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ABSTRACT  

In this paper, we describe the steps to deploy a pre-built SAS® Viya® Docker image to the cloud. We use 
Microsoft Azure as the cloud environment to deploy our single programming-only image. We explain how 
to push massive Docker images to a private Azure Container Registry (ACR) and how to launch Azure 
Container Instance (ACI) to host a Docker image. We also show how to share code and data between 
Azure Storage and the SAS Viya Docker image, providing a complete data science working environment. 
Finally, we demonstrate how to use our SAS Viya environment for machine learning with code examples 
using SASPy, SAS Scripting Wrapper for Analytics Transfer (SWAT), TensorFlow and R. 

INTRODUCTION  

In our previous paper, “Deploying SAS Viya to Docker – a practical guide for data scientists”, we showed 
how to build and deploy a local SAS Viya Docker image using sas-container-recipes, an open source 
GitHub project. Our local deployment had persistent storage and support for open source data science 
tools such as Jupyter Notebook, Python, and R. This enabled the local user to install additional packages 
and libraries for both Python and R. 

In this paper, we show how to deploy this image to the cloud using Microsoft Azure (see De Capite 2018 
for a discussion on Azure and other cloud providers). We show how to tag and push large Docker images 
to the Azure Container Registry (ACR), and how to create an Azure Container Instance (ACI) using Azure 
CLI, a command-line tool for managing Azure resources. We discuss the differences in persistent storage 
between the cloud and a local deployment, and outline the various error messages a user may encounter 
while deploying a container instance.  

SETTING UP YOUR AZURE CLOUD ACCOUNT 

In this section, we provide a complete introduction to creating the Azure services needed to deploy a 
Docker image to the cloud. We also explain the various authentication methods required for a successful 
launch. 

CREATING AN AZURE SUBSCRIPTION 

First, you will need to create an Azure account. Once you have an account, you will need to create an 
Azure subscription. This could be the free Azure subscription or a new pay-as-you-go one. If you are 
using a company account, you may need an administrator to create a subscription for you, and then give 
you owner permissions. To create a subscription, navigate to Subscriptions (see Figure 1).  

 

Figure 1: To add a subscription, find subscriptions under the All services tab in the top left of the menu. 
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After creating a subscription, you will need to install the Azure CLI 

AZURE CLI 

Although Azure’s User Interface (UI) makes some actions quite simple to carry out, we have found that 
not all options are available through the UI. Unfortunately, some of the missing options are needed for a 
successful deployment, such as the ability to set “pull” permissions for the ACR. Follow these instructions 
to install Azure CLI on RedHat, Fedora or CentOS: https://docs.microsoft.com/en-us/cli/azure/install-
azure-cli-yum?view=azure-cli-latest. 

Azure login and selecting subscriptions  

Once you install the Azure CLI, log into Azure using the command az login and your Microsoft account 
credentials. This will open a browser, ask you to confirm your user email and password and take you 
back to the command prompt, at which point you will see a list of your subscriptions (see Figure 2).  

 

Figure 2: The JSON output of the az login command will show all your subscriptions. 

If you have more than one subscription, you can switch subscriptions using the az account set command. 
Remove the symbols < and > and run: 

az account set --subscription <your_first_subsc_number> 

CREATING AZURE SERVICES 

The next two services that we will discuss can be created using the UI as well as the Azure CLI. In this 
section, we expand on the discussion in De Capite 2018, and show how to create a resource group and a 

https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-yum?view=azure-cli-latest
https://docs.microsoft.com/en-us/cli/azure/install-azure-cli-yum?view=azure-cli-latest
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storage account using the command line. We recommend creating a text file with all the commands and 
pasting the commands in the command line as you follow this guide. You will want to set these five bash 
shell variables first: 

ACI_SUBSCRIPTION=your_first_subsc_number 

ACI_PERS_RESOURCE_GROUP=your_resource_group 

ACI_PERS_STORAGE_ACCOUNT_NAME=chosenstoragename 

ACI_PERS_SHARE_NAME=chosensharename 

ACR_NAME=chosenregistryname 

ACI_PERS_LOCATION=centralus 

 

The variables above are your subscription ID, the name of your resource group, the storage account 
name, the file share name in your storage account, the registry name where you will push your Docker 
image and the location of all your services respectively. 

Creating a resource group 

To create a new resource group, set the correct subscription and run: 

az account set --subscription $ACI_SUBSCRIPTION 

az group create $ACI_PERS_RESOURCE_GROUP 

Creating a storage account 

To create a storage account, run: 

az storage account create --resource-group $ACI_PERS_RESOURCE_GROUP --name 

$ACI_PERS_STORAGE_ACCOUNT_NAME --location $ACI_PERS_LOCATION --sku 

Standard_LRS --kind StorageV2 --access-tier Hot --subscription 

$ACI_SUBSCRIPTION 

 

You can modify storage kind and access tier options to match your requirements. In addition to the shell 
variables set above, we also set the STORAGE_ACCOUNT and STORAGE_KEY variables. You will use 
them when you set up persistent storage for your instance. Run the following code to set the necessary 
variables: 

STORAGE_ACCOUNT=$(az storage account list --resource-group 

$ACI_PERS_RESOURCE_GROUP --query 

"[?contains(name,'$ACI_PERS_STORAGE_ACCOUNT_NAME')].[name]" --output tsv) 

STORAGE_KEY=$(az storage account keys list --resource-group 

$ACI_PERS_RESOURCE_GROUP  --account-name $STORAGE_ACCOUNT --query 

"[0].value" --output tsv) 

 

Once you create the storage account, navigate to storage account settings and make sure that secure 
transfer is not enabled under the Configuration options (see Figure 3). 
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Figure 3: Set secure transfer to disabled under storage account settings. 

Creating a file share  

To create the file share where Docker will mount the folders inside the user /home directory (in our 
example, cas and sasdemo), run: 

az storage share create --name $ACI_PERS_SHARE_NAME --account-name 

$ACI_PERS_STORAGE_ACCOUNT_NAME 

 

If you navigate to portal.azure.com, you will now see that the resource group and the storage account 
have been created, and that the storage account contains a file share. 

DEPLOYING YOUR DOCKER IMAGE TO AZURE CONTAINER INSTANCES 

In the previous section, we set up a subscription, a resource group and a storage account to hold the data 
and code for the Docker image. In this section, we set up the ACR and we show how to push the image 
to the ACR. Finally, we walk through how to deploy and launch a SAS Viya Docker image in ACI.   

CREATING AN AZURE CONTAINER REGISTRY 

To create a container registry, navigate to Container registries and add a registry. Ensure that you enable 
the Admin user as shown in Figure 4. You will be able to launch multiple instances from a single registry 
that holds your Docker image. 
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Figure 4: The container registry is created with the admin user enabled. 

To create a registry via the Azure CLI, run: 

az acr create --resource-group $ACI_PERS_RESOURCE_GROUP --name $ACR_NAME --

sku Standard --admin-enabled true -–location $ACI_PERS_LOCATION 

 

Note that when you create services in Azure, you may encounter errors if some of your chosen names do 
not conform with the various Azure naming conventions (sometimes the symbols - and _ are allowed, 
while other times, they are not). 

PUSHING YOUR DOCKER IMAGES TO AZURE CONTAINER REGISTRY 

Now that your container registry is set up, you will copy or push the Docker image to it. There are two 
ways to push a Docker image to an ACR: using az acr login and using docker login. For large images, we 
strongly advise the use of docker login over Azure CLI. When using az acr login, the authentication token 
expires before the push is complete, and the push fails. 

Pushing using Docker login 

To push the image to the ACR, first find out the image ID of your image with the command docker 
images. In our case, the image ID is 56c02aae8c9a. Next, create an alias to the fully qualified path of 
your registry using the docker tag command (see 
https://docs.docker.com/engine/reference/commandline/tag/ for more information). Once you have 
“tagged” the registry, login using docker login. Note that the username and password for the registry are 
not your Azure credentials but are instead found under Access Keys in the Settings as shown in Figure 5. 
Note that our registry name (stored under the shell variable ACR_NAME) is sassinglepy3r3 and the 
image name in the ACR will also be sassinglepy3r3 (indicated by the string immediately after azurecr.io/ 
in the docker tag command). 
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Figure 5: To push the Docker image to the registry you will need the username and password found under 
Access keys tab in the container registry settings. 

The complete set of commands to push your Docker image is: 

docker tag 56c02aae8c9a sassinglepy3r3.azurecr.io/sassinglepy3r3 

docker login sassinglepy3r3.azurecr.io 

docker push sassinglepy3r3.azurecr.io/sassinglepy3r3 

 

The push will take some time to complete, and depending on the speed of your network, can take as long 
as an hour. If you need to interrupt the push for whatever reason, you can restart it. Layers that were 
pushed previously will show the message “Layer already exists”. Once the push is complete, you can look 
at the size of your image in the ACR Overview. The size in the ACR will be quite a bit smaller than the 
size on your local machine. In Figure 6, we show the compression when uploading our single SAS Viya 
image. The 25GB image on a local CentOS machine is just under 10GB in ACR. 

 

Figure 6: The size of the Docker image is compressed from 25GB to just under 10GB in ACR. 
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AZURE CONTAINER INSTANCES PRE-REQUISITES 

You are almost ready to create and launch your Docker instance. Before you do that however, you will 
need to give permissions for the instance to pull the image from the ACR. This is not possible when using 
the UI. You will need a unique service principal for the instance you are launching and the associated 
username and password. These credentials will be needed when creating the instance using the 
command line. 

Creating a service principal (non-optional) 

To create a service principal, use the ACR name and choose a service principal name: 

ACR_NAME=sassinglepy3r3 

SERVICE_PRINCIPAL_NAME=acr-service-principal-sassinglepy3r3 

 

Although you can use the same image to set up separate instances (use the same shell variable 
ACR_NAME), make sure that for each new instance you create, you use a unique 
SERVICE_PRINCIPAL_NAME. If you do not you might see a message about an existing application 
instance, and that it will be patched. This can lead to you being unable to restart a previous instance that 
was set up with that same SERVICE_PRINCIPAL_NAME. 

To create the authentication variables, run: 

ACR_REGISTRY_ID=$(az acr show --name $ACR_NAME --query id --output tsv) 

SP_PASSWD=$(az ad sp create-for-rbac --name http://$SERVICE_PRINCIPAL_NAME 

--scopes $ACR_REGISTRY_ID --role acrpull --query password --output tsv) 

SP_APP_ID=$(az ad sp show --id http://$SERVICE_PRINCIPAL_NAME --query appId 

--output tsv) 

=sassinglepy3r3 

 

Notice that --role is set to acrpull which grants pull only permissions. Other options are acrpush (push and 
pull permissions) and owner (push, pull and assign roles). 

Creating the instance 

To create a container instance, you will need the previous shell variables and the following information: 

• --name : instance name (this can to be anything) 

• --image : full address of the registry including the name after the forward slash (/) 

• --ip-address : set to Public 

• --ports : list of ports, currently maximum of 5 (see comments below) 

• --dns-name-label : this will create the fully qualified domain name (FQDN) 

• --cpu : number of CPUs 

• --memory : RAM in GB 

• --os-type : must be Linux 

• --azure-file-mount-path : The directory in the Docker container that will map to our file share  

Unfortunately, ACI does not currently support port mapping, and it only supports a maximum of 5 ports. At 
the time of writing, the sas-container-recipes project may have changed the default Jupyter port from 
8888 to 8080, so this may free up a port. Until this is confirmed you can choose to launch your image with 
port 5570, allowing the use of CAS, or launch with port 8787, the default RStudio-server port. 

To launch an instance with CAS port 5570, use: 

az container create --resource-group $ACI_PERS_RESOURCE_GROUP --name 

sassinglepy3r3 --image sassinglepy3r3.azurecr.io/sassinglepy3r3 --ip-

address Public --ports 8080 5570 8888 20 443 80 --protocol TCP --dns-name-
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label sassinglepy3r3 --cpu 4 --memory 16 --os-type Linux --registry-

username $SP_APP_ID --registry-password $SP_PASSWD --registry-login-server 

sassinglepy3r3.azurecr.io --azure-file-volume-account-name 

$ACI_PERS_STORAGE_ACCOUNT_NAME --azure-file-volume-account-key $STORAGE_KEY 

--azure-file-volume-share-name $ACI_PERS_SHARE_NAME --azure-file-volume-

mount-path /home/ 

 

To launch an instance with port 8787, use: 

az container create --resource-group $ACI_PERS_RESOURCE_GROUP --name 

sassinglepy3r3 --image sassinglepy3r3.azurecr.io/sassinglepy3r3 --ip-

address Public --ports 8080 8787 8888 20 443 80 --protocol TCP --dns-name-

label sassinglepy3r3 --cpu 4 --memory 16 --os-type Linux --registry-

username $SP_APP_ID --registry-password $SP_PASSWD --registry-login-server 

sassinglepy3r3.azurecr.io --azure-file-volume-account-name 

$ACI_PERS_STORAGE_ACCOUNT_NAME --azure-file-volume-account-key $STORAGE_KEY 

--azure-file-volume-share-name $ACI_PERS_SHARE_NAME --azure-file-volume-

mount-path /home/ 

 

The command prompt will show the message Starting, followed by Running. After a few minutes, you 
should be able to see the new instance listed in the UI under container instances (see Figure 7). If your 
new instance is not showing, check the terminal for any error messages. 

 

Figure 7: The container instance list, showing the instance we are creating, an instance that is currently 
running, and an instance with a failed status, which was stopped normally.  The UI need not always show the 
correct or most recent status (even if you hit refresh). 

Once the instance is created, a JSON output will appear in the command line with various instance 
properties, such as IP address and ports. If you click on the instance name (see Figure 7), you will be 
taken to the overview panel, where you can see its status and any warning messages as well as RAM, 
CPU and network traffic plots for the instance. 

In our experience the UI may show a status that is often misleading, such as failed or repairing. It is 
typical to see a warning message such as the one shown in Figure 8. In this case, the instance creation is 
proceeding normally, but because pulling such a large Docker image takes time, the service returns a 
“waiting state and may not be running” message. Common instance states are waiting and repairing 
when the image pull is attempted. The state failed shows up often as well despite the creation proceeding 
normally. Clicking on the warning message takes you to a list of actions or events in the container 
instance creation.  
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Figure 8: Overview panel showing the correct status for newly created instance. A warning message about 
waiting containers can be confusing at times.  

Quite frequently the image pull may fail, and it can take a few attempts before the pull succeeds and the 
container starts running. It is not unusual to see counts for the image pull as high as 5-10. In Figure 9, we 
show the instance events with just a single image pull, before the instance starts running. 

 

Figure 9: Container instance events, with a single image pull required to start our instance. Frequently, it can 
take 5-10 pulls before the instance starts running. 

Another useful way to check the true status of the instance launch is with the Azure CLI command az 
container show. To check the status of an instance run: 

az container show --resource-group $ACI_PERS_RESOURCE_GROUP --name 

$ACR_NAME --output table 

 

New instances will show a status of pending, which will change to running once launched (see Figure 10). 

 

Figure 10: Instance status, including the number of CPUs, the amount of RAM, IP address and ports. 
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Finally, you can also use the CPU and Memory plots in the instance overview panel to see if the instance 
launched correctly. Once the instance is up and running (and reachable), you will see a characteristic 
step in the memory usage indicating a running Docker container. The memory usage should be between 
1-3GB for a freshly launched image as shown in Figure 11. 

 

Figure 11: Instance overview, showing the step-like increase in RAM indicating a running Docker container. 

Although the above image launched very quickly (15-20 minutes), it can take up to 90 minutes. The most 
frequent reason for the delay is the initial image pull. If the IP address is not reachable after 90 minutes, 
try restarting the instance in the UI. 

Credentials summary 

To ensure a successful deployment, you will need to use three separate sets of credentials: 

• First, log into Azure with Microsoft Account credentials using az login 

• Second, to push the image, use the username and access key for the ACR using docker login 

• Third, use a service principal with its own username(id) and password for the instance to pull the 
image from ACR 

INSTANCE COSTS 

Based on our instance, the daily cost for keeping an instance is about $8. It costs roughly $6 per day to 
run the instance, with an additional $2 per day coming from ACR and the Storage account. One way to 
minimize these costs, is to use scheduling automation runbooks that can stop and start instances during 
working hours, yielding a savings of around 60%. 

ERRORS AND UNUSUAL BEHAVIORS 

In addition to the errors outlined in the previous section, we also experienced these behaviors:  

Jupyter kernel stops or does not start 

In Azure, you can use the FQDN to access Jupyter without explicitly including the port. If you use 
http://sassinglepy3r3.centralus.azurecontainer.io/Jupyter to launch Jupyter, the kernel will likely die or 
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never start. Instead, use the IP address while explicitly specifying the port 8888, as in http://<ip-
address>:8888/Jupyter. A recent change in the sas-container-recipes GitHub project may mean that 
Jupyter is now accessible on port 8080. This means that the FQDN address for Jupyter may work, while 
previously, the kernel would crash. 

Persistent storage location changes for Jupyter Notebook folder 

In our previous paper, “Deploying SAS Viya to Docker – a practical guide for data scientists”, we 
deployed a local SAS Viya Docker image. In that Docker image, the sasdemo user had the default folder 
for Jupyter Notebooks set to /home/sasdemo/jupyter. When we deployed to Azure, Jupyter notebooks 
were saved under /home/cas/jupyter instead. As a result, user saved packages for R and Python were 
saved in two different folders. 

USING YOUR DATA SCIENCE ENVIRONMENT 

With your SAS Viya Docker instance live, you can begin to use it for various data science tasks. Before 
we dive into some code examples, we discuss persistent storage, libraries and kernel tests. 

PERSISTENT STORAGE FOR JUPYTER NOTEBOOK 

Recall that when you created your instance, you used the flag --azure-file-mount-path to map the Azure 
storage file share, here called sasdockerpy3r3single, to the /home folder in the Docker image. Therefore, 
the Azure file share contains two folders from the Docker /home directory, namely cas and sasdemo, as 
shown in Figure 12. Anything saved to these two folders will persist, even when you stop or restart your 
Azure container instance. 

 

Figure 12: The Azure file share holds the contents of the Docker image /home directory. 

The default directory for your Azure Docker instance, where Jupyter stores notebooks is cas/jupyter/ as 
shown in Figure 13. This is different from a local deployment, where the default directory was 
sasdemo/jupyter. The file share corresponds to the user’s /home folder. Any Jupyter notebook-regardless 
of kernel-will be saved under /cas/jupyter. 
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 Figure 13: Jupyter Notebooks are saved under cas folder instead of sasdemo when deploying in Azure. 

PERSISTENT STORAGE FOR PYTHON LIBRARIES 

Any library installed with pip using the --user flag, will be installed under /cas/.local/lib/python3.6/site-
packages as shown in Figure 14. We do not advise installing with pip as a root user inside the Docker 
image. 

 

Figure 14: Python libraries installed with the flag --user persist and are saved in the cas folder. 
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PERSISTENT STORAGE FOR R LIBRARIES 

The default library paths for R packages differ between RStudio and the R kernel in Jupyter. In RStudio, 
the default library path is set to a local user folder (/home/sasdemo), while R sessions in Jupyter and the 
bash shell use a system folder (/usr). In this section, we show how to configure Jupyter to use a local 
library path, so that installed packages persist in Azure storage. In the next section, we discuss RStudio 
settings. 

RStudio Server 

Before you can run R code in RStudio server, you will have to start the server. To do this, you will need to 
exec into the image. In Azure, you can do this by navigating to containers under the instance settings and 
clicking the connect tab. Choose the /bin/bash option as shown in Figure 15. 

 

Figure 15: You can exec into an Azure container instance and start services such as RStudio server under 
Settings > Containers > Connect. 

Once you connect to your running Docker instance (you will log in as a root user, shown by #), run the 
command sudo rstudio-server start to start RStudio on port 8787. If you launched your instance with port 
5570 (to allow CAS connections), you will need to either re-configure the server or launch a new instance 
with port 8787 instead of port 5570. To re-configure the server, create the file /etc/rstudio/rserver.conf (if it 
doesn’t already exist) and add an entry for port 8787: 

www-port=5570 

 

In the future, Azure may allow more than five ports or allow port mapping, which should make this part of 
the setup easier. If you navigate to <ip-address>:8787, you should see the login screen with the default 
sasdemo user and password (see Figure 16). 
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Figure 16: If the RStudio server is running and port 8787 is open/available, you should see the login prompt. 

Once you login to RStudio server, you will see the familiar RStudio interface where you can load libraries 
and execute R code (see Figure 17). Use the .libPaths() command to show all the library paths accessible 
in the R session. 

 

Figure 17: RStudio server interface accessible in the Docker container on port 8787, which must be open 
when you first create the instance in Azure. 
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Note how RStudio automatically configured the path /home/sasdemo/R/x86_64-redhat-linux-gnu-
library/3.5 to store R packages. This is the path that you need to add to a Jupyter R session. 

Configuring Jupyter Notebook R kernel 

By default, an R session in Jupyter Notebook can only access two library paths (see Figure 18). The path 
set by RStudio is not yet available. To fix this, add a .Rprofile file to the /home/cas folder in the Docker 

 

Figure 18: The default library paths when you first launch Jupyter with IRkernel. 

image. You can do this by either uploading the file to the cas folder in the Azure file share or by logging 
into the image and opening a new file with a text editor (e.g., vi .Rprofile) and typing: 

.libPaths("/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.5") 

 

Remember to make sure that the path corresponds to your system and your version of R. In this paper, 
we use R version 3.5. Save the file and restart the R kernel. Running the .libPaths() command should 
now return the same three libraries that we saw when we used RStudio server. It’s worth noting that in a 
local deployment, the .Rprofile file was in the /home/sasdemo folder, and not /home/cas. This is due to 
the directory swap we described in Persistent storage location changes for Jupyter Notebook folder. 

 

Figure 19: Library paths now include the local library folder, if you use the .Rprofile file in the cas folder. 
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With the local path now available you can load packages that are installed in any of the three libraries, 
and you can install new packages, such as topicmodels, as shown in Figure 19. 

If you did not install RStudio server or if the server is not available in your instance due to port settings, 
you should see a prompt from Jupyter about setting a local path when you attempt to install a new 
package. You should see the option to set the exact same folder path as we saw with RStudio, namely 
/home/sasdemo/R/x86_64-redhat-linux-gnu-library/3.5. If you are not given this option, you can create 
your own folder (for example sasdemo/my_libs/R/x86_64-redhat-linux-gnu-library/3.5) and use that path 
in the .Rprofile file instead. 

DATA SCIENCE EXAMPLES 

In this section, we demonstrate how to use your SAS Viya environment for data analytics and machine 
learning with short code examples using SASPy, SAS Scripting Wrapper for Analytics Transfer (SWAT), 
TensorFlow, and R. 

SAS code in SAS Studio 

To access SAS Studio, use the IP address found in the instance overview, e.g.,  http://52.242.214.13/ or 
the FQDN, which is http://sassinglepy3r3.centralus.azurecontainer.io/ in our example (see Figure 20). 

 

Figure 20: Welcome page with an access link to SAS Studio. 

To log into a SAS Viya session, click the link on the access page or go to http://52.242.214.13/SASStudio 
(see Figure 21). 

http://sassinglepy3r3.centralus.azurecontainer.io/
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Figure 21: SAS login screen. 

Once logged in, you can start coding in SAS (see Figure 22). Since you configured persistent storage, 
your data and code will be accessible through Azure Storage. 

 

Figure 22: SAS code example using SAS Studio. 

Licensed SAS products can be found under the Task and Utilities menu, where for example, you can 
access SAS Viya Supervised Learning methods such as Linear Regression (see Figure 23). 
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Figure 23: Access to various SAS products including SAS® Visual Data Mining and Machine Learning. 

SAS code in Jupyter 

You can execute SAS code using the SAS kernel in Jupyter Notebook (see Figure 24), a development 
environment and a visualization tool in one. This makes it easy to show code and results side by side. 
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Figure 24: SAS code example with SAS kernel in Jupyter Notebook. 
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Python and SASPy 

SASPy is an open source Python package that allows access to SAS datasets and products. In your SAS 
Viya Docker image, it is already installed and configured for use in Jupyter Notebooks. 

 

Figure 25: SASPy code example using Python 3.6. 
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When using the sashelp library, you may encounter permission issues when partitioning data for training 
and testing. Although you can use custom SAS or Python code to avoid this to some extent, you can use 
a simple trick to circumvent the issue if you are using SASPy. You can save any dataset from the sashelp 
library and make a local copy: 

iris.to_csv('/tmp/iris.csv') 

iriscsv = sas.read_csv('/tmp/iris.csv', 'iris_csv') 

# now you can partition a local copy or iris with not errors 

iris_part = iriscsv.partition(fraction=.7, var='species') 

Python and SWAT 

The SAS SWAT package is an interface to the SAS Cloud Analytics Services (CAS) engine. Recall that 
when we launched our Azure container instance, we specifically included port 5570, the default port for 
communication with the CAS server. In Figure 26, we show how to connect to CAS with SWAT and how 
to import a remote dataset into a SAS session. 

 

Figure 26: Code example showing how to connect to CAS on port 5570 using the Python SWAT package. 

TensorFlow example 

In this section we use Tensorflow to build a neural network to classify images from the MNIST dataset 
(see https://www.tensorflow.org/tutorials for more TensorFlow examples). Since we did not install 
TensorFlow during the initial image build, we can use pip to install it locally with this command: 

!pip3 install --user tensorflow==1.5 --no-cache-dir 

 

We use pip3 explicitly and we disable the cache to prevent pip from hanging. We also force TensorFlow 
version 1.5, although you can choose to install the newest version. The install takes quite a bit longer 
than on a local machine. It may take as long as 20 minutes. Allow the process to finish, and do not exit 
the install or you might corrupt the libraries. In Figure 27, we show the system paths including the 
/home/cas/.local folder, where new libraries are saved. Once the install completes, restart the kernel. You 
should now be able to import tensorflow. 

https://www.tensorflow.org/tutorials
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Figure 27: Python paths, including the /home/cas/.local path where pip installs new libraries. 

In Figure 28, we test our TensorFlow install by training a neural network on the MNIST dataset. 

 

Figure 28: Building a small neural network using TensorFlow in the Docker instance. 
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Machine Learning with R and Jupyter Notebook 

Your new data science environment comes with IRkernel, the R kernel for Jupyter Notebook. In Figure 
29, we use the R package ggplot, to visualize the iris dataset. We use the repr package to resize the 
ggplot output images. 

 

Figure 29: R code example in Jupyter Notebook. 

In addition to visualization, we can also train various machine learning models to predict the type of iris 
species. In Figure 30, we show a minimal code example, which trains five different models and uses 
cross-validation.  
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Figure 30: Complete code example in R, illustrating data partitioning, training 5 machine learning models and 
obtaining predictions using the caret package. 

We apply our 5 models to the validation data and find that that Linear Discriminant Analysis (LDA) has the 
best accuracy (97.5% accuracy), followed by the k-nearest neighbor algorithm. We achieve 100% 
accuracy on validation data (see the confusion matrix in Figure 31). 

 

Figure 31: Predictions for the validation data and the confusion matrix for the different classes. In this case, 
we achieve perfect classification. 

CONCLUSION 

In this paper, we’ve shown how to deploy a single SAS Viya Docker image to the Azure cloud. We 
described in detail how to set up an Azure account for Docker deployments and how to push large Docker 
images to the Azure container registry. We also explained how to successfully deploy an Azure container 
instance using the Azure CLI. Finally, we showed examples of using SAS, Python, and R, in the SAS 
Viya data science environment. We focused on running pure SAS code in Jupyter Notebook using the 
SAS kernel, accessing SAS procedures using SASPy and SWAT and using pure Python and R to 
perform basic machine learning in Jupyter Notebook. 
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