE statement. The first dataset listed on the MERGE statement is DEMOG, which includes three
variables: SUBJID, AGE, and WEIGHT. All three are included in the PDV using the same attributes
(length, format, label, etc.) present in the input dataset. The next dataset listed is VITALS, which includes
three variables: SUBJID, VISIT, and HEART. Since, SUBJID is already on the PDV, only the latter two
are added.

Upon the completion of DATA step compilation, the following PDV structure is in place. Note that no
actual values have been written to the PDV yet. That will occur during the execution phase.

Execution

As we discuss the execution of the DATA step, it is important to remember that a DATA step is essentially
a loop. The statements in the DATA step are executed repeatedly until certain conditions are met that
cause execution to terminate. One such condition is a SET or MERGE statement that runs out of new
records to read from all of the input datasets listed within the statement. In the meantime, the contents of
the PDV are written to the specified output dataset each time execution returns to the top of the DATA
step (unless you override this behavior using statements such as OUTPUT).

As our example code begins, the first statement to execute is the MERGE statement. Since the DEMOG
dataset is listed first, the first record from DEMOG is read into the PDV. Next, the first record from the
VITALS dataset is read. Since both datasets contain the SUBJID variable, the value from VITALS
overwrites what had been previously read from DEMOG. Fortunately, since SUBJID is a BY variable, it
has the same value on both datasets. Once the MERGE statement has executed for the first time, the
PDV looks like this:

The next statement to execute is our weight conversion. This statement reads the value of WEIGHT from
the PDV, divides it by 2.2, and then writes the result back to the PDV. After this statement executes, we
have the following PDV:

Program Data Vector for MERGE7

Variable: SUBJID AGE WEIGHT VISIT HEART

Value:

Program Data Vector for MERGE7

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 185 1 60

Program Data Vector for MERGE7

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 84.0909 1 60

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

14

We have now reached the bottom of the DATA step. Execution returns to the top and the current
contents of the PDV are written to the ALLDATA dataset. So far, everything is proceeding exactly as
expected.

Automatic Retain

There is a common misconception that the values in the PDV are reset to missing when execution returns
to the top of the DATA step. This is only true for variables which are assigned values by an INPUT or
assignment statement (unless overridden by a RETAIN statement). For variables read with a SET,
MERGE, MODIFY, or UPDATE statement, the values are automatically retained from one iteration of the
DATA step to the next.

In our example, all of the variables on the PDV were read with a MERGE statement, so all values are
retained. When the second iteration of the DATA step begins, the PDV looks just like it did when the first
iteration ended.

Next, the MERGE statement executes again. Since the DEMOG dataset does not contain any more
records for the current BY group (SUBJID = 1), nothing is read from DEMOG. There is still one record for
the current BY group in the VITALS dataset, so the values from that record are copied to the PDV. Since
nothing was read from DEMOG, the existing values of AGE and WEIGHT survive. The PDV now has the
following state:

Now we come once again to the weight conversion statement. The current value of WEIGHT (84.0909) is
read from the PDV and divided by 2.2, and the result (38.2231) is written back to the PDV. Having
reached the end of the DATA step, the contents of the PDV are written out as the second record of the
output dataset.

At last we have uncovered the source of our problem. The value of WEIGHT is read only once for each
BY group, while the weight conversion statement executes once for each iteration of the DATA step. The
WEIGHT continues to be divided by 2.2 repeatedly until the end of the BY group is reached.

THE CORRECTION

Now that we understand what is causing this unexpected behavior, what can we do about it? The safest
and most conservative option is to limit all merges to the required statements and perform additional
processing in a separate DATA step.

data merge7b1;

 merge demog vitals;

 by subjid;

run;

data merge7b;

 set merge7b1;

 weight = weight / 2.2;

run;

However, it is not always necessary to take such drastic action. This merge can be made to perform as
expected within a single DATA step by simply renaming one of the input variables as follows:

Program Data Vector for MERGE7

Variable: SUBJID AGE WEIGHT VISIT HEART

Value: 1 42 84.0909 2 58

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

15

data merge7c(drop=weight_lbs);

 merge demog(rename=(weight=weight_lbs)) vitals;

 by subjid;

 weight = weight_lbs / 2.2;

run;

As shown below, this modified code produces the output dataset we were expecting. Since
WEIGHT_LBS is retained but not modified, each record within a given BY group will have the same value
of WEIGHT.

THE LESSON

It is advisable to be very careful when adding complex logic to a DATA step that performs a merge. One
should clearly understand how the PDV works and the ramifications of the automatic retain. If these
concepts are unclear, or one simply wishes to play it safe, move the additional logic to a separate DATA
step.

CONCLUSION

Merging datasets is one of the most basic and common functions performed in SAS. However, the
underlying procedure is more complex than it might first appear

Even the most skilled programmer can sometimes overlook subtle traps. Thus, it is advisable to
habitually practice certain programming techniques to defend against these errors:

1. Don’t merge without a BY statement unless you know exactly what you are doing, and
consider using the MERGENOBY=ERROR option to avoid doing so inadvertently.

2. Don’t merge using the SET statement unless your intent is to concatenate the datasets rather
than to match-merge them.

3. Think about which records you want to keep in the dataset resulting from your merge: all
records coming from any input dataset, or only those having BY variable values found in a
certain input dataset or combination of input datasets. Explicitly control this using the IN=
dataset option in conjunction with a subsetting IF statement.

4. Avoid performing a many-to-many merge (where multiple datasets have repeats of the same
BY variable) unless you know exactly what you are doing. Use the SQL procedure when you
need a Cartesian product.

5. Always set the length explicitly when merging on a BY variable with mismatched lengths, or
avoid the situation in the first place.

6. Don’t merge with overlapping variables unless there is a specific reason you need to do so,
and then only with full knowledge of how the merge actually works.

MERGE7C Dataset

SUBJID AGE WEIGHT VISIT HEART

1 42 84.090909091 1 60

1 42 84.090909091 2 58

2 55 77.272727273 1 74

2 55 77.272727273 2 72

2 55 77.272727273 3 69

3 30 72.727272727 1 71

Merge with Caution: How to Avoid Common Problems when Combining SAS Datasets, continued

16

7. Avoid adding additional statements beyond those required for the merge: the DATA
statement, the MERGE statement, the BY statement, possibly a subsetting IF statement, and
of course the RUN statement. If this is too cumbersome, then at the very least, refrain from
modifying the values of existing variables from an input dataset in a merge.

Finally, it is imperative for an effective SAS programmer to be equipped with a thorough understanding of
the internal workings of the DATA step to avoid mistakes like the ones discussed in this paper. See
Johnson (2012) or Li (2013) for a comprehensive treatment of the program data vector and Virgile (2000)
for additional discussion of the PDV specifically as it relates to merging.

REFERENCES

Foley, Malachy J. “Advanced MATCH-MERGING: Techniques, Tricks, and Traps.” Proceedings of the
Twenty-Second Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1997.
Paper 39. http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF

Foley, Malachy J. “MATCH-MERGING: 20 Some Traps and How to Avoid Them.” Proceedings of the
Twenty-Third Annual SAS® Users Group International. Cary, NC: SAS Institute Inc., 1998.
Paper 47. http://www2.sas.com/proceedings/sugi23/Advtutor/P47.pdf

Johnson, Jim. “The Use and Abuse of the Program Data Vector.” Proceedings of the SAS® Global
Forum 2012 Conference. Cary, NC: SAS Institute Inc., 2012. Paper 255-2012.
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf

Li, Arthur. “Essentials of the Program Data Vector (PDV): Directing the Aim to Understanding the DATA
Step!” Proceedings of the SAS® Global Forum 2013 Conference. Cary, NC: SAS Institute Inc.,
2013. Paper 125-2013. http://support.sas.com/resources/papers/proceedings13/125-2013.pdf

Virgile, Bob. “How MERGE Really Works.” Proceedings of the Pharmaceutical Industry SAS® Users
Group 2000 Annual Conference. Chapel Hill, NC: PharmaSUG, 2000. Paper DM12.
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf

Virgile, Bob. “Danger: MERGE Ahead! Warning: BY Variable with Multiple Lengths!” Proceedings of the
NorthEast SAS Users Group 2003 Conference, Washington, DC. Paper AT005.
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joshua M. Horstman
Nested Loop Consulting
317-721-1009
josh@nestedloopconsulting.com

http://www2.sas.com/proceedings/sugi22/ADVTUTOR/PAPER39.PDF
http://www2.sas.com/proceedings/sugi23/Advtutor/P47.pdf
http://support.sas.com/resources/papers/proceedings12/255-2012.pdf
http://support.sas.com/resources/papers/proceedings13/125-2013.pdf
http://www.lexjansen.com/pharmasug/2000/DMandVis/dm12.pdf
http://www.lexjansen.com/nesug/nesug03/at/at005.pdf

