
1

MWSUG 2019 – Paper RF060

DOMinate your ODS Output with PROC TEMPLATE, ODS Cascading Style
Sheets (CCS), and the ODS Document Object Model (DOM) by Mastering
ODS TRACE DOM, Parsing CSS with a PROC TEMPLATE Front End, and

Overriding ODS Style Inheritance with Customized Styles

Louise S. Hadden, Abt Associates Inc.

Troy Martin Hughes

ABSTRACT

SAS® practitioners are frequently forced to produce SAS output in mandatory formats, such as using a
company logo, corporate or regulated government templates, and/or cascading style sheet (CSS). SAS
provides several tools to enable the production of customized output. Among these tools are the Output
Delivery System (ODS) Document Object Model (DOM), cascading style sheets, PROC TEMPLATE, and
ODS style overrides (usually applied in procedures and/or in originating data). This paper and presentation
investigates "under the hood" of the Output Delivery System destinations and the PROC REPORT and
investigates how mastering ODS TRACE DOM and controlling styles with the CSSSTYLE= option, PROC
TEMPLATE, and style overrides can satisfy client requirements and enhance ODS output.

INTRODUCTION

SAS has provided myriad resources to control your output to meet standards and/or to look exactly as
desired. The Output Delivery System (ODS) was one of the first steps in helping SAS practitioners to
enhance the standard listing output. SAS has provided various output destinations to users throughout its
history, including the listing destination, and in the not-so-recent past even specific printers. To facilitate
user control over output styles, SAS has provided style and procedure templates that are applicable to all
destinations, with portions of these templates that are specific to a given destination. SAS practitioners can
further customize output by:

• Using cascading style sheets (CSS) as an option, or a supplement to, PROC TEMPLATE styles;

• Using PROC TEMPLATE to create a custom table template;

• Using PROC TEMPLATE to modify an existing style template;

• Using style overrides to enhance output with both procedural options (e.g. PROC REPORT define
statements, etc.) and within incoming data streams (e.g. include style commands via ODS
ESCAPECHAR);

• Using the ODS Document Object Model (DOM).

The purpose of this paper is to introduce SAS practitioners to some highly useful tools designed to facilitate
an understanding of how SAS provides style information to control and enhance ODS output, and to
incorporate CSS into SAS programs and ODS output. The ODS DOM became available as of SAS version
9.4, but the ability to incorporate CSS into ODS output as part of ODS code has been possible since SAS
version 8.2 (and earlier unofficially!) A review of ODS vis a vis styles will be provided, and two primary
methods of introducing CSS into ODS output will be discussed, along with the evolving functionality of CSS
within SAS to accommodate different media types. Additionally, the role DOM can play in informing and
controlling styles in ODS output will be explored. The paper and presentation are likely to appeal to
intermediate SAS users and above.

FUNCTIONAL TOOLS

SAS provides many tools with which to create output, whether it is an output data set, spreadsheet, or a
report destined for various types of media. The ODS and ODS Style Templates will be discussed briefly in
the context of CSS and the ODS Document Object Model, along with macro processing and external
reference files.

2

OUTPUT DELIVERY SYSTEM (ODS)

Most SAS users are intimately acquainted with the Output Delivery System (ODS) which debuted in SAS 7,
and has evolved over time into a star-studded assemblage of useful (and varied) tools and destinations with
which SAS users can produce stylish “documents” in a variety of formats and media. The basic “sandwich”
technique of wrapping SAS procedure(s) in ODS destination open and end statements now has many options
to enhance the production of, style of, and functionality of ODS output. These options include, but are not
confined to: the ability to specify a SAS-provided or custom style template; the option to use ODS
ESCAPECHAR to apply in-line styles within procedures and in incoming data; the ability to create a custom
ODS table template; the ability to access CSS to influence output styles; the ODS TRACE capability to access
information about ODS objects that are created; and last but not least, the subject of this paper and
presentation, the ODS DOM. Further discussion of ODS as a whole is out of scope for this paper, although
many useful and informative papers and books are available.

ODS STYLES

To understand the impact of CSS and DOM on ODS output, the functionality of ODS styles will be explicated
in more detail. One of the first ODS destinations was Hypertext Markup Language (HTML), and one of the
cornerstones of HTML is the concept of “tags.” Historically, HTML (a text file) was designed to display data on
the World Wide Web (W3) and combined content with style information using tags, or elements. Websites
rendered HTML output, with style information built into each item to be displayed, into screen output. In the
early days of ODS, SAS produced HTML 3.2 output designed to be viewed on a screen, although Microsoft
Word® and Microsoft Excel® could open ODS HTML output as of Windows 97 so theoretically ODS HTML
output could be printed. SAS provided a “default” style template to hold HTML output – if you did not specify a
style template for HTML output, that default style, which had style instructions for given procedural output
appropriate for screen output, would be used by SAS. The first ODS printer destinations quickly followed,
producing ODS output in Rich Text File (RTF) and Portable Document Format (PDF) formats, which have their
own proprietary methods of specifying style information in output files which are primarily designed for print
media. Early on, SAS recognized that style information for different ODS destinations was conveyed in different
ways, and accommodated those differences by developing different style templates that reflected the different
media types. If a SAS user creates an RTF file and does not specify a style template, the default RTF style
template is used. If a SAS user outputs a file to the HTML ODS destination and does not specify a style
template, STYLES.HTMLBLUE is the default.

To further customize output, SAS practitioners can use PROC TEMPLATE to create a custom table template;
use PROC TEMPLATE to modify an existing style template; use style overrides to enhance output with both
procedural options (e.g. PROC REPORT define statements, etc.) and within incoming data streams (e.g.
include style commands via ODS ESCAPECHAR); use CSS as an option, or a supplement to, PROC
TEMPLATE styles; and use the ODS DOM. The focus of this paper is the use of CSS and DOM.

MACRO PROCESSING AND EXTERNAL REFERENCE TABLES

A complex report may have hundreds or thousands of cells, headers, and borders to style. It goes without
saying that macro processing and external reference tables can play an essential role in customized SAS
reporting. We’ll explore methods and examples below.

CONTENT, STRUCTURE, AND STYLE, OH MY!

Data products such as reports produced by SAS REPORT or TABULATE procedures are often customized
to meet the style demands of analysts, customers, and other stakeholders. Static formatting might prescribe
the layout, fonts, font colors, background colors, and other stylistic elements that are required for a specific
organization, team, or report purpose. For example, a company might brand itself by requiring that reports (in
addition to marketing and other published materials) contain their “trademark” colors — think McDonald’s
yellow or A&W brown and orange. These stylistic decrees are often far-reaching within an organization and
stable over time, thus they are more likely to be prescribed by human resources or marketing departments
than by developers themselves.

Other stylistic elements, however, can be more dynamic and driven by the objective or content of a specific
data product. For example, the font or font size of a report might be specified at runtime or dynamically

3

generated based on the quantity of data to be displayed, so long as it conformed to any organization-wide
style guidelines that existed. In both cases, however, the flexibility and reliability of reports can be
maximized where report content, structure, and style elements are separate and distinct. CSS,
demonstrated in the following section, supports this flexibility, but it’s beneficial to first identify these
disparate elements—content, structure, and style.

CONTENT

The content of a SAS data product is often a data set. For example, the following code produces the
Students data set that includes an abbreviated list of Hogwarts School of Wizardry and Witchcraft students
and their respective houses, as culled from the Muggles’ Guide to Harry Potter Characters. The wizarding
world of Harry Potter is particularly appropriate to demonstrate the transformative nature of style in SAS
reporting, with differential house colors and atmosphere of magical transformation.
data students;

 infile datalines delimiter=',';

 length student $30 house $20;

 input student $ house $;

 datalines;

Neville Longbottom, Gryffindor

Draco Malfoy, Slytherin

Ginny Weasley, Gryffindor

Hannah Abbott, Hufflepuff

Tom Marvolo Riddle, Slytherin

Harry Potter, Gryffindor

;

A simple “report” having only content (thus, without modified structure or style) might be produced and is
often sufficient for internal purposes. For example, the PRINT procedure having only the DATA parameter
specified will by default print all variables within the Students data set:

proc print data=students;

run;

And this code produces the following output:

Obs student house

1 Neville Longbottom Gryffindor

2 Harry Potter Gryffindor

3 Ginny Weasley Gryffindor

4 Hannah Abbott Hufflepuff

5 Draco Malfoy Slytherin

6 Tom Marvolo Riddle Slytherin

STRUCTURE

But for many purposes, structure and style are additionally required for data products. Structure generally
includes the order and formatting of report headers, rows, columns, and other elements, and will vary based

4

on the structure of the underlying data set. For example, within the abbreviated Students data set, Hogwarts
houses are repeated but students are unique; however, are these business rules enforced through data
quality constraints or is it possible for student names to be repeated as well? If the objective of a report is
to produce an ordered list of unique students by house, data quality constraints and other business rules
must be understood to ensure a report is correctly structured.

With this understanding (that student names are unique within the Students data set), the following
REPORT procedure now conveys both content and structure, by grouping students by their respective
houses, despite the original ordering in the underlying data set:

proc report data=students nocenter nowindows nocompletecols;

column house student;

define house / order 'Hogwarts House';

define student / display 'Student';

run;

This REPORT procedure produces the following output having the default ODS style for the destination:

Hogwarts House Student

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

STYLE

Content and structure are often sufficient to convey meaning, but style can really customize a stakeholder’s
experience. For example, just seeing this header with its ubiquitous light-blue background and nondescript,
sans serif font causes my eyes to glaze over; it’s apparent the report creator put no effort into customizing
the style. Some personality can be bestowed simply by changing the font, font size, font color, and
background color, as the following code demonstrates:

proc report data=students nocenter nowindows nocompletecols

style(header)=[fontfamily="engravers mt" fontsize=4

color=#FFFFFF backgroundcolor=#696969]

style(column)=[fontfamily="century gothic" fontsize=3];

column house student;

define house / order 'Hogwarts House';

define student / display 'Student';

run;

This modified report produces the following output using style overrides in the PROC REPORT commands:

5

HOGWARTS HOUSE STUDENT

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

In other cases, stylistic elements can be used to convey meaning in addition to making things pretty. For
example, fans of the Harry Potter series will immediately recognize that each of the four Hogwarts houses—
Gryffindor, Slytherin, Hufflepuff, and Ravenclaw—has its own unique color branding. As illustrated in Figure 1,
a Google search for “Hogwarts house color hex” yields the hexadecimal colors for each house.

Figure 1. Hexadecimal Colors for Hogwarts Houses

Each hex value represents a three-byte triplet that represents the red-green-blue (RGB) values for the
specific hue. For example, the Gryffindor red is represented by 7F0909, or 7F red (127 in decimal), 09 green
(9 in decimal), and 09 blue (9 in decimal). And, in addition to (or in lieu of) reading a house’s name, report
consumers might also benefit from visualizing house names in a report that shows house colors.

House colors, as specified in Figure 1, could be specified in STYLE statements in the COMPUTE block of
PROC REPORT that are invoked with IF-THEN-ELSE conditional logic:

proc report data=students nocenter nowindows nocompletecols

6

style(header)=[fontfamily="engravers mt" fontsize=4

color=#FFFFFF backgroundcolor=#696969]

style(column)=[fontfamily="century gothic" fontsize=3];

column house student dummy;

define house / order 'Hogwarts House';

define student / display 'Student';

define dummy / computed noprint;

compute dummy;

if house='Gryffindor' then call define('_c1_','style',

'style=[backgroundcolor=#7F0909 color=#FFC500]'); else

if house='Slytherin' then call define('_c1_','style',

'style=[backgroundcolor=#0D6217 color=#AAAAAA]'); else

if house='Hufflepuff' then call define('_c1_','style',

'style=[backgroundcolor=#EEE117 color=#000000]'); else

if house='Ravenclaw' then call define('_c1_','style',

'style=[backgroundcolor=#000A90 color=#946B2D]');

endcomp;

run;

This report now includes static style elements that guide the entire report as well as dynamic style elements
that are driven by the data content:

Hogwarts House Student

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

One weakness, however, is that these stylistic elements are commingled with the report structure. In other
words, the house colors should be stable over time so it’s inefficient (and error-prone) to require that their
hex codes (and conditional logic) be repeated across various processes and programs. One method to
overcome this weakness is to define the color schemes within SAS formats and to apply those formats
within the REPORT procedure:

proc format;

value $ houseback

'Gryffindor'='#7F0909'

'Slytherin'='#0D6217'

'Hufflepuff'='#EEE117'

'Ravenclaw'='000A90';

run;

proc format;

7

value $ housefore

'Gryffindor'='#FFC500'

'Slytherin'='#AAAAAA'

'Hufflepuff'='#000000'

'Ravenclaw'='946B2D';

run;

proc report data=students nocenter nowindows nocompletecols

style(header)=[fontfamily="engravers mt" fontsize=4 color=white

backgroundcolor=peru]

style(column)=[fontfamily="century gothic" fontsize=3];

column house student dummy;

define house / order 'Hogwarts House';

define student / display 'Student';

define dummy / computed noprint;

compute dummy;

call define('_c1_','style',

'style=[backgroundcolor=$houseback. color=$housefore.]');

endcomp;

run;

The output produced is identical to the previous REPORT procedure. As one final stylistic change, the house

colors can be applied to the House column even for cells that don’t contain the House variable. For example,
to display Gryffindor colors on the first three rows of data (rather than just the first), the STYLE statement can
be moved from the COMPUTE block to the DEFINE statement for the House variable:

proc report data=students nocenter nowindows nocompletecols

style(header)=[fontfamily="engravers mt" fontsize=4

color=#FFFFFF backgroundcolor=#696969]

style(column)=[fontfamily="century gothic" fontsize=3];

column house student;

define house / order 'Hogwarts House'

style(column)=[backgroundcolor=$houseback. color=$housefore.];

define student / display 'Student';

run;

This report is stylistically similar but now shows the house colors on every row, again relying on the
Houseback and Housefore formats:

Hogwarts House Student

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

8

One final improvement could extract the remaining dynamic style elements (e.g., font, font size, and header)
from the report structure, thus more fully separating content, structure, and style elements. By placing the
REPORT procedure within a macro and by parameterizing report style elements, these parameters can be
specified at macro invocation. For example, the following macro now includes six parameters: HeaderFont,
HeaderFontSize, HeaderFontColor, HeaderFontBackColor, ColFont, and ColFontSize:

%macro report(HeaderFont= /* Header Font Family */,

HeaderFontSize= /* Header FontSize */,

HeaderFontColor= /* Header Color */,

HeaderFontBackColor= /* Header BackgroundColor */,

ColFont= /* Column FontFamily */,

ColFontSize= /* Column FontSize */);

proc report data=students nocenter nowindows nocompletecols

style(header)=[fontfamily="&HeaderFont"

fontsize=&HeaderFontSize color=&HeaderFontColor

backgroundcolor=&HeaderFontBackColor]

style(column)=[fontfamily="&ColFont" fontsize=&ColFontSize];

column house student;

define house / order 'Hogwarts House'

style(column)=[backgroundcolor=$houseback. color=$housefore.];

define student / display 'Student';

run;

%mend;

%report(HeaderFont=engravers

mt, HeaderFontSize=4,

HeaderFontColor=#FFFFFF,

HeaderFontBackColor=#696969,

ColFont=century gothic,

ColFontSize=3);

The REPORT macro and this invocation produce an identical report. However, the style elements have now
been removed from the report structure, so they can be specified when the macro is invoked. This data-
driven solution maximizes flexibility because report attributes can be changed without the need to modify
the underlying code. However, because the control data—represented both in the FORMAT procedures
and the parameters—occur within the same program as the macro, the modularity of this solution can still
be improved. To support greater software modularity, data independence, and interoperability, this solution
is expanded and strengthened in the following section.

STYLISTIC TOOLS

CASCADING STYLE SHEETS (CSS)

Cascading style sheets (CSS) are external files (similar to a format catalog) that contain label-value pairs
that can be used to describe various aspects of output, such as fonts, colors (foreground, background), and
borders. Originally, CSS emerged as a way to apply style information to output presented on the W3, i.e.,
HTML. Prior to the implementation of CSS, the types of style information (and more) described previously
were embedded along with the content being presented.

9

CSS files define stylistic elements within documents such as HTML web pages. Like the previous data-driven
solution, the implementation of CSS enables style attributes to be separated from report content and
structure. However, CSS is a preferred solution because CSS files are raw text, can be read by countless
software applications (including SAS), and thus are more interoperable. For example, the Hogwarts colors
are defined within two SAS FORMAT procedures, enabling other instances of the REPORT procedure or
even other SAS procedures to rely on these control data. And, by saving the user-defined Houseback and
Housefore formats to a permanent format library, the formats can be referenced in the future without the
need to rerun the FORMAT procedures.

However, in the preceding solution, house colors are maintained only in SAS formats which are of no use
to other software applications. For example, Hogwarts School of Wizardry and Witchcraft likely would want
to use its branded house colors not only in SAS reports but also in PDFs, web pages, and other published
documents that are unrelated to SAS. This interoperability is possible because a single CSS file can drive
the dynamic styling of electronic media across an entire organization. Moreover, the maintenance of a single
trusted repository for these style control data support master data management (MDM) best practices. Thus,
the integrity of a single CSS file is greater because multiple (possibly asynchronous) copies of style data
are not being maintained. MDM also supports greater maintainability, because when a style must be
changed, it can be changed in a single location to alter stylistic elements in all derivative data products and
documents that rely on that CSS file.

The full extent of CSS functionality far exceeds the bounds of this text, but this brief introduction offers a
CSS-based solution that is functionally equivalent to the previous SAS-only solution1. Thus, both static style
attributes (such as the Hogwarts house colors) as well as more dynamic style attributes (such as the report
font, font size, and font color) can be defined within CSS files. In fact, behind the scenes, the REPORT
procedure is already using CSS to represent stylistic elements—so the only task is to understand how to
directly, rather than indirectly, rope and wrangle these controls.

To peel back the covers on the REPORT procedure, the preceding Hogwarts roster can be saved to an
HTML file with the following code:

%let loc=/folders/myfolders;

ods html path="&loc" file="hogwarts.html";

proc report data=students nocenter nowindows nocompletecols

style(header)=[fontfamily="engravers mt" fontsize=4

color=#FFFFFF backgroundcolor=#696969]

style(column)=[fontfamily="century gothic" fontsize=3];

column house student;

define house / order 'Hogwarts House'

style(column)=[backgroundcolor=$houseback. color=$housefore.];

define student / display 'Student';

run;

ods html close;

Then REPORT is run and the HTML file is opened in WordPad, the critical role of CSS is apparent in just
the first few lines:

<!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

<html>

<head>

<meta name="Generator" content="SAS Software Version 9.4, see www.sas.com">

<meta http-equiv="Content-type" content="text/html; charset=utf-8">

<title>SAS Output</title>

<style type="text/css">

<!--

.activelink

1 The w3schools offers a fantastic introduction to CSS at https://www.w3schools.com/css/css intro.asp and
W3C maintains the current CSS standards at https://www.w3.org/standards/techs/css#w3c all.

http://www.sas.com/
https://www.w3schools.com/css/css
https://www.w3.org/standards/techs/css#w3c

10

{

color: #800080;

}

Thus, the text that follows the “text/css” section defines the styles to be used in the later report. This method
of infusing CSS into documents is referred to as embedded CSS, whereas CSS can also be referenced in
which the CSS elements are maintained in an external CSS file. To understand how the REPORT procedure
relies on CSS, the style elements that were specified within REPORT (e.g. Engravers MT font, font size 4,
white lettering color, etc.) can be searched within the Hogwarts.html file.

SAS documentation also introduces CSS, including how to implement CSS within the output display system
(ODS). One of the most useful SAS documentation rubrics, reproduced here as Table 1, demonstrates how
CSS selectors map to HTML tags and ultimately to SAS data products.

Class selector Tag What It Is Responsible For

.ContentTitle The title in the Table of Contents

.NoteContent <TD> The line statement with PROC REPORT

.Output <TABLE> Attributes on the table tag

.Graph The images or graphs

.ProcTitle <TD> The procedure name on the body file

.Data <TD> The cell values
TD <TD> All numeric or right-justified data

.Table <TABLE> The table

.ContentFolder Overall items in the table of contents

.Byline <TD> The BY values

.PagesProcLabel The procedure name in the table of pages

.Header <TD> The column headers

.ContentProcLabel
The procedure name when the ODS PROCLABEL
statement has been used

.PagesTitle The title on the table of pages

.PagesProcName The procedure name on the table of pages

.ContentItem <A><DT>
The leaf or item in the table of contents; this is the
hyperlink that you click

.Body <BODY>
The body file, which renders such things as the
background color and the margins

.DataEmphasis <TD> The summary line with PROC REPORT

.ContentProcName The procedure name in the table of contents

.PagesItem <A><DT>
The leaf or node in the table of contents; this is the link
that you click

.RowHeader <TD> The row headers

.SystemTitle <TD> The SAS System titles

.SystemFooter <TD> The SAS footnotes

Table 1. CSS Selectors and HTML Tags

External CSS files can be referenced with the CSSSTYLE parameter within the ODS statement. For
example, the following ODS statement and subsequent REPORT procedure now reference style elements
contained within Hogwarts_style.CSS:

%let loc=/folders/myfolders;

ods html path="&loc" file="hogwarts.html" cssstyle="&loc/hogwarts_style.css";

proc report data=students nocenter nowindows nocompletecols;

column house student;

define house / order 'Hogwarts House'

style(column)=[backgroundcolor=$houseback. color=$housefore.];

define student / display 'Student';

run;

ods html close;

This code runs when the following CSS file is saved to Hogwarts_style.css:

.Header

11

{

font-family: engravers mt;

font-size: 4;

color: #FFFFFF;

background-color: #696969;

}

.Data

{

font-family: century gothic;

font-size: 3;

color: #000000;

background-color: #FFFFFF;

}

This code and referenced CSS file produce the following output, which is slightly different. This occurs
because some of the style attributes (such as borders, cell padding, and cell widths) were inferred from
defaults where explicit arguments were not specified:

Hogwarts House Student

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

By modifying the borders and cell padding, the table is looking fairly identical to the original produced in the
SAS-only solution. Also note that the BORDER-COLLAPSE property does need to be set to COLLAPSE
so that adjoining cells share a single border line. The revised CSS file follows:

.Header

{

font-family: engravers mt;

font-size: 4;

color: #FFFFFF;

background-color: #696969;

border: 1px #C0C0C0 solid;

padding: 10px;

}

.Data

{

font-family: century gothic;

font-size: 3;

color: #000000;

background-color: #FFFFFF;

border: 1px #C0C0C0 solid;

}

.Table

{

border-collapse: collapse;

12

}

td, td

{

padding: 10px;

}

Without any modifications to the code, the REPORT procedure can be rerun and produces the following
output:

Hogwarts House Student

Gryffindor Neville Longbottom

 Harry Potter

 Ginny Weasley

Hufflepuff Hannah Abbott

Slytherin Draco Malfoy

 Tom Marvolo Riddle

Note that the revised CSS file can be reused to drive style elements in other procedures and data products.
In addition, the dynamic elements (background and foreground color of the Hogwarts House column) can
be assigned using <DIV, </DIV> and conditional data-status commands in your CSS file.

SAS, CSS AND ODS TRACE [DOM]

CSS AND SAS
Prior to SAS 9.2, PROC TEMPLATE was the only available tool in SAS to customize styles. As of SAS 9.2,
SAS has allowed the use of both internal and external CSS files with three types of ODS output, HTML,
PDF and RTF. At that point, SAS was able to read, or parse, CSS files and convert them into PROC
TEMPLATE syntax. In SAS 9.3, SAS more fully integrated the CSS implementation in ODS so that context-
based CSS selectors are possible in all types of ODS output that use styles. SAS is currently the only
software which allows the integration of CSS in PDF, native EXCEL and RTF output.

SAS practitioners can call an external CSS file into play using a CSSSTYLE= option on an ODS destination
call, similar to a STYLE= option for a SAS style template. We’ve demonstrated an example of the most
recent method above:

ODS DESTINATION CSSSTYLE=”FILEREF/URL/FTP protocol/HTTP protocol”;

Procedures...

ODS DESTINATION CLOSE;

CSS files perform in ODS just as a SAS- or user- produced ODS style template performs, allowing users to
edit existing external CSS files or create new ones to develop a valid SAS style template on demand.
Benefits of this facility are obvious, including standard, documented CSS syntax and tools and the additional
control and flexibility over ODS output achieved via an external configuration file.

CSS developers have added @ MEDIA rules to the CSS2 specification to accommodate the burgeoning
list of media types, including aural, Braille, TV, TTY, projection, etc. as well as print and screen. SAS
developers have followed suit, focusing on the print and screen media types that apply most readily to SAS
destinations.

13

SAS ODS is not able to use all of the style elements that potentially occur in a CSS file – only a subset of
style possibilities catalogued in the CSS 2.1 specification is available. To fully realize the potential of CSS
in SAS ODS, users must inform themselves of what CSS style elements will work with which destination,
procedure, and media types without manually comparing style sheets and templates line by line.

As noted, there are many non-SAS users and uses of CSS. We’ve seen several examples of styles that
CSS can modify – but what if you want to find out what ODS output “objects” can be modified with a CSS
when you can’t view the output in a line editor (i.e. PDF) or don’t want to wade through millions of lines of
output? SAS provides tools such as DOM (the subject of this paper) and the TAGSETS.STYLE_POPUP or
TAGSETS.ODSSTYLE destinations that allow users to identify the necessary style items for output.

ODS TRACE [DOM]

ODS TRACE is a very useful statement that allows SAS practitioners to trace the output created by a
given procedure (and different procedural options), e.g. PROC CONTENTS. Additionally, SAS has
provided a way to “trace” how styles are applied in different destinations, and what styles are able to be
modified. ODS TRACE DOM produces an in-memory representation of an ODS report. As with other ODS
TRACE, ODS TRACE DOM provides information in the log – in this case about ODS style elements. You
can use the DOM to access and update the content, structure, and style of ODS output dynamically. By
viewing the DOM, you can determine what elements and attributes exist so that you can construct CSS
selectors to access those areas. To view the DOM for a destination, use the DOM option in any ODS
destination statement except ODS LISTING and ODS OUTPUT. You can also specify that a listing of the
DOM go to a specified text file, by specifying DOM= on the ODS destination call – while ODS TRACE
DOM goes to the log.

The syntax follows:

A screenshot of the resulting text file is shown below, followed by the log representation.

14

Note that two different ODS destinations are used for the examples above. The DOM varies with different
destinations – not all style commands are available in all destinations.

15

CONCLUSION

CSS, style templates (SAS provided and custom), and style overrides can enhance SAS Output Display
System (ODS) output. The ODS Document Object Model (DOM) acts as a liaison between ODS and
cascading style sheets (CSS). DOM translates procedural output created with CSS into both PROC
TEMPLATE language and properly rendered data in most SAS destinations that can be edited. Thus,
looking at the output of DOM and CSS can inform and facilitate the development of custom styles in ODS.
SAS has always been at the forefront of data reporting and visualization, from the early days of ODS
reporting. Output ODS exactly where you want it, how you want it, and when you want it, with CSS and the
ODS DOM.

REFERENCES

Base SAS: SAS Notes and Concepts for ODS. Cary, North Carolina: SAS Institute.
https://support.sas.com/rnd/base/ods/templateFAQ/Template_csstyle.html.

Bauerly, Kerril S. 2000. "Style Sheets, Javascript, and SAS??? Oh, My!". Proceedings of the SAS Users
Group International, Indianapolis, IN. http://www2.sas.com/proceedings/sugi25/25/iw/25p185.pdf

Benjamin Jr., William E. 2017. "Working with the SAS® ODS EXCEL Destination to Send Graphs, and
Use Cascading Style Sheets When Writing to EXCEL Workbooks". Proceedings of the Western Users of
SAS Software, Long Beach, CA. http://www.lexjansen.com/wuss/2017/137_Final_Paper_PDF.pdf

Davidson, Kevin and Duong, Minh. 2010. "Using Dynamic and Cascading Prompts in SAS® Enterprise
Guide®". Proceedings of the SAS Global Forum, Seattle, WA.
http://support.sas.com/resources/papers/proceedings10/041-2010.pdf

Durie, Ted. 2005. "ODS HTML and CSS". Proceedings of the Western Users of SAS Software, San Jose,
CA. http://www.lexjansen.com/wuss/2005/data_presentation/dp-sas_ods_html_and_css.pdf

Eslinger, Jane. 2016. The SAS Programmer’s PROC REPORT Handbook: Basic to Advanced Reporting
Techniques. Cary, NC: SAS Institute Inc.

Eslinger, Jane. 2018. The SAS Programmer’s PROC REPORT Handbook: ODS Companion. Cary, NC:
SAS Institute Inc.

Eubanks, Elizabeth and Trahan, Shane. 2013. "An Integrated Approach to Codebook Generation Using
SAS®, HTML/CSS, and the .NET Framework". Proceedings of the SAS Global Forum, San Francisco,
CA. http://support.sas.com/resources/papers/proceedings13/259-2013.pdf

Fehd, Ronald. 2003. "A Journeyman's reference: The Writing for Reading SAS Style Sheet: Tricks, Traps,
Tips, and Templates, from SAS-L Macro Maven". Proceedings of the South East SAS Users Group, St.
Pete Beach, FL. http://analytics.ncsu.edu/sesug/2003/AD08-Fehd.pdf

Fehd, Ronald. 2003. "The Writing for Reading SAS® Style Sheet: Tricks, Traps, and Tips From SAS-L's
Macro Maven". Proceedings of the South Central SAS Users Group, Houston, TX.
http://www.lexjansen.com/scsug/2003/Fehd -- ARRAY.pdf

Hatcher, Diane and Hsueh, LanChien. 2009. "Dynamic Prompts Make Data Cascading Easy: Introducing
New Features in SAS® 9.2 Prompt Framework". Proceedings of the SAS Global Forum, National Harbor,
MD. http://support.sas.com/resources/papers/proceedings09/355-2009.pdf

Khurshed, Fareeza. 2011. "Creating a Table of Contents for Microsoft Word Using AutoFormat and
Cascading Style Sheets". Proceedings of the SAS Global Forum, Las Vegas, NV.
http://support.sas.com/resources/papers/proceedings11/116-2011.pdf

https://support.sas.com/rnd/base/ods/templateFAQ/Template_csstyle.html
http://www2.sas.com/proceedings/sugi25/25/iw/25p185.pdf
http://www.lexjansen.com/wuss/2017/137_Final_Paper_PDF.pdf
http://support.sas.com/resources/papers/proceedings10/041-2010.pdf
http://www.lexjansen.com/wuss/2005/data_presentation/dp-sas_ods_html_and_css.pdf
http://support.sas.com/resources/papers/proceedings13/259-2013.pdf
http://analytics.ncsu.edu/sesug/2003/AD08-Fehd.pdf
http://www.lexjansen.com/scsug/2003/Fehd%20--%20ARRAY.pdf
http://support.sas.com/resources/papers/proceedings09/355-2009.pdf
http://support.sas.com/resources/papers/proceedings11/116-2011.pdf

16

Liebhardt, Ingo. 2010. "Personalized Web Reports in Style: Tweaking SAS® ODS, Tagsets, and CSS to
Get the Output Right". Proceedings of the SAS Global Forum, Seattle, WA.
http://support.sas.com/resources/papers/proceedings10/221-2010.pdf

Mann, Robert and and Zalcman, Rosely Flam. 2013. "Creating a Management-Friendly HTML Report
Using SAS® ODS Markup, Style Sheets, and JavaScript". Proceedings of the SAS Global Forum, San
Francisco, CA. http://support.sas.com/resources/papers/proceedings13/238-2013.pdf

McCoy, Sheryl and Nilsson, Mary. 2014. "PhUSE Computational Science Symposium (CSS) White Paper
on Analyses and Displays Associated with Adverse Events". Proceedings of the FDA/PhUSE US CSS,
Silver Spring, MD. http://www.phusewiki.org/docs/2014/CSS/PP17 Final Poster.pdf

Muggles’ Guide to Harry Potter Characters.
https://en.wikibooks.org/wiki/Muggles%27_Guide_to_Harry_Potter/Characters

Pandya, Niraj J.. 2011. "Get Dynamic Multi-sheet Excel Workbook with STYLE using ODS". Proceedings
of the PharmaSUG, Nashville, TN. http://www.lexjansen.com/pharmasug/2011/PO/PharmaSUG-2011-
PO06.pdf

Parker, Chevell. 2003. "Generating Custom Excel Spreadsheets using ODS". Proceedings of the
PharmaSUG, Miami, FL. http://www.lexjansen.com/pharmasug/2003/SASInstitute/sas129.pdf

Parker, Chevell. 2003. "Generating Custom MS EXCEL Spreadsheets Using ODS". Proceedings of the
Northeast SAS Users Group, Washington, DC. http://www.lexjansen.com/nesug/nesug03/gv/s1054.pdf

Parker, Chevell. 2006. "Now - That's Your Style!!!!!". Proceedings of the South East SAS Users Group,
Atlanta, GA. http://analytics.ncsu.edu/sesug/2006/DP10_06.PDF

Parker, Chevell. 2009. "Creating That Perfect Data Grid Using the SAS® Output Delivery System".
Proceedings of the SAS Global Forum, National Harbor, MD.
http://www2.sas.com/proceedings/forum2008/258-2008.pdf

Parker, Chevell. 2009. "The ODS Menu for All Appetites and Applications". Proceedings of the
PharmaSUG, Portland, OR. http://www.lexjansen.com/pharmasug/2009/sa/SA-AD-01.pdf

Parker, Chevell. 2010. "A SAS® Output Delivery System Menu for All Appetites and Applications".
Proceedings of the Western Users of SAS Software, San Diego, CA.
http://www.lexjansen.com/wuss/2010/Applications/3028_2_APP-Parker1.pdf

Parker, Chevell. 2010. "The Ten Most Frequently Asked Questions about SAS® to Excel". Proceedings of
the Midwest SAS Users Group, Milwaukee, WI.
http://www.lexjansen.com/mwsug/2010/excel_db/MWSUG-2010-113.pdf

Parker, Chevell. 2010. "Using SAS® Output Delivery System (ODS) Markup to Generate Custom Pivot
Tables and Pivot Charts". Proceedings of the Northeast SAS Users Group, Baltimore, MD.
http://www.lexjansen.com/nesug/nesug10/ad/ad09.pdf

Parker, Chevell. 2010. "Using SAS® Output Delivery System (ODS) Markup to Generate Custom
PivotTable and PivotChart Reports". Proceedings of the Western Users of SAS Software, San Diego, CA.
http://www.lexjansen.com/wuss/2010/Applications/3029_2_APP-Parker2.pdf

Parker, Chevell. 2011. "Let’s Give ‘Em Something to TOC about: Transforming the Table of Contents of
Your PDF File". Proceedings of the Western Users of SAS Software, San Francisco, CA.
http://www.lexjansen.com/wuss/2011/datapresentation/Papers_Parker_C_76204.pdf

Parker, Chevell. 2011. "The Perfect Marriage: The SAS® Output Delivery System (ODS) and Microsoft
Office". Proceedings of the Western Users of SAS Software, San Francisco, CA.
http://www.lexjansen.com/wuss/2011/datapresentation/Papers_Parker_C_76200.pdf

http://support.sas.com/resources/papers/proceedings10/221-2010.pdf
http://support.sas.com/resources/papers/proceedings13/238-2013.pdf
http://www.phusewiki.org/docs/2014/CSS/PP17%20Final%20Poster.pdf
https://en.wikibooks.org/wiki/Muggles%27_Guide_to_Harry_Potter/Characters
http://www.lexjansen.com/pharmasug/2011/PO/PharmaSUG-2011-PO06.pdf
http://www.lexjansen.com/pharmasug/2011/PO/PharmaSUG-2011-PO06.pdf
http://www.lexjansen.com/pharmasug/2003/SASInstitute/sas129.pdf
http://www.lexjansen.com/nesug/nesug03/gv/s1054.pdf
http://analytics.ncsu.edu/sesug/2006/DP10_06.PDF
http://www2.sas.com/proceedings/forum2008/258-2008.pdf
http://www.lexjansen.com/pharmasug/2009/sa/SA-AD-01.pdf
http://www.lexjansen.com/wuss/2010/Applications/3028_2_APP-Parker1.pdf
http://www.lexjansen.com/mwsug/2010/excel_db/MWSUG-2010-113.pdf
http://www.lexjansen.com/nesug/nesug10/ad/ad09.pdf
http://www.lexjansen.com/wuss/2010/Applications/3029_2_APP-Parker2.pdf
http://www.lexjansen.com/wuss/2011/datapresentation/Papers_Parker_C_76204.pdf
http://www.lexjansen.com/wuss/2011/datapresentation/Papers_Parker_C_76200.pdf

17

Parker, Chevell. 2013. "The SAS® Output Delivery System: Boldly Take Your Web Pages Where They
Have Never Gone Before!". Proceedings of the SAS Global Forum, San Francisco, CA.
http://support.sas.com/resources/papers/proceedings13/017-2013.pdf

Parker, Chevell. 2015. "Secrets from a SAS Technical Support Guy: Combining the Power of the SAS®
Output Delivery System with Microsoft Excel Worksheets". Proceedings of the Western Users of SAS
Software, San Diego, CA. http://www.lexjansen.com/wuss/2015/156_Final_Paper_PDF.pdf
Parker, Chevell. 2015. "Staying Relevant in a Competitive World: Using the SAS® Output Delivery
System to Enhance, Customize, and Render Reports". Proceedings of the Midwest SAS Users Group,
Omaha, NE. http://www.lexjansen.com/mwsug/2015/BI/MWSUG-2015-BI-04.pdf

Parker, Chevell. 2017. "A Ringside Seat: The ODS Excel Destination versus the ODS ExcelXP Tagset".
Proceedings of the South Central SAS Users Group, Dallas, TX.
http://www.lexjansen.com/scsug/2017/Chevell_SCSUG.pdf

Parker, Chevell. 2017. "More Than Just a Pretty Face: Using SAS® Output Delivery System to Create
Microsoft Excel Worksheets That Answer Those Difficult Question". Proceedings of the SAS Global
Forum, Orlando, FL. http://support.sas.com/resources/papers/proceedings17/SAS0710-2017.pdf

Parker, Chevell. 2017. "ODS HTML5 in the Fourth Maintenance Release for SAS® 9.4". Proceedings of
the South Central SAS Users Group, Dallas, TX.

Parker, Chevell. 2018. "Insights from a SAS Technical Support Guy: A Deep Dive into the SAS® ODS
Excel Destination". Proceedings of the SAS Global Forum, Denver, CO.
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2174-2018.pdf

Rhodes, Dianne Louise. 2002. "Developing and Maintaining a Tips Database: A Practical Approach to
Programming Standards, Style Sheets and Peer Reviews". Proceedings of the SAS Users Group
International, Orlando, FL. http://www2.sas.com/proceedings/sugi27/p235-27.pdf

Rhodes, Dianne Louise. 2004. "Programming Standards, Style Sheets, and Peer Reviews: A Practical
Guide". Proceedings of the SAS Users Group International, Montreal, Quebec, CANADA.
http://www2.sas.com/proceedings/sugi29/135-29.pdf

Sandlin, Robin M.. 2015. "Phantom of the ODS ? How to run cascading compute blocks off of common
variables in the data set for complex tasks". Proceedings of the PharmaSUG, Orlando, FL.
http://www.lexjansen.com/pharmasug/2015/TT/PharmaSUG-2015-TT02.pdf

Smith, Kevin. 2011. "Unveiling the Power of Cascading Style Sheets (CSS) in ODS". Proceedings of the
SAS Global Forum, Las Vegas, NV. http://support.sas.com/resources/papers/proceedings11/297-
2011.pdf

Smith, Kevin. 2013. "Cascading Style Sheets: Breaking Out of the Box of ODS Styles". Proceedings of
the SAS Global Forum, San Francisco, CA. http://support.sas.com/resources/papers/proceedings13/365-
2013.pdf

Yeh, Shi-Tao. 2000. "Using Style Sheets to Format SAS Output Web Page Layout". Proceedings of the
Northeast SAS Users Group, Philadelphia, PA. http://www.lexjansen.com/nesug/nesug00/ps/ps7023.pdf

Zender, Cynthia. 2009. "CSSSTYLE: Stylish Output with ODS and SAS® 9.2". Proceedings of the SAS
Global Forum, National Harbor, MD. http://support.sas.com/resources/papers/proceedings09/014-
2009.pdf

http://support.sas.com/resources/papers/proceedings13/017-2013.pdf
http://www.lexjansen.com/wuss/2015/156_Final_Paper_PDF.pdf
http://www.lexjansen.com/mwsug/2015/BI/MWSUG-2015-BI-04.pdf
http://www.lexjansen.com/scsug/2017/Chevell_SCSUG.pdf
http://support.sas.com/resources/papers/proceedings17/SAS0710-2017.pdf
https://www.sas.com/content/dam/SAS/support/en/sas-global-forum-proceedings/2018/2174-2018.pdf
http://www2.sas.com/proceedings/sugi27/p235-27.pdf
http://www2.sas.com/proceedings/sugi29/135-29.pdf
http://www.lexjansen.com/pharmasug/2015/TT/PharmaSUG-2015-TT02.pdf
http://support.sas.com/resources/papers/proceedings11/297-2011.pdf
http://support.sas.com/resources/papers/proceedings11/297-2011.pdf
http://support.sas.com/resources/papers/proceedings13/365-2013.pdf
http://support.sas.com/resources/papers/proceedings13/365-2013.pdf
http://www.lexjansen.com/nesug/nesug00/ps/ps7023.pdf
http://support.sas.com/resources/papers/proceedings09/014-2009.pdf
http://support.sas.com/resources/papers/proceedings09/014-2009.pdf

18

ACKNOWLEDGMENTS

The authors wish to acknowledge Bari Lawhorn, Kevin Smith, Jane Eslinger, and Chevell Parker of SAS
who work tirelessly to improve and facilitate the use of reporting with SAS.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the authors at:

troymartinhughes@gmail.com
Louise_hadden@abtassoc.com

SAS and all other SAS Institute Inc. product or service names are registered trademarks or trademarks of
SAS Institute Inc. in the USA and other countries. ® indicates USA registration.

Other brand and product names are trademarks of their respective companies.

