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ABSTRACT 

This paper presents light theory, supported by simulations, as well as practical suggestions for developing 
binary logistic regression models. Topics include: Firth method versus maximum likelihood method for 
estimating parameters; screening, binning, transforming predictors; identification of multicollinearity; 
predictor selection methods using PROC LOGISTIC, PROC HPLOGISTIC, PROC HPGENSELECT; and 
measures of fit and predictive accuracy. 

INTRODUCTION 

The goal of the paper is to present insights into theory of binary logistic regression and to give practical 
advice. There is a collage of topics beginning with the basics of maximum likelihood estimation (MLE) and 
its large sample properties. Next, there is a comparison of the Firth method of parameter estimation to 
MLE. Finally, topics are taken from various steps in fitting a logistic model. These topics include: 

 Screening predictors 

 Binning and transforming predictors 

 Comparing dummy variable coding with weight of evidence coding 

 Detecting multicollinearity 

 Comparing methods of selecting predictors to fit a model and model validation 

Attention is given to appealing capabilities of PROC HPLOGISTIC for fitting logistic models. For example, 
HPLOGISTIC provides predictor selection and choice of final model using the Schwarz-Bayes criterion 
(SBC). Finally, MLE is compared to fitting models by LASSO,1 provided by PROC HPGENSELECT. 

Throughout the paper there are citations to these two references: 

 LRuS: Allison, P. (2012a), Logistic Regression Using SAS®: Theory and Application 2nd Ed  

 ALR: Hosmer D., Lemeshow S., Sturdivant R. (2013). Applied Logistic Regression 3rd Ed. 

Several technical discussions have been placed in the Appendix. 

MAXIMUM LIKELIHOOD ESTIMATION 

CONCEPT OF A LOGISTIC MODEL POPULATION 

The paper begins by presenting the concept of a logistic model population P. First, the design matrix is 

defined. The design matrix [X] has N rows {(xi,0, xi,1, …, xi,K) for i = 1 to N} with K+1 columns, indexed by 

j = 0 to K. Column 0 has value 1 in each row. Columns j = 1 to K are called predictors Xj. The jth predictor 

in the ith row has value xi,j. The symbol N is a positive integer. 

For example, here is a design matrix where there are two predictors X1 and X2 and N = 3: 

[

1 𝑥1,1 𝑥1,2

1 𝑥2,1 𝑥2,2

1 𝑥3,1 𝑥3,2

] 

For the ith row in the design matrix there is an associated number Yi, called the target, with levels 0 and 1. 
The levels of Y are given names: “1” is a “success” or an “event”, while “0” is a “failure” or “non-event”. The 
rows from the design along with the associated target value are called observations or cases or subjects. 

                                                      
1 Least absolute shrinkage and selection operator 
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Parameters for the population are numbers β = (β0, …, βK).2 For the ith row, xbetai is defined by 

xbetai = ∑ βj xi,j
K
j=0 . 

If a row is randomly taken and Yi is observed, the probability of “success” or an “event” is:  

P(Yi = 1 | X = xi) = exp(xbetai) / (1 + exp(xbetai)) 

The probability of a “failure” or “non-event” is given by: P(Yi = 0 | Xi = xi) = 1 - P(Yi = 1 | Xi = xi).  

Let [XS] be a subset of the rows from the population design matrix (with same columns). A sample 

S = {(xi, yi) for i = 1 to n} with sample design [XS] is a subset of the population P. A sample is random if, 

given a row from [XS], then each observation from the population with this row (these predictor values) has 

equal chance of selection for the sample. The sample size is “n”. Samples will be assumed to be random. 

THE LIKELIHOOD FUNCTION  

Using a sample, the population parameters β may be estimated by various formulas. An estimate of the 

parameters is denoted by β̂ = (β̂0  …, β̂K). Maximum likelihood estimation (MLE) is the common method to 

produce an estimate β̂. MLE is discussed next. Let b = (b0, …, bK) be parameter values and write 

pi = exp(∑ bj xi,j
K
j=0 ) / (1 + exp(∑ bj xi,j

K
j=0 ) ) 

The likelihood function is defined as L(b) = ∏ pi
yin

i (1 − pi)
1−yi . It is a function of b. 

Assuming that L(b) has a maximum value, then Log(L(b)) also has a maximum. The maximum likelihood 

estimates (also abbreviated by MLE) of β are found by finding a point β̂ which maximizes Log(L(b)). A 

point β̂ which does maximize Log(L(b)), as was proved in the 1980’s, must be unique.3 

However, there are data sets and associated models for which the maximum of Log(L(b)) does not exist. In 
this situation the model is said to have either complete separation or quasi complete separation. The topic 
of separation is discussion in LRuS, pp. 49-59. Separation can occur in very small samples as a natural 
consequence of the rarity of data or in larger samples due to inadequate attention to pre-modeling data 
preparation. There are remedial actions available to the modeler. See LRuS, pp. 52-56. 

For medium to large samples, the usual and natural method in logistic modeling of finding β̂, is by MLE.4 
This assertion raises two questions: 

(1) What constitutes “medium and large samples”? This guideline from Allison (2012b) will be used:  

Let n1 be the count of cases where Y=1 and n0 be the count of cases where Y=0 in a sample of size n 
(so that n = n1 + n0). Let n* = min(n1, n0). The description “medium to large” will be taken as n* ≥ 200. 

(2) Why is MLE the usual and natural method of finding β̂ in cases of medium to large samples?  

For medium and, even more so, for large samples, the estimators β̂j can be treated as unbiased (with 

mean equaling βj) and as approximately normally distributed. The variance of β̂j decreases as 1/n 

(formally, 𝜎�̂�𝑗

2  = O[1/n]).5  

                                                      
2 An English or Greek letter with an underscore will indicate a tuple, an ordered sequence of numbers. E.g. x = (4, 3, 1) 
3 Albert and Anderson (1984), Santer and Duffy (1989) 
4 In the 1950’s the linear probability model, with least squares, was used to fit predictors to a binary target. As late as 
the 1980’s the two-group discriminant model was used as an alternative to logistic regression with MLE. Both the 
linear probability model and the discriminant model provided closed form solutions for estimating the model 
parameters. But both approaches have theoretical deficiencies (linear probability, Allison (2012, pp. 10-14); 
(discriminant, HLS (2013, p. 21) 
5 See the Appendix, Topic 1 for motivation to support the statement that the variance of βĵ decreases as 1/n (formally, 

𝜎
�̂�𝑗

2  = O[1/n]). The mathematics required to understand the assertion that the MLE βĵ converges to a normal distribution 

is beyond the scope of this paper. (But see Table 2 for a “proof” by simulation.) 
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MLE is the default method of fitting a logistic model for PROC LOGISTIC and PROC HPLOGISTIC. Unlike 

least squares estimation for linear regression, there is not a closed form solution for solving for β̂. But there 
are fast and accurate algorithms that converge to the MLE (unless there is separation).  

Another method, called the Firth Method, is preferred for small samples, and will be discussed in a later 
section. The Firth method converges to estimates of β even in the presence of separation. 

The statistical reporting by LOGISTIC and HPLOGISTIC is based on the normal approximations, 
regardless of sample size.6 The suitability of the normal approximation for small vs. medium/large samples 
will be investigated by simulation studies.  

SIMULATIONS OF LOGISTIC MODEL POPULATIONS 

Steps to create a simulated logistic model population are given below: 

 A design matrix [X] = {(xi,0 , …, xi,K) for i = 1 to N } is specified. 

 Observations from a logistic distribution are randomly generated.7 These are denoted by i. 

 A variable Z is constructed as a sum of a linear combination of predictors X = (X1, …, XK) and 
parameters α = (α0, …, αK), and a logistic term: 

Zi = ∑ αj xi,j
K
j=0  + i  for i = 1 to N 

 The dichotomization of Z by a value  defines a variable Y with values 0 and 1 where: 

If P(Zi >  | Xi = xi), then Yi = 1, and otherwise Yi = 0 

Because i has a logistic distribution, the probability P(Yi = 1 | Xi = xi) is computed to be: 

P(Yi = 1 | Xi = xi) = exp(∑ βj xi,j
K
j=0 ) / (1 + exp(∑ βj xi,j

K
j=0 ) ) … (*) 

where β0 = - + α0 and βj = αj for j = 1 to K.  

The mathematical derivation of equation (*) is given in Appendix, Topic 2. As a result, {(xi, yi) for i = 1 to N } 

gives a logistic model population with parameters β. (Also see LRuS pp. 87-89.) 

SAS® CODE TO CREATE A LOGISTIC MODEL POPULATION 

The code below creates 100 samples, each of size 5,000, from a logistic model population with one 

predictor X and parameters β0 = 1, βX = 5. Each sample has the same design [XS]. The only difference 

between the samples is the random effect of “e” on the determination of the values of Y.  

DATA Samples;  

 do s = 1 to 100;  

    call streaminit(s); 

    do ID = 1 to 5000; 

       c = rand("Uniform");  

   e = 1*log(c / (1-c)); /* e is a logistic random variable */  

   X = (mod(ID,5) - 2)/10;  

   Z = 1 + 5*X + e;    

   Y = (Z > 0);   

   output;  

   end;  

  end;  

PROC MEANS DATA= Samples NOPRINT; CLASS s; VAR Y;     

   OUTPUT OUT= MEANOUT(where=(_TYPE_ = 1)) SUM(Y)= Y_SUM;    

PROC MEANS DATA= Meanout mean stddev; VAR Y_SUM;     

run; 

                                                      
6 This comment excludes models where EXACT method of parameter estimation is used. See LRuS pp. 55-57. 
7 A logistic random variable has cumulative distribution function F() = exp() / (1 + exp()) 
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The second PROC MEANS shows that average number of events (i.e. observations where Y=1) in the 100 
samples is 3,553 with a standard deviation of 31.2 

DISTRIBUTION OF βX FROM SIMULATION OF 100 SAMPLES WITH SAMPLE SIZES 5,000 

PROC LOGISTIC is run on each of the 100 samples. The 100 estimates βX̂ are processed by PROC 
UNIVARIATE. 

ods exclude all; 

/* parameter estimates of β0 and βX are output to EST */ 

ods output ParameterEstimates= EST;  

PROC LOGISTIC DATA= Samples desc;  

 BY s;  

 MODEL Y= X;  

run;  

ods exclude none; 

PROC UNIVARIATE DATA= EST(where= (variable="X"));  

 VAR estimate;  

 HISTOGRAM estimate / normal;  

run; 

As shown in Table 1 the mean value of βX̂ is 5.0711. This value is very near to βX = 5, the population 
value. The standard deviation of 0.2475 is also near to the theoretical standard deviation of 0.2460 for the 

distribution of βX̂ (for 5,000 observations with design [XS], and β0 = 1, βX = 5 ).8  

Moments 

N 100 

Mean (of βX̂) 5.0177 

Std Deviation 0.2475 

Table 1. 

In Table 2 the quantiles of βX̂ are compared to a normal with mean 5.0177 and standard deviation 0.2475 
(estimated from the 100 samples). Upon visual inspection the quantiles show close agreement. 

Quantiles for Normal Distribution 

Percent 

Quantile 

Observed Estimated 

1.0 4.492 4.442 

5.0 4.631 4.611 

10.0 4.671 4.701 

25.0 4.847 4.851 

50.0 5.034 5.018 

75.0 5.145 5.185 

90.0 5.368 5.335 

95.0 5.464 5.425 

99.0 5.609 5.594 

Table 2 

  

                                                      
8 See Appendix, Topic 3 for the calculation that gives the theoretical standard deviation of 0.2460 
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DISTRIBUTION OF βX FROM SIMULATION OF 100 SAMPLES WITH SAMPLE SIZE 100 

It is not appropriate to use a normal approximation for small samples. Consider again the logistic model 

with a single predictor X, parameter βX, and MLE βX̂. If n* ≤ 200, then it is often observed that: 

| βX̂ | > | βX |  

This is not a theorem but rather it is an empirical tendency. As samples are drawn and βX̂ is estimated, the 

distribution of | βX̂ | is skewed to the right of | βX |. This skewness pulls the mean of | βX̂ | to the right of 
| βX |. Qualitative, graphical explanations of this tendency are found in Firth (1993 p. 29) and Rainey and 
McCaskey (2017, pp. 1-7).  

To supplement these references, I’ll present a simplified situation that illustrates the over-estimation 
property of MLE for small samples. 

Suppose an idealized large population has the following relationship between X and Y:  

X ↓  /  Y→ 0 1 

-1 100 50 

1 50 100 

This implies that the population logistic model parameters are: β0 = 0 and βX = 0.6931 

If there are two equal-size samples “equally distant” from the population distribution but on different 
“sides”, then the over-estimate of βX on “one side” is amplified and the underestimate of βX on the “other 
side” is constricted. Consider these two samples: 

Sample 1 0 1 Sample 2 0 1 

-1 90 60 -1 110 40 

1 60 90 1 40 110 

For sample 1, βX̂ = 0.4055 and for sample 2  βX̂ = 1.0116.  

The under-estimate from sample 1 is 0.6931 - 0.4055 = 0.2876 while the over-estimate from sample 2 is 
1.0116 - 0.6931 = 0.3185. The over-estimate is greater than the under-estimate, supporting the tendency 

that, on average, | βX̂ | > | βX |.  

Of course, this tendency continues for large samples but is not noticeable. This is due to large-sample 

convergence in distribution of βX̂ to a normal with mean βX and a variance σβ̂X

2 , which decreases as 1/n. 

Perhaps a more convincing demonstration that | βX̂ | > | βX |, on average, is given by simulations. The 
simulation of 100 samples with size 5,000, described earlier, is now changed to have 100 samples with 
sample size 100. The coding for the simulated logistic population is the same as generated earlier except 
now the SAS code is revised by replacing  

“do ID = 1 to 5000;“ with  “do ID = 1 to 100;“ 

Since the simulated coefficient of X is 5.0, well above zero, we can dispense with absolute values in the 

discussion which follows. The estimator βX̂ over-estimates βX, on average, (5.1723 vs. 5). The average of 
the estimates of standard deviation is also biased upward (1.9290 vs. 1.7391).9   

Moments 

N 100 

Mean (of βX̂) 5.1723 

Std Deviation 1.9290 

Table 3. 

                                                      
9 See Appendix, Topic 4 for the calculation that gives the theoretical standard deviation of 1.7391. 
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In Table 4 the quantiles of βX̂ are compared to a normal with mean 5.1723 and standard deviation 1.9290. 
Upon visual inspection the right and left tail quantiles do not show close agreement to the estimated 
normal. 

Quantiles for Normal Distribution 

Percent 

Quantile 

Observed Estimated 

1.0 1.9262 0.6846 

5.0 2.4948 1.9993 

10.0 2.8170 2.7001 

25.0 3.5290 3.8711 

50.0 5.0275 5.1723 

75.0 6.3765 6.4734 

90.0 7.9787 7.6444 

95.0 8.7224 8.3453 

99.0 10.0065 9.6599 

Table 4. 

Although βX̂ over-estimates βX, on average, there are many samples among the 100 where βX̂ is less than 
βX = 5, as seen by examining the Observed Quantiles in Table 4. 

BIAS CORRECTION FOR SMALL SAMPLES, THE FIRTH METHOD 

An alternative method to estimate parameters βj is given by the Firth Method, introduced by David Firth 

(1993). In the Firth Method the estimates of βj, denoted β̂j
firth, are obtained by finding b which maximize: 

FLog(L(b)) = Log(L(b)) + Log(A(b))  

where A(b) is an adjustment factor which reduces the bias of MLE for small samples.10 

Very roughly, FLog(L(b)) tends toward a maximum when P(Y=1 | x, b ) is closer to 0.5 for all x. Therefore, 
each bj, in absolute value, is closer to zero versus the absolute values of the MLE’s.  

But simply shrinking | b | toward zero is not enough.  

Instead, this shrinking also accomplishes the desired goal of providing estimates with less bias than the 
ML estimates. The relationships of Firth to MLE and to the population parameter are summarized below: 

|β̂j
FIRTH|  < | β̂j

ML | and β̂j
FIRTH ~ βj … on average 

The same simulation with 100 samples, each with sample size 100, is used in fitting PROC LOGISTIC with 
the Firth method to estimate the coefficient of X.  

To run Firth, simply modify the MODEL statement as shown: 

MODEL Y= X / FIRTH; 

The average Firth estimate β̂X
FIRTH, at 4.9815, is closer to the population value of 5 than is the average 

MLE. See Table 5. The Firth estimate, on average, was shrunk below the average MLE.  

Since the Firth estimates, in absolute value, are closer to zero, the standard deviation of these estimates 
tends to be lower than for the MLE’s. See Table 5. 

  

                                                      
10 A(b) = {det I(b) }0.5 where I(b) is the observed information matrix evaluated at b 
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Moments FIRTH MLE 

N (samples) 100 100 

Mean (of βX̂) 4.9815 5.1723 

Std Deviation 1.8401 1.9290 

Table 5. 

In Table 6 the quantiles of β̂X
 firth are compared to a normal with mean 4.9815 and standard deviation 

1.8401. Upon visual inspection the right and left tail quantiles do not show close agreement to the 
estimated normal, but agreement appears to be better than for the quantiles from MLE. 

Quantiles for Normal Distribution 

Percent 

Quantile 

Observed Estimated 

1.0 1.8658 0.7009 

5.0 2.4172 1.9549 

10.0 2.7222 2.6234 

25.0 3.4125 3.7404 

50.0 4.8586 4.9815 

75.0 6.1169 6.2226 

90.0 7.6476 7.3396 

95.0 8.3770 8.0081 

99.0 9.5520 9.2621 

Table 6. 

The Firth method does not provide a panacea. The predictions from a model fit by the Firth method are 
biased in the following way: 

For MLE, the probabilities pi, where i = 1 to n, have the following property (where y is coded 0 and 1): 

∑ yi
n
i=1  = ∑ pi

n
i=1  

Dividing by n gives: y̅ = p̅. In words, this equation says that that success rate equals the average prediction 
rate. This is similar to least squares for linear regression where the sum of the residuals equals zero.  

For Firth estimation: 

∑ yi
n
i=1  ≠ ∑ pi

n
i=1  

Generally, pi
FIRTH is closer to 0.5 than is pi

MLE. 

The mean Firth prediction for the 100 samples was averaged and compared to the mean success rate for 
the 100 samples. The results are 0.7089 vs 0.7126. See Table 7. 

ods exclude all;  

PROC LOGISTIC DATA= Samples desc;     

   BY s;    

   MODEL Y= X / Firth;   

   OUTPUT OUT= Scored P= Predict;   

run;    

ods exclude none;  

PROC MEANS DATA= Scored NOPRINT; CLASS s;    

   VAR Y Predict;    

   OUTPUT OUT= MEANOUT(where=(_TYPE_ = 1))   

   Mean(Y)= Y_mean   
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   Mean(Predict)= Predict_Mean;   

run;   

PROC MEANS DATA= Meanout mean stddev P50;    

   VAR Y_mean Predict_Mean;    

run; 

Variable Mean Std Dev 50th Pctl 

Y_mean 0.7126 0.0430 0.7150 

Predict_Mean (Firth) 0.7089 0.0423 0.7113 

Table 7. 

ALGORITHMIC METHODS OF SOLVING FOR �̂�𝐣
FIRTH AND  �̂�𝐣

ML 

Algorithms for finding the ML estimates begin by taking the derivatives of Log(L(b)) with respect to each bj 
and setting these equations to zero. This gives K+1 equations, non-linear in b. These equations are solved 
iteratively. In PROC LOGISTIC there are two iterative methods: Fisher scoring and Newton-Raphson.11 
For a brief discussion, see LRuS, pp. 42-45. 

The approach for finding the Firth estimates follows the same steps. The derivatives of FLog(b)) with 
respect to each bj are computed and set to zero. This gives K+1 equations, non-linear in b. The equations 
are made much more complicated by the term Log(A(b)). But despite the more complicated formula, the 
Fisher scoring or Newton-Raphson can be applied without significant increase in computational 
complexity. And as a bonus, the Firth estimates exist even in the case of complete separation, where 
MLE’s do not exist. Additional discussion of the estimation of Firth coefficients is given in the Appendix, 
Topic 5. 

FIRTH OR MLE 

When n* ≤ 200 and if the primary interest of the modeler is coefficient estimation, the Firth method is 
preferred to MLE. Confidence intervals for parameters and odds-ratios as well as hypothesis tests for 
parameters will suffer somewhat from the moderate deviation of the distribution of the Firth estimates from 
normality (see Table 6) but, at the least, the bias of the parameter estimates is reduced vs. MLE.12  

But if prediction is the primary goal, then MLE would be preferred since its predictions on a validation 
sample would not include a built-in bias. 

In the 100 simulated samples, each with sample size of 100, the value of n* averages to about 29.13 The 
question of doing predictive modeling is almost moot in this case. Fitting a predictive model when n* = 29 
presents significant challenges for fitting and then validating the logistic model.14 

For larger n the impact of the correction term Log(A(b)) on the Firth estimates tends to zero with n. In this 
case the MLE and Firth parameter estimates are similar.15 The more conventional MLE should be used. 

Since the Firth method utilizes the same algorithms as MLE to find coefficient estimates, there is no 
advantage to either method based on computational issues. 

NOTE 

For the remainder of the paper the assumption will be made that any sample is medium / large (n* ≥ 200) 
and that MLE is used in fitting a logistic model. 

  

                                                      
11 http://support.sas.com/documentation/onlinedoc/stat/151/logistic.pdf  p. 5835 
12 The profile likelihood method of computing confidence intervals does not depend on normality approximations. It is 
preferable to the (Wald) confidence interval approach. See LRuS pp. 40-41 and ALR, pp. 18-20. 
13 See Table 7: Average of occurrences of Y=0 over the 100 samples is 100 * (1 - 0.7126) ~ 29. 
14 PROC LOGISTIC provides “leave one out” cross-validation. For n* = 29, this is the only method that could be used 

for model validation. 
15 For support of this statement, see the final paragraph of the discussion in Appendix, Topic 5. 
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SCREENING PREDICTORS HAVING ONLY A FEW LEVELS 

If X is numeric with many levels or is binary (2 levels), then X can go directly into the PROC LOGISTIC 
Model Statement:  MODEL Y = X;  

In contrast, consider predictors that could be Nominal, Ordinal, or Discrete and with few but more than 2 
levels. Such predictors will be referred to as “NOD” predictors. A NOD predictor requires processing before 
it is used in a model. Alternatives for entering a NOD predictor into a logistic model include dummy 
variable coding, weight of evidence coding, or, for discrete predictors and ordinal predictors (after 
recoding), as a numeric variable.16  

A predictor which is numeric and has many levels will be called “continuous”. The distinction between “few” 
and “many” is subjective. Screening and transforming of continuous predictors is taken up in a later 
section.17 

Weak NOD predictors should be removed from consideration for use in the logistic model at an early 
stage. A widely used measure of predictive power to screen NOD predictors is Information Value (IV). The 
calculation of IV is illustrated in Table 8. The predictor X can be any NOD predictor (character or numeric).  

X 
Frequencies Col % 

Y=0 
“bk” 

Col % 
Y=1 
“gk” 

Log(gk/bk) 
= X_woe 

gk - bk 
IV Terms 
(gk - bk) * 
Log(gk/bk) Y = 0 Y = 1 

X1 2 1 25.0% 12.5% -0.69315 -0.125 0.08664 

X2 1 1 12.5% 12.5% 0.00000 0 0.00000 

X3 5 6 62.5% 75.0% 0.18232 0.125 0.02279 

SUM 8 8 100% 100%  IV = 0.10943 

Table 8. 

If a column percentage, “bk” or “gk”, is zero (a zero cell), then IV is undefined. Sometimes the modeler adds 
a small number, such as 0.1, to a zero cell to allow the calculation of IV. But this IV adjustment can 
drastically inflate the IV if the other bk or gk is comparatively large. The use of IV is not suitable for a 
predictor with more than one or two zero cells. If IV calculation is mandated, then preliminary binning of 
levels of X is needed to eliminate the zero cells. 

The well-known book by Siddiqi (2017, p. 179) gives an interpretation of a predictor in terms of its IV. See 
Table 9. 

IV Range Interpretation 

IV < 0.02   “Not Predictive” 

IV in [0.02 to 0.1)   “Weak” 

IV in [0.1 to 0.3)   “Medium” 

IV > 0.3   “Strong” 

Table 9: Interpretation of IV values in terms of predictive power. Siddiqi (2017, p. 179) 

An IV over 0.5 is regarded as suspicious by Siddiqi. The modeler should investigate whether the values of 
such a predictor are determined, at least partially, as a result of the coding of the target. 

As a by-product of the IV calculation, the weight of evidence (WOE) transformation X_woe of X is 
obtained. (See the column in Table 8 with heading “Log(gk/bk) = X_woe”.) Predictors that pass the IV 
screening might be entered into the logistic model using WOE coding in preference to dummy variable 
coding. These two alternatives are discussed further in a later section. 

                                                      
16 The question might be asked, why not simply put numeric X in the logistic model. But the few levels of X often have 
unique meanings. Consider credit modeling and let X be number of bankruptcies. Then X=0 probably requires an 
indicator variable. Perhaps, X=1 has unique importance versus X=2, etc. Soon, the modeler may decide simply to use 
dummy variable coding. 
17 Nominal or Ordinal predictors with many levels (e.g. ZIP codes) require preprocessing, using Clustering, Decision 
Tree, or some other method. This topic is not discussed. 
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Another statistic that characterizes an ordinal or discrete NOD predictor X is the c-statistic. Let Gk = count 
of (Y=1) when X=xk, and let Bk = count of (Y=0) when X= xk. Unlike IV, the c-statistic is not a screener for X 
but is an indicator of the strength of a monotonic tendency between X=xk and Gk / (Gk + Bk). 

The calculation of the c-statistic follows these rules: 

• IP [“Informative Pairs”] are pairs of observations (r, s) where Targets Yr ≠ Ys  
• If Yr > Ys and Xr > Xs, then IP is “concordant” 
• If Yr > Ys and Xr < Xs, then IP is “discordant” 
• Else the IP is a “tie” 

Let C be the number of concordant pairs, T the number of ties, and IP the number of informative pairs. The 
c-statistic formula is below. The “max” transform makes 0.5 ≤ c-statistic ≤ 1.0.  

c-statistic = max(1 - (C + 0.5*T) / IP, (C + 0.5*T) / IP). 

Calculation of a c-statistic is illustrated in Table 10 with 4 rows. Predictor X has levels A and B with A < B. 

ID X Y  IP’s c, d, or t 

#1 A 0  (#1, #3) tie 

#2 B 0  (#1, #4) concordant 

#3 A 1  (#2, #3) discordant 

#4 B 1  (#2, #4) tie 

Table 10: The c-statistic for Table 10 equals 0.5 

If X is discrete and there is a strong monotonic tendency, then X might be considered for direct entry into 
the logistic model (or, possibly, as a transformation of X). In the case of ordinal X with a strong monotonic 
tendency, a further investigation is needed to decide how to recode the ordinal levels of X to become 
numeric levels. Guidelines for converting an ordinal X to numeric are given in Lund (2019a).  

A predictor X with c-statistic ≥ 0.65 merits consideration for use (after recoding, if ordinal) as a numeric 
predictor in the logistic model, perhaps after a transformation. The benefit of using X (or recoded X) 
directly in the logistic model versus dummy variable or WOE coding is reduction in degrees of freedom. 
(The d.f. associated with a WOE coded predictor is not well-defined but, arguably, exceeds 1. The 
determination of d.f. for X_woe is discussed in the following major section.) 

An alternative to IV which does not have the problem of zero-cells is the “x-statistic”.18 Here are the steps 
to compute the x-statistic of X for target Y: 

1. Let Pk = Gk / (Gk + Bk) for k = 1 to J, but now re-label “k’s” so that the Pk are non-decreasing. 
2. In the algorithm for computing the c-statistic of X vs. Y, use the newly re-labelled Pk in place of Xk. 
3. Now use the same formula to compute the x-statistic as for the c-statistic 

Example:  

In the table on the left for X vs. Y there are 7 concordance pairs and 6 ties.  
The c-statistic = max(1 - (C + 0.5*T) / IP, (C + 0.5*T) / IP) = (7 + 0.5*6)/18 = 10/18 

On the right, after re-labelling and using Pk vs. Y, there are 8 concordant pairs and 6 ties.  
The x-statistic = max(1 - (C + 0.5*T) / IP, (C + 0.5*T) / IP) = (8 + 0.5*6)/18 = 11/18 

c-statistic  x-statistic 

X Counts   Pk (ascending) Counts 

(ascending) Y=0 Y=1 Memo: Pk  Re-labelled k Y=0 Y=1 

X1 2 1 1/3  1/4 3 1 

X2 3 1 1/4  1/3 2 1 

X3 1 1 1/2  1/2 1 1 

                                                      
18 x-statistic is a name the author assigned to this statistic for the purpose of this paper. It does not appear elsewhere 
(except in some earlier papers by the author). 
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The “x-statistic” is exactly the “c” (or model c) from PROC LOGISTIC; CLASS X; MODEL Y=X;  

The x-statistic serves as an alternative to IV (and has the benefit of being computable in the presence of 
zero-cells).  

A relationship between the x-statistic and IV for the IV’s from Siddiqi’s Table 9 is given in Table 11. This 
relationship between 0.1 and 0.3 is essentially linear. There is, however, variation around the x-statistic 
values of approximately +/- 0.02. There are also exceptional values well outside this range. An 
x-statistic ≥ 0.64 indicates a very strong relationship between X and Y (perhaps non-monotonic). 

IV x-stat approx. 95% CI 

0.02 ~ 0.55 +/- 0.02 

0.1 ~ 0.58 +/- 0.02 

0.2 ~ 0.61 +/- 0.02 

0.3 ~ 0.64 +/- 0.02 

  Table 11. Lund and Brotherton (2013) 

The x-statistic and c-statistic are related as follows: (See Appendix, Topic 6 for a proof.) 

 x-statistic ≥ c-statistic 

 Gk / (Gk + Bk) is monotonic 19 in the ordering of X=xk if and only if x-statistic = c-statistic 

It was mentioned earlier that a discrete or ordinal predictor X with c-statistic ≥ 0.65 would support the use 
of X (after recoding, if ordinal)) as a numeric predictor in the logistic model. Now it is seen that the 
relationship of the c-statistic to the x-statistic is also relevant. If c-statistic ≥ 0.65 and x-statistic = c-statistic, 
then X is truly monotonic and the monotonicity is “steep” (although, not necessarily, strictly monotonic). 

The IV, c-statistic, and x-statistic can be computed for multiple X’s in (essentially) one DATA Step. These 
statistics are computed by a macro %CUM_LOGIT_SCREEN_2. 

MACRO CUM_LOGIT_SCREEN_2 

The macro parameters are shown: 

Dataset: Data set containing the Target and Predictors 

Target: At least 2 levels (missing are ignored) 

N_Input: Numeric Predictors (space delimited) 

C_Input: Character Predictors (space delimited) 

IV_Adj: YES, adds 0.1 to a zero cell to allow IV calculation 

Miss: If YES, statistics for each INPUT variable are computed for its non-missing values. If not YES, 
then only "complete cases" are used (all variables are non-missing for observation to be used). 
Missing values for an INPUT must be re-coded to be used as true values in IV or x-stat 
calculations. 

The macro name “cum_logit_screen_2” arises from its use for the cumulative logit model. Binary logistic is 
a special case. See Lund (2019b) for details. The macro is illustrated for data set SCREEN given below. 

DATA SCREEN;  

INPUT C1 $ C2 $ X1 X2 X3 Y @@;  

DATALINES;  

A AA 1 2 1 0 D CC 1 1 1 1 A CC 3 1 1 0 D XX 3 4 5 1 A XX 3 4 5 0 D XX 1 5 4 0  

B AA 1 7 3 1 E CC 0 2 1 0 B AA 1 2 1 1 E AA 1 1 3 0 B CC 3 0 1 1 E XX 3 4 5 0  

C XX 3 4 5 0 F XX 1 5 4 1 C AA 1 7 4 0 F CC 0 2 3 1 C XX 3 1 5 0 F XX 3 1 5 0  

;  

run;  

%CUM_LOGIT_SCREEN_2(SCREEN, Y, X1 X2 X3, C1 C2, NO,  ); 

                                                      
19 Monotonic means that empirical Gk / (Gk + Bk) is non-decreasing vs. the levels of X or, alternatively, non-increasing.  
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Obs Var_Name Levels Character Monotonic C-Stat X-Stat IV (Info Value) 

1 C1 6 YES 
 

0.5584 0.9480 n/a 

2 C2 3 YES 
 

0.5974 0.6623 0.3801 

3 X1 3 NO YES 0.6298 0.6298 0.2853 

4 X2 6 NO 
 

0.5129 0.7077 n/a 

5 X3 4 NO 
 

0.6753 0.7142 0.6636 

Table 12 (some columns omitted) 

Comments: For this toy example, predictors C2, X3 have very strong IV while X1 is only of medium 
strength. Predictor X3, with c-stat of 0.6753 may be a good candidate for direct entry into the logistic model 
as a simple linear effect. Predictors C1 and X2 have one or more zero-cells and IV cannot be computed. 
No predictors would be “screened out” based on weak IV below 0.1 

PROC HPBIN can compute IV for numeric predictors.20 The c-statistic and x-statistic are not provided. 

WEIGHT OF EVIDENCE, DUMMY VARIABLES, AND DEGREES OF FREEDOM 

In Table 8 the weight of evidence transformation of predictor X was illustrated. It is given here as a 
formula. If X = xk then X_woe = log( gk / bk ) where gk is the column percentage of Y = 1 in the kth row, 
down the levels of X, and bk is the column percentage of Y = 0 in the kth row.  

If either gk or bk is zero, then X_woe cannot be defined. (But a small number such as 0.1 might be 
assigned in the case of a zero.)  

There is not a “tidy” formula for assigning values to X_woe during processing of the observations in a 
DATA step. Both the count of (Y=1) and count of (Y=0) must first be computed. Then the count of all 
occurrences of (Y=1) and (Y=0) must be made for each X = xk. 

Suppose X is ordered. If the relationship between X and X_woe is monotonic, then the relationship 
between X and Gk / (Gk + Bk) is also monotonic, and conversely.21 Likewise, if there is a curvilinear 
relationship, such as quadratic, between X and X_woe, then this also holds for X and Gk / (Gk + Bk).  

Weight of evidence (WOE) is an alternative to the use of dummy variable coding for entering a NOD 
predictor in a logistic model. WOE is widely used in credit risk modeling.22 

Some advantages of WOE include: 

 Modeler has control over the effect of X_woe in the logistic model. Provided X_woe is not part of an 
interaction with another predictor in the logistic model, then: 

Log( p / (1- p) | X = xk ) = xbeta = βX_woe
̂  * Log(gk/bk) + Z 

where:  

 Z gives the terms in xbeta for the other predictors,  

 The model probability, p is computed for X = xk while other predictors are fixed, 

 Log(gk/bk) is the weight of evidence for X = xk. 

                                                      
20 http://support.sas.com/documentation/cdl/en/prochp/67530/HTML/default/viewer.htm#prochp_hpbin_overview.htm. 
HPBIN is principally designed to perform “fine classing”. Fine classing is preliminary binning of levels of numeric 
predictors, especially, continuous predictors. Fine classing would be followed by final binning which utilize an algorithm 
designed to maintain predictive power as the number of bins is decreased. Binning is discussed in a later section. 
21 Log (gk/bk) ≤ log(gk+1/bk+1)  Log (Gk/Bk) - Log(G/B) ≤ log(Gk+1/Bk+1) - Log(G/B)  

 Log (Gk/Bk) ≤ log(Gk+1/Bk+1) 
 Gk/Bk ≤ Gk+1/Bk+1  GkBk+1 ≤ Gk+1+Bk  GkBk+1 + GkGk+1 ≤ Gk+1Bk + GkGk+1  
 Gk/(Gk+Bk) ≤ Gk+1/(Gk+1+Bk+1) 

22 For example, see: Siddiqi (2017), Finlay (2010) 

http://support.sas.com/documentation/cdl/en/prochp/67530/HTML/default/viewer.htm#prochp_hpbin_overview.htm
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The log-odds of p for X = xk, with other predictors held fixed, is linearly related to the weight of 
evidence of X.  

If X_woe is monotonic with respect to X, then there is a monotonic relationship between X and 
Log( p / (1-p) ), where p is computed for X = xk with other predictors held fixed. 

In the case of dummy variable coding with J-1 fitted coefficients, the effect of X on Log( p / (1-p) ) is 

given through ∑ ĉj ∗ (X = xj) 𝐽−1
𝑗=𝑖 with other predictors held fixed. Here, ĉj is the coefficient of X = xj with 

reference level coding, across the first J-1 levels of X. 

If the relationship in the model between X and X_woe is monotonic, the dummy variable relationship 

between X and ∑ ĉj ∗ (X = xj) 𝐽−1
𝑗=𝑖 need not be monotonic.  

 Fewer parameters are added to the logistic model. If X has J levels, then dummy coding adds J-1 
parameters versus only 1 for WOE. 

 X_woe is numeric and can be compared with other numeric predictors to assess collinearity. 

A disadvantage of WOE is that the degrees of freedom for X_woe, when entered into a logistic model, are 
generally unknown. Here is an explanation. 

Let X have J > 2 levels. Then the following two models are the same (i.e. produce the same probabilities): 

(A)  PROC LOGISTIC DESCENDING; CLASS X; MODEL Y=X; 

(B)  PROC LOGISTIC DESCENDING; MODEL Y=X_woe; 

Model (A) uses J-1 degrees of freedom. Therefore, Model (B) must also use J-1 d.f. 

Suppose numeric predictors W and Z are added to models (A) and (B) to form models (A2) and (B2): 

(A2)  PROC LOGISTIC DESCENDING; CLASS X; MODEL Y=X W Z; 

(B2)  PROC LOGISTIC DESCENDING; MODEL Y=X_woe W Z; 

Then Log(L)A2 ≥ Log(L)B2. The degrees of freedom for Model A2 equals J-1 + 2. The degrees of freedom 
for Model B2 are undetermined but lie between 3 and J-1 + 2.  

It is difficult to accept that the d.f. of Model B2 would only be 3 after noting that nested Model B has J-1 d.f. 
On the other hand, to fully load Model B2 with J-1 + 2 d.f. seems wrong where, as in the usual case, 
Log(L)A2 > Log(L)B2. But if one is forced to choose, the choice of J-1 + 2 is the more conservative.  

If X_woe is uncorrelated with W and Z, then, based on observing a few examples, Log(L)A2 = Log(L)B2. 
Here, definitely, X_woe should be assigned J-1 d.f. 

The d.f. assignment is important when considering confidence intervals and hypothesis tests of the 
parameter for X_woe as well as for use of p-values in predictor selection methods (e.g. stepwise p-value 
based) or in model comparisons and predictor selection methods based on SBC and AIC (as provided by 
PROC HPLOGISTIC). 

None of the SAS procedures allow for d.f. adjustment for WOE predictors. Of course, more fundamentally, 
it is unclear how to make such an adjustment. 

I have not seen a discussion of d.f. for WOE predictors and I assume that, in practice, X_woe is simply 
regarded as having 1 d.f. in conformance with its usage in PROC LOGISTIC and PROC HPLOGISTIC.  

In situations with many predictors and with at least moderate collinearity, the 1 d.f. assignment may be a 
reasonable simplifying assumption. 

In a later section there is a further discussion of the usage of WOE vs. dummies in the fitting of a logistic 
model. 
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BINNING 

Binning is the process of reducing the number of levels of a NOD predictor by collapsing of levels. The 
goal is to achieve parsimony while preserving, as much as possible, the predictive power of the predictor. 
Binning should routinely be considered if the number of levels of the NOD predictor is 6 or more. The 
“binning solution” for a predictor X is simply the final configuration of bins (number of bins and membership 
of levels of X in the bins) decided upon by the modeler. This can be a somewhat subjective decision. 

Adjacent vs. Non-Adjacent Binning:  

Suppose X has levels A, B, C, D with alphabetical ordering. The first step in binning might be to combine A 
and C. Now the binned X has levels {A, C}, B, D. Here, “non-adjacent” binning was allowed (A and C are 
not adjacent)  

If only adjacent levels may be combined, then {A, B}, C, D is an allowable first step. Then the second step 
would be either {A, B}, {C, D}  or  {A, B, C}, D.  

Modeler chooses non-adjacent or adjacent depending on meaning of X. 

Objectives: 

A first objective is to maintain the IV of the final solution at a level near the starting IV.  

The second objective: Binning should eliminate (through combining with other levels) a level with an 
overall low frequency count or any level having only a few events (or non-events).  

A third objective, possibly at odds with the first objective, is to find a business or scientific relationship 
between a binning solution and X_woe. If X is ordered, then the relationship may be monotonicity. 

Algorithms and Macros 

See Lund (2017) for an in-depth discussion of binning as well as a description of two SAS macros. One 
macro, %NOD_BIN, performs non-adjacent binning (and adjacent binning) and the other, 
%ORDINAL_BIN, performs adjacent binning only. An example is given below of a summary report from 
%NOD_BIN. 

Example of %NOD_BIN Summary Report 

%NOD_BIN is applied to data set LEVEL_8 with Target Y and Predictor X, with 8 levels 1, …, 8. 

DATA LEVEL_8;  

do X = 1 to 8;  

   Y = 1;   

   W = floor(100*ranuni(1)) + 1;  

   output;  

   Y = 0;   

   W = W + floor(200*ranuni(1));  

   output;   

   end;  

run; 

In the example of %NOD_BIN, non-adjacent binning is performed (despite the fact that X is numeric). 
Table 13 gives the summary report.  

At step k=7, levels {2} and {6} were binned. The loss in IV is not noticeable when going from k=8 and k=7. 
The binning process continues but should stop no later than k=4 for the following reasons: 

(1) IV dropped noticeably from k=4 to k=3 (0.3199 vs. 0.3076) 

(2) The chi-square (Pr > ChiSq) column tests whether the dummy variable coefficients, corresponding to 
the two levels that are collapsed, are equal. For k=3 the bins {2, 6} and {3, 4, 5} are collapsed. But in a 
logistic model the dummy variables corresponding to these two bins are statistically unequal 
(Pr > ChiSq of 0.0422). Collapsing should only be performed when two bins are statistically equal. 

But, an alternative argument can be made for stopping at k=5 based on IV and the chi-square test. 
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k IV 
X_ 
stat 

Nested 
ChiSq 

Pr > 
ChiSq L1 L2 L3 L4 L5 L6 L7 L8 

8 0.3287 0.642 N/M N/M 1 2 3 4 5 6 7 8 

7 0.3287 0.642 0.000 0.9898 1 2+6 3 4 5 7 8  

6 0.3285 0.641 0.063 0.8021 1 2+6 3+4 5 7 8   

5 0.3282 0.641 0.120 0.7289 1 2+6 3+4+5 7 8    

4 0.3199 0.637 2.969 0.0849 1 2+6 3+4+5 7+8     

3 0.3076 0.625 4.128 0.0422 1 2+6+3+4+5 7+8      

2 0.2232 0.568 29.839 0.0000 1 2+6+3+4+5+7+8       

Table 13. 

At each step in the binning process the algorithm for %NOD_BIN finds the two bins to collapse which 
maximizes IV after the collapse versus all the other possible pairs to collapse. It is possible that this 
algorithm leads to a non-optimal final k-bin solution. This is because a sub-optimal collapse at an earlier 
step could lead to a better k-bin solution. %NOD_BIN does not detect such as outcome. As a practical 
matter, I conjecture that suboptimal solutions are uncommon in the running of %NOD_BIN or that loss in 
IV of a suboptimal solution would not be material.23 

In contrast, %ORDINAL_BIN performs only adjacent binning. It is guaranteed to find the best solution for 
each k. That is, if k=8, then %ORDINAL_BIN finds the 7-bin solution with maximum IV, and likewise for 
k = 6, …, 2. %ORDINAL_BIN also finds the best k-bin monotonic solution, if such solutions exists for a 
given k. The algorithm for %ORDINAL_BIN is the complete enumeration of all solutions. 

Although not designed to perform binning, PROC HPSLPIT might be used as an alternative for both 
adjacent and non-adjacent binning.24 

SCREENING AND TRANSFORMING CONTINUOUS PREDICTORS 

A continuous predictor X is numeric with many levels. Examples of X include measurements of distance in 
miles, money in dollars, time in minutes. While X may be entered into the logistic model, a better usage of 
X may be: Log(X), 1/X, or two variable combinations of X such as X and X2, or Log(X) and X-0.5. 

The Function Selection Procedure (FSP) provides a method to (i) select a very good transformation of X to 
use in the logistic model or (ii) recommend that X be dropped from consideration. 

FSP was developed in the 1990’s for bio-medical applications. P. Royston and W. Sauerbrei were among 
the principal developers. They discuss FSP in great detail in their book Multivariate Model-building (2008).  

A macro %FSP_8LR for applying FSP to process multiple predictors in a single macro call was given by 
Lund (2016, 2018). In Lund (2018) the FSP is applied to the cumulative logit model, with binary logistic as 
a special case. See Royston and Sauerbrei (2008), Lund (2016, 2018) for the FSP methodology. 

                                                      
23 For this data set %NOD_BIN becomes IV-suboptimal for non-adjacent binning at k=2. The 2-bin solution from 

%NOD_BIN is {01, 02, 03} and {04, 05, 06, 07, 08, 09, 10, 11, 12}. The optimal IV solution is {01, 02, 03, 04} and {05, 
06, 07, 08, 09, 10, 11, 12}. %NOD_BIN found the optimal 3-bin solution {01, 02, 03} {04, 05} {06, 07, 08, 09, 10, 11, 
12} but is unable to split up {04, 05} to reach the optimal 2-bin solution. 

 X 

Y 01 02 03 04 05 06 07 08 09 10 11 12 Total 

0 1393 6009 5083 4519 8319 4841 2689 2090 729 292 253 294 36511 

1 218 890 932 1035 2284 1593 1053 872 311 136 120 142 9586 

Total 1611 6899 6015 5554 10603 6434 3742 2962 1040 428 373 436 46097 

 
24 HPSPLIT is a decision tree procedure. It performs splitting of the sample in a manner that is the reverse of binning. 
The terminal nodes (the leaf’s) provide binning solutions. I have not been able to work with the data set that is output 
by HPSPLIT to create a usable binning report. Aside, from this difficulty, the decision tree approach can also 
accomplish binning. 
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Below, an example is given of applying %FSP_8LR to a dataset with target Y and two predictors, X and 
Rannorx. First, the logistic model population is generated by simulation. 

%LET SLOPE1 = 0.2;   

%LET SLOPE2 = -0.5;   

DATA FSP_Example;   

   do i = 1 to 8000;  

      call streaminit(1);  

      c = rand("Uniform");  

      Rannorx = rand("Normal");  

      e = 1*log(c / (1-c));   

      X = mod(i,16) + 1;   

      Z = 0 + &SLOPE1*LOG(X) + &SLOPE2*(1/X) + e;  

      Y = (Z > 0);    

      output;   

      end;   

run; 

The SAS code created a predictor X which is transformed by T(x) = 0.2*Log(x) - 0.5*(1/x). There is also a 
logistic random error that is added to T(x). This gives T(x) + error which is used in producing Y. Rannorx is 
a standard normal that is unrelated to Y. The macro call is: 

%FSP_8LR(FSP_Example, Y, X Rannorx, NO, A,  ); 

%FSP_8LR parameters are: DATASET, TARGET, List of predictors with separation by space, VERBOSE 
= YES | NO for more reports, A or D for modeling ascending or descending TARGET, and finally a 
WEIGHT parameter for use in the WEIGHT statement in PROC LOGISTIC. In this example, there is a 
space to indicate that the WEIGHT parameter is not being used. 

There are three steps to reach a final decision regarding the screening and transforming of X and of 
Rannorx. Each step involves a decision These decisions are shown in the column with heading “Decision” 
in the FSP_8LR summary report. See Table 14. 

If p-value exceeds 0.05 (or modeler’s favorite α), then STOP and accept the “decision”.  First consider X. 

 In the first row, the p-value = 0. The process moves to the next row.  

 In the second row, the p-value = 0. Use of X (linear) is rejected. The process moves to the next row. 

 In the third row, the p-value is 0.052. A borderline situation. The process might STOP with the decision 
to use X-0.5 as the transform. Otherwise, it moves to the next row. 

 Here, both X-2 and X-2 * log(X) (= transform1 * log) are selected for the model.  

FSP recommends that Rannorx be dropped (p-value = 0.15 in the first row). 

Summary Report (some columns are omitted) 

Predictor 
Off-set 

(i) Decision -2log(L) 
Test 

Stat (ii) df 
p Value 

(iii) 
trans1 

(iv) trans2 (v) 

X 0 Drop 10962.5 105.05 4 0   

X 0 Linear 10894.6 37.11 3 0 Linear  

X 0 FP1 10863.4 5.93 2 0.052 p=-0.5  

X 0 FP2 10857.5    p=-2 transform1*log 

Rannorx 4.6583 Drop 10962.5 6.74 4 0.150   

Rannorx 4.6583 Linear 10957.1 1.30 3 0.729 Linear  

Rannorx 4.6583 FP1 10956.6 0.83 2 0.659 p=-0.5  

Rannorx 4.6583 FP2 10955.8    p=3 transform1*log 

Table 14 
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Table 14 notes: See reference to column headings:  

(i) Off-Set is 4.6583 for Rannorx. This is the amount added to predictor Rannorx so that 
min(Rannorx + 4.6583) = 1. The FSP transformations of Rannorx are applied to the translated 
Rannorx. (But this is moot since Rannorx was dropped.) 

(ii)  Test Stat: Difference of -2*Log(L) for this row and -2*Log(L) for FSP2.  

 Test Stat is approximately a chi-square with d.f. as shown. 

(iii) P Value: Right tail p-value for Test Stat. 

(iv) Trans1: “p” is the power (exponent) for transformed X. e.g. p=-0.5 denotes X-0.5 

(v) Trans2: “transform1*log” is the transform of X which is X-2 * Log(X). Note that “trans1” is X-2.  

In Figure 1 the fitted xbetas for X, FSP1, and FSP2 are plotted versus the average Log Odds of Y at the 16 
levels of X. (The coefficients of the transforms were determined during the running of %FSP_8LR but were 
omitted from Table 14.) 

LINEAR = -0.08789 + 0.04046*X;   

FP1 =  0.73628 - 1.15458*X**(-0.5);   

FP2 = 0.45942 - 0.80225*X**(-2) - 2.81401*X**(-2)*Log(X);  

Both FP1 and FP2 do a good job of tracking Log-Odds, but FP2 is better on the left end of the chart. 
Clearly, the use of an un-transformed X would fail to track Log-Odds of Y. 

 
Figure 1 (created in Excel) 

MULTICOLLINEARITY AND PREDICTOR REDUCTION 

There are explicit formulas which show the effect of multicollinearity on standard errors of predictors in 
least squares estimation for linear regression (e.g. see O’Brien, (2007)). High collinearity clearly inflates 
the standard errors.  

For logistic regression the β̂j are estimated by an iterative algorithm. There is no possibility for a closed-

form formula to show the effect of multicollinearity. Instead, to illustrate the effect of multicollinearity in 

logistic models, several examples are given in ALR, p. 149. Additionally, simulations are given in 

Appendix, Topic 7 to show the effect of multicollinearity on the standard errors of predictor estimates. 

Examples from ALR and the discussion in the Appendix support the following points: 

 Multicollinearity inflates the standard errors of predictor estimates. Since standard errors enter the 
denominator of test statistics and as a multiplier in confidence interval end-points, a significant 
predictor may appear as insignificant and the length of a confidence interval may be inflated. 

 Predictor selection methods using p-values (discussed in a later section) are distorted, resulting in 
suboptimal models. 

FSP for X ... versus Log-Odds Y ... 16 ranks of X

Log_Odds_Y Linear FP1 FP2



18 

 

 Large sample size overcomes the impact of multicollinearity. This is simply a restatement of the effect 
of sample size on p-values. Insignificant predictors, whether involved in collinearity or not, become 
significant with increasing sample size. 

 Predictor coefficient estimates are not biased. The model can function as a predictive model. 

Predictor variable selection methods that do not depend on p-values (discussed in later sections) can 
eliminate collinearity by not selecting or by removing collinear predictors during predictor selection. 

Except for designed experiments, some correlation is inevitable. Only blatant correlation needs to be 
removed before beginning the model fitting. For more discussion, see O’Brien (2016). 

Correlations of numeric predictors are calculated by PROC CORR. A high correlation, perhaps greater 
than |0.90| between two predictors, should be resolved by removing one of the predictors.  

But it could happen that there are K predictors with no two having correlation above |0.90| but that one 
predictor is highly correlated to a linear combination of the other K-1. To detect this occurrence the 
variance inflation factor (VIF) of each predictor can be computed. The definition of VIF for predictor X1 
versus X2 - XK is given by: 

VIF(X1) = 1 / (1 - R2) where R2 is the r-square of the least squares linear regression of X1 against X2 -XK 

There are at least three issues with using VIF: 

 The handling of classification variables: If classification variable X has three levels X1, X2 and X3 with 
54% for X1, 44% for X2, and only 2% for X3 (any n), then X1 and X2, after conversion to dummy 
variables, have correlation of -0.96. But this is not true correlation. This example and other 
considerations show that the usage of dummy variables in VIF introduces confusion and may be lead 
to bad decisions. An alternative to dummies is weight of evidence coding. 

 The VIFs might be used to rank the variables from high (bad) to low, but there is no guidance from the 
target. Perhaps the x-statistic could be added in some manner to the VIF rankings to decide on 
elimination of predictors. This thought, however, requires a more complete process definition 

 The VIF process should be iterative. Once a variable is removed, the VIF’s of the remaining variables 
should be recomputed. Such an iterative process is unwieldy and time consuming when there are 
many predictors. 

A second approach is the usage of PROC VARCLUS. There are issues with the VARCLUS approach. 

 As with VIF, this method does not apply to classification variables. The conversion to dummy variables 
creates confusion and may be lead to bad decisions. Again, WOE coding is an alternative. 

 VARCLUS determines the number of clusters (subsets) of predictors, unless the modeler has insights 
that would override the VARCLUS process. The appropriateness of the cluster definitions are critical 
because the modeler, using subject matter expertise, must select one or several predictors from each 
cluster to “represent” that cluster in the model. 

 The selection of predictors from the clusters is not guided by the target. 

An alternative approach to reduction of collinear (numeric) predictors is outlined below and the SAS code 
for implementation is given in Appendix, Topic 8. The data set Correlation_Data with predictors X1-X5 
appears in Appendix, Topic 8 and will used in the discussion below. 

Step 1: Classification variables are converted to WOE. But none of X1-X5 is a classification variable.25 

Step 2: The x-statistic (or alternatively the IV) is computed for each predictor. This may be done by the 
macro %CUM_LOGIT_SCREEN_2. These x-statistics rank the predictors. 

Step 3: PROC CORR computes correlations. For a pair of predictors with high absolute correlation, the 
predictor with lower x-statistic (or IV) is eliminated. Once a predictor is eliminated, it is no longer used in 
correlation comparisons with lower ranked predictors. 

                                                      
25 The author has a method and rough SAS code that detects dependence among classification predictors. No 
conversion to numeric predictors is required when using this method. 
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The x-statistic, most likely, will be required for this process because of excessive zero cells when 
computing IV for predictors with many levels. 

Table 15 shows Step 2 after applying %CUM_LOGIT_SCREEN_2 to X1-X5. 

Obs Var_Name Levels Character Monotonic C-Stat X-Stat IV (Info Value) 

1 X2 13 NO   0.6500 0.6625 0.3519 

2 X1 10 NO   0.6500 0.6593 0.3767 

3 X3 13 NO   0.6334 0.6381 n/a 

4 X4 20 NO   0.5116 0.6013 0.1622 

5 X5 5 NO   0.5258 0.5402 0.0227 

Table 15 

The correlation cutoff was selected as |0.80| for the purpose of this illustration. A higher cutoff of |0.90| 
might normally be considered.  

Here is the report from Step 3. In the first row of the correlation report, predictor X1 is eliminated since it 
has correlation 0.818 with higher ranked predictor X2. The second line of the correlation report giving 
correlations with X1 is deleted. Predictor X3 will be kept since it is not compared with X1. Finally, 
predictors X4 and X5 are kept. 

Pearson Correlation Coefficients, N = 1000 
 X1 X3 X4 X5 

X2 0.818 0.706 -0.004 0.012 

X1  0.857 0.002 0.003 

X3   0.032 -0.001 

X4    -0.034 

X5     

Variables to be removed due to correlation 
Correlation max = .80 

Obs removed step correlation 

1 X1 1 0.818 

Table 16. 

Once blatant collinearity has been removed, then predictor selection methods during model fitting can 
avoid adding strongly collinear predictors to the model.  

In the section “predictor selection methods” a method is discussed where predictors are added (or 
removed) that so that Schwarz-Bayes criterion (SBC) is minimized at each step. Then, as will be explained 
below, the use of SBC chooses the best model (according to SBC theory), and also tends to avoid the 
problem of collinear predictors. 

PREDICTOR SELECTION METHODS 

“Purposeful selection” of effects (predictors) for a model occurs when modeler considers the theoretical 
relationship between X and Y (as in bio-statistics). The modeler uses the theory to help construct the 
model. In contrast, the “automated selection” of predictors for fitting a model uses a predictor selection 
technique (for example, stepwise using p-value thresholds for entry and removal). The modeler only 
chooses the method of automated selection. 

In this section the focus is on automated selection. Earlier in the paper, the samples sizes were restricted 
to medium / large. Now we should regard the sample as large or very large, as encountered in data 
mining.  

Three SAS procedures that do automated selection for logistic models will be discussed 
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 PROC LOGISTIC 

 PROC HPLOGISTIC 

 PROC HPGENSELECT 

PROC LOGISTIC METHODS FOR PREDICTION SELECTION 

PROC LOGISTIC has the following predictor selection methods: FORWARD, BACKWARD, BACKWARD 
FAST, and STEPWISE with each requiring the modeler to specify a p-value for entry, removal, or both. 
Selection of predictors using p-values have been criticized on several grounds. Harrell (2001, p.56-60) 
summarized these criticisms in the case of least squares linear regression.  

PROC LOGISTIC also provides selection method SCORE (best subsets). Comments related to SCORE 
are given in a later section. 

PROC HPLOGISTIC METHODS FOR PREDICTION SELECTION 

PROC HPLOGISTIC provides predictor selection methods that do not use p-values. One such method 
minimizes the Schwarz-Bayes criterion (SBC) at each step as a predictor enters or exits the model. Here is 
the formula for SBC (also called BIC): 26 

SBC = -2*Log(L) + log(n)*(K+1) 

 where n=sample size, K=number of parameters (or d.f.) in the model excluding the intercept.27 

There is complex theory, both conceptually and mathematically, that says that a model with smaller SBC is 
preferred to one with larger SBC. See Cavanaugh (2012a) for a PowerPoint presentation of this topic. 
Here is an implementation of predictor selection using SBC. The relevant statement is “SELECT=SBC”.  

PROC HPLOGISTIC DATA = <dataset>; 

CLASS <some of the predictors>; 

MODEL Y (descending) = <predictors>;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=SBC STOP=SBC); 

FORWARD is used to illustrate SELECT=SBC but, just as well, BACKWARD or STEPWISE could be 
used. With SELECT=SBC at each forward step, the predictor X is entered that gives best (smallest) SBC 
for the model at that step.  

CHOOSE=SBC finds the model, along FORWARD path, giving smallest SBC.  

It may be that after a few steps, the decrease in -2*Log(L) is lessened as dominant predictors have already 
been entered into the model. Meanwhile log(n)*(K+1) grows by log(n) at each step (assuming the predictor 
has 1 d.f.). For this reason, for large “n”, the CHOOSE=SBC tends to choose a model with “fewer” rather 
than “many” X’s.28  

Coefficients and model statistics from HPLOGISTIC are reported for this chosen model (CHOOSE=SBC). 
No p-value guesses are required. 

AKAIKE INFORMATION CRITERION (AIC) 

An alternative to SBC is AIC where AIC = -2*Log(L) + 2*(K+1).29 The multiplier of K+1 in AIC is 2 instead of 
log(n) as in SBC. There is also a complex theory, both conceptually and mathematically, that says that a 
model with smaller AIC is preferred to one with larger AIC. See Cavanaugh (2012b) for a PowerPoint 
presentation of this topic. 

PROC HPLOGISTIC offers SELECT=AIC and CHOOSE=AIC. Additionally, SBC and AIC could be mixed, 
as in SELECT=AIC and CHOOSE=SBC. 

                                                      
26 Schwarz, G. (1978) Estimating the Dimension of a Model, Annals of Statistics, 6, (2): 461-464. 
27 Note that SBC is not well defined when the predictors include one or more with WOE coding.  
28 It is, however, possible that CHOOSE=SBC becomes too stringent in terms of allowing predictors into the model. A 
statistician at the University of Michigan once commented that “SBC was the Grinch that stole the model”.  
29 Akaike, H. (1974), A new look at the statistical model identification, IEEE Transactions on Automatic Control, 19 (6): 

716–23 
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For large samples, SBC is much less likely to make a type I error by adding an insignificant predictor, 
under FORWARD, than is AIC. Of course, the price for low type I error is the risk that a significant predictor 
will be overlooked.  

Here is an example of the logic of adding a predictor to a model where n=10,000, when employing, first 
SBC, and then AIC. It is assumed that X has 1 d.f. 

 X is added if:  SBC(after X)   <   SBC(before X) 

 Equivalently, add X if:  -2*Log(L)K+1 + log(n)*(K+1)   <   -2*Log(L)K + log(n)*K 

 Equivalently, add X if:  -2*Log(L)K - (-2*Log(L)K+1)  >   log(n) 

 Let D = -2*Log(L)K - (-2*Log(L)K+1) 

 If n= 10,000, then log(10,000) = 9.2  

 Therefore ….  add X if D > 9.2    

 D is a Chi-Sq with 1 d.f. under H0: βX = 0 

 Prob(D > 9.2 | βX = 0) = 0.24% = 0.0024 

 0.24% is type I error probability … with n=10,000 it is very unlikely that insignificant X is added. 

The same sequence of calculations lead to a type I error probability under AIC of 15.7%. (Replace 
log(10,000) in the above calculations with 2.) 

PARTITION STATEMENT AND CHOOSE=VALIDATE IN PROC HPLOGISTIC 

The PARTITION statement together with CHOOSE=VALIDATE provides another attractive feature for 
fitting and validating logistic models.  

If “MyData” is the modeler’s data set for logistic modeling, it can be partitioned by HPLOGISTIC into 
Training, Validation, Test by either of two methods: 

Method 1: ROLEVAR. The modeler has a variable in Mydata called “Part” with levels 1, 2, 3 (the variable 
name and three levels are immaterial). Using Part the observations from Mydata are assigned to TRAIN, 
VALIDATE, and TEST. The values of Part are enclosed in quotes whether or not Part is numeric.  

PROC HPLOGISTIC DATA= Mydata; 

PARTITION ROLEVAR= PART (TRAIN="1" VALIDATE="2" TEST="3"); 

MODEL Y (descending) = <vars>;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=VALIDATE STOP=NONE); 

The logistic model predictors are selected using FORWARD and SELECT=SBC on TRAIN. Then at each 
FORWARD step the VALIDATION sample is scored. The model step with the smallest average squared 
error on VALIDATION is the chosen model. Average squared error (ASE) = ∑ (𝑝𝑖 −  𝑦𝑖)2𝑛

𝑖=1  / n.  

At the chosen step TEST is also scored. Fit statistics are reported on each of TRAIN, VALIDATE, TEST. 

But VALIDATE not available as a SELECT option. The computational burden would be significant. For 
example, consider FORWARD and 100 predictors. To select the predictor for the first step, the validation 
dataset would have to be scored 100 times, once for each of the 100 variables, in order to select the first 
predictor. 

Method 2: The ROLEVAR statement is removed and is replaced by: 

PARTITION FRACTION(VALIDATE=.2 TEST=.1 SEED=1);   

This statement causes HPLOGISTIC to randomly assign 20% to VALIDATE, 10% to TEST, and 70% to 
TRAIN according to SEED=1. 

Fit Statistics are computed for Training, Validation, Test.  

A PROPOSAL FOR USING SELECT=SBC AND ENDING WITH WOE PREDICTORS 

In this section the quandary is considered of how to include WOE predictors in predictor selection when 
fitting a logistic model. The problem was the inability to assign d.f. to WOE predictors.  
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Here are the steps of a proposal: 

 Utilize CLASS predictors (instead of WOE) with SELECT=SBC or SELECT=AIC (here, there is proper 
d.f. counting) 

 Obtain the best model using CHOOSE=VALIDATE 

 Refit the chosen model with WOE variables in place of CLASS 

 Compare CLASS and WOE MODEL fits by using statistics such as: -2*Log(L), Model c, ASE.  

 If the loss in fit is unnoticeable or immaterial, then the use of the WOE model is supported. 

An example of these steps is given next. First, is the coding of the example data set. 

DATA Dummy_v_WOE;  

 do I = 1 to 3000;   

  random1 = ranuni(1);   

  random2 = ranuni(1);   

  random3 = ranuni(1);   

  random4 = ranuni(1);   

  random5 = ranuni(1);   

  X1 = floor(2*random1); /* 2 levels */  

  X2 = floor(3*(random1 + random2)/2);    

  X3 = floor(3*(0.2*random2 + random3 + 1.8*random5)/3);   

  X4 = floor(4*(0.1*random1 + 1.9*random4 + 2.0*random5)/4);   

  xbeta = -.20 + .1*X1 + .1*X2 + .15*X3 + .15*X4 + rannor(1);   

  Y = ( xbeta > 0);   

  output;   

  end;   

run; 

The logistic model is fit with the classification variable versions of X2-X4 (X1 is binary). 

PROC HPLOGISTIC DATA= Dummy_v_WOE;   

PARTITION FRACTION(VALIDATE=.3 TEST=.3 SEED=1);   

CLASS X2 X3 X4;   

MODEL Y (descending)= X1 X2 X3 X4;   

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=VALIDATE STOP=NONE);   

run; 

The smallest ASE on the validation data set occurred at step 4. The chosen logistic model includes all four 
predictors X1-X4. 

Selection Summary (class) 

Step Effect 
Entered 

Number 
Effects In 

SBC Validation 
ASE 

0 Intercept 1 1371.84 0.2361 

1 X4 2 1370.95* 0.2296 

2 X1 3 1374.35 0.2279 

3 X3 4 1386.21 0.2267 

4 X2 5 1399.78 0.2264* 

Table 17 

Now the selected predictors X2-X4 are converted to weight of evidence and, along with X1, are fitted to a 
logistic model. The weight of evidence code appears below. It was generated by running %NOD_BIN (see 
Lund (2017) for details). 
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Data Dummy_v_WOE_2; SET Dummy_v_WOE;   

if X2 in ( 0 ) then X2_woe = -0.202853452 ;   

if X2 in ( 1 ) then X2_woe = -0.021399128 ;   

if X2 in ( 2 ) then X2_woe = 0.2459859434 ;   

if X3 in ( 0 ) then X3_woe = -0.284533229 ;   

if X3 in ( 1 ) then X3_woe = -0.038123571 ;   

if X3 in ( 2 ) then X3_woe = 0.4104888684 ;   

if X4 in ( 0 ) then X4_woe = -0.513885048 ;   

if X4 in ( 1 ) then X4_woe = -0.192588173 ;   

if X4 in ( 2 ) then X4_woe = 0.202062836 ;   

if X4 in ( 3 ) then X4_woe = 0.5768195603 ;  

run; 

Finally, HPLOGISTIC is used to fit X1, X2_woe, X3_woe, X4_woe to a logistic model. 

/* Refit model found in CLASS Model … no selections */  

PROC HPLOGISTIC DATA= Dummy_v_WOE_2;   

PARTITION FRACTION(VALIDATE=.3 TEST=.3 SEED=1);   

MODEL Y (descending) = X1 X2_woe X3_woe X4_woe;   

run; 

The results of the CLASS MODEL and the WOE MODEL are shown in Table 18. For the TEST data set, 
the only data set not compromised by training and validating, the WOE MODEL performs as well (slightly 
better, in fact) than the CLASS MODEL. In this example (which, however, is not a basis for generalization), 
the WOE recoding can replace dummy variable coding in the final model without loss of predictive 
performance. 

 CLASS MODEL: Fit Statistics WOE MODEL: Fit Statistics 

Description Training Validation Testing Description Training Validation Testing 

-2 Log Like 1588.49 1143.43 1169.77 -2 Log 
Like 

1590.79 1142.65 1163.51 

Model c 0.5977 0.6192 0.5777 Model c 0.599 0.6238 0.5833 

ASE 0.2305 0.2274 0.2290 ASE 0.2309 0.2272 0.2274 

Many More Statistics Many More Statistics 

Table 18 

DESCRIPTION OF LASSO METHOD FOR LOGISTIC MODELING 

PROC HPLOGISTIC in release 15.1 does not support selection by LASSO (least absolute shrinkage and 
selection operator) as a SELECTION method but LASSO is available in HPGENSELECT. 

Here is an outline of the LASSO process by HPGENSELECT for a logistic model.  

First a positive value of λ is specified. Then LASSO fits a logistic model by solving for the coefficients in the 
objective function shown here: 

F(b0, b, λ) = min(b0, b) { -LL(b0,  b)  +  λ * ∑ |b𝑘
𝐾
𝑘=1 | } 

where LL denotes log likelihood, b0 is the intercept, and b = b1, … bK are the other coefficients. 

Each λ gives rise to a model. Different λ’s may be associated with models with the same predictors but 
with different values for their coefficients. 

Let “maxλ” be the smallest λ where F(b0, b, λ) = -LL(b0, 0, …, 0). As λ decreases from maxλ and 
approaches 0, predictors enter or exit the model 1-at-a-time or in small groups. (More accurately, the b’s 
become non-zero or become zero.) At λ = 0 the LASSO model is the usual maximum likelihood estimation 
(MLE) model which would be found by HPLOGISTIC.  
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A sequence of λ’s must be specified where the objective function will be evaluated. LASSORHO is an 
HPGENSELECT parameter (between 0 and 1) that starts this generation of λ values. The default for 
LASSORHO is 0.8.  

The first λ in the sequence is LASSORHO * (maxλ) 

The jth λ in the sequence is LASSORHO j * (maxλ) 

The number of lambda steps is given by LASSOSTEPS with default = 20 … λ1, λ2, …, λ20. Using a 
“CHOOSE” criterion, a final model is selection from among the models found at the LASSOSTEPS. 

In order to simplify this outline of the LASSO algorithm, the preceding formulation does not include the 
case of classification variables.30 The LASSO implementation in HPGENSELECT is actually “group lasso” 
which has a more general objective function than given above. In group lasso an entire classification 
variable enters or exits the model. Individual levels of the classification variable cannot enter or exit.31 

Here are HPGENSELECT statements for selection of predictors by LASSO with SBC as the CHOOSE 
criterion. 

PROC HPGENSELECT Data= <>   

LASSORHO=.80 /* default */ LASSOSTEPS=20; /* default */  

CLASS /*<some of the Var's>*/;  

MODEL Y (descending) = /*<Var's>*/   

/ DISTRIBUTION= BINARY; /*<= logistic*/  

   SELECTION METHOD=LASSO (CHOOSE=SBC STOP=SBC) DETAILS=ALL; 

From among the λ1, λ2, …, λ20, the λ that minimizes SBC gives the chosen logistic model.  

If the same predictors are in a LASSO model and a MLE model, then β̂'s and LL are not the same because 
different objective functions are being solved. 

It is important to select LASSORHO and LASSOSTEPS so that the CHOOSE criterion finds a model that is 
globally optimal and not an end-point optimum. For example, if CHOOSE=SBC is selected with 
LASSOSTEPS=20 and the chosen model occurs at λ20, then the true optimum occurs at a point beyond 
λ20. This argues for setting LASSORHO higher than the default and LASSOSTEPS much larger than the 
default of 20 in order to reach the optimum model according to the CHOOSE criterion. The downside might 
be long run-times. 

COLLINEARITY: CHOOSE=SBC FOR LASSO VS. MLE FORWARD (SELECT=SBC) 

Using CHOOSE=SBC, the performance of LASSO is compared to MLE FORWARD with SELECT=SBC on 
a data set with high multicollinearity. There are 10 binary predictors: B_In1 - B_In10, each of which have 
pairwise correlation with the others of at least 0.92 and another 10 binary predictors: B_Out1 - B_Out10, 
each of which is essentially independent of each other as well as the 10 B_In’s. Strongly in the model are 
B_In1 - B_In10 and weakly, B_Out1 - B_Out10. Both HPLOGISTIC and HPGENSELECT are run on these 
20 predictors. 

DATA MULTI;  

array B_In{10} B_In1 - B_In10;  

array B_Out{10} B_Out1 - B_Out10;  

do ID = 1 to 20000;  

 xbeta = 0; RU = ranuni(1);  

 do j = 1 to 10;  

  B_Out{j} = (ranuni(1) < 0.3);  

  xbeta = xbeta + 0.05*B_Out{j};  

  end;  

 /* High Multicollinearity is added here */  

                                                      
30 SAS documentation: 
https://support.sas.com/documentation/cdl/en/stathpug/68163/HTML/default/viewer.htm#stathpug_hpgenselect_details29.htm 
31 But HPGENSELECT has a SPLIT statement which creates dummy variables from a classification predictor before 
the LASSO process begins. The dummies can enter or leave the LASSO model independently. 
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 do j = 1 to 10;  

  B_In{j} = (.90*RU + .10*ranuni(1) < 0.50);   

  xbeta = xbeta + 0.15*B_In{j};  

  end;  

 e = rannor(1);   

 xbeta = xbeta + e;   

 P_1 = exp(xbeta) / (1 + exp(xbeta));  

 Y = (P_1 > 0.50);  

 IF ID <= 10000 THEN PART = 1;   

 ELSE IF ID <= 20000 THEN PART = 2;  

 output;  

 end; 

SUMMARY OF FINDINGS 

HPLOGISTIC with MLE FORWARD and SELECT=SBC, CHOOSE=SBC selects 4 B_In predictors and 
one B_Out. HPGENSELECT with LASSO and CHOOSE=SBC selects 8 B_In predictors and one B_Out.32 

PROC HPLOGISTIC DATA= MULTI;  

PARTITION ROLEVAR=part(TRAIN="1" VALIDATE="2");   

MODEL Y(descending) = B_In: B_Out: ;  

SELECTION METHOD=FORWARD (SELECT=SBC CHOOSE=SBC STOP=NONE);  

run; 

The HPLOGISTIC Procedure 

Selected Effects: Intercept B_In1 B_In2 B_In9 B_In10 B_Out6 

 

Partition Fit Statistics 

Statistic Training Validation 

Area under the ROCC  “c” 0.7701 0.7678 

Average Square Error 0.1489 0.1456 

Table 19. HPLOGISTIC 

PROC HPGENSELECT DATA= MULTI LASSORHO=.80 LASSOSTEPS=20;  

PARTITION ROLEVAR=part(TRAIN="1" VALIDATE="2");   

MODEL Y(descending) = B_In: B_Out: / DISTRIBUTION = BINARY;  

SELECTION METHOD=LASSO (CHOOSE=SBC STOP=NONE) DETAILS=ALL; 

OUTPUT OUT= LASSO_OUT P=P_LASSO; ID Y PART;   

run; 

Optimal SBC occurred at step 13 for the LASSO selection. 

The HPGENSELECT Procedure 

Selected Effects: Intercept B_In1 B_In2 B_In3 B_In4 B_In5 B_In8 B_In9 B_In10 B_Out6 

 

Partition Fit Statistics 

Statistic Training Validation 

Average Square Error 0.1484 0.1446 

Table 20. HPGENSELECT 

HPGENSELECT does not compute the “c” (area under ROCC). It can be computed by running PROC 
LOGISTIC on the scored validation data set with the only predictor being the predicted probability (called 
P_LASSO). The fitted probability by PROC LOGISTIC will be a monotonic transform of the original 

                                                      
32 For CHOOSE=SBC, SBC is computed on the Training data set. 
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probability P_LASSO so that the same “c” will be found. (The “c” can also be found by running 
CUM_LOGIT_SCREEN_2 on P_LASSO from the scored validation data set.) 

PROC LOGISTIC DATA=LASSO_OUT(where=(PART=2)) desc;  

MODEL Y= P_LASSO;  

run; 

Association of Predicted Probabilities and Observed Responses 

Percent Concordant 67.4 Somers' D 0.539 

Percent Discordant 13.5 Gamma 0.666 

Percent Tied 19.0 Tau-a 0.194 

Pairs 18030400 c 0.769 

Table 21 

Two fit statistics, Average Squared Error and “c” (area under ROCC) on the validation dataset for 
HPLOGISTIC with FORWARD, SELECT=SBC are 0.1456 and 0.768. For LASSO these are 0.1446 and 
0.769. The difference is small. Other statistics, including -2*Log(L) or R-Squares based on Log Likelihood, 
are not comparable. 

Here are the coefficients from HPLOGISTIC and HPGENSELECT 

Parameter LASSO MLE 

Intercept 0.2413 0.1500 

B_In1 0.4224 0.6726 

B_In2 0.5466 0.7979 

B_In3 0.1827  

B_In4 0.1891  

B_In5 0.1546  

B_In8 0.2415  

B_In9 0.3332 0.5680 

B_In10 0.3343 0.5772 

B_Out6 0.0454 0.2112 

Table 22. 

Under LASSO the 8 highly correlated predictors share their coefficients The sum of LASSO coefficients for 
B_In1 B_In2 B_In3 B_In4 B_In5 B_In8 B_In9 B_In10 is 2.404  

The sum of MLE coefficients B_In1 B_In2 B_In9 B_In10 is 2.616. Since all B_In’s are correlated at 0.92 or 
above, these MLE predictors, as a group, have similar combined effect on the probability calculation as the 
group of B_In’s selected as LASSO predictors. 

In summary, both LASSO and MLE FORWARD, SELECT=SBC had similar fit statistics (ASE and c) but 
LASSO added 4 additional correlated predictors. 

COMMENTS ON PROC LOGISTIC SELECTION=SCORE 

In addition to FORWARD, BACKWARD, STEPWISE with p-value selection, PROC LOGISTIC offers “Best 
Subsets” through the selection option, SELECTION=SCORE. The statements to run SELECTION=SCORE 
for predictors X1-X4 are shown here: 

PROC LOGISTIC DATA = MyData descending;  

MODEL Y = X1-X4  

/ SELECTION= SCORE START= 1 STOP= 4 BEST= 2; 

run; 

These values for START, STOP, BEST cause a total of 7 models to be selected as shown: 
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 From the four 1 variable models: {X1}, {X2}, {X3}, {X4}, take the 2 with highest score chi-square 

 From the six 2 variable models: {X1 X2}, {X1 X3}, {X1 X4}, {X2 X3}, {X2 X4}, {X3 X4}, take the 2 with 
highest score chi-square 

 From the four 3 variable models: {X1 X2 X3}, {X1 X2 X4}, {X1 X3 X4}, {X2 X3 X4}, take the 2 with 
highest score chi-square 

 From the one 4 variable model: {X1 X2 X3 X4}, take the 1 model 

The modeler then proceeds to study these 7 models. 

SELECTION=SCORE is probably not going to be effective when the modeler has many classification 
variables. This topic is discussed in Lund (2016, pp. 4-8). Some summarizing remarks from this paper: 

The SELECTION=SCORE option does not support CLASS statements. One solution is to convert a 
classification variable into a collection of dummy variables. But with even a modest number of class 
variables the conversion to dummy variables could cause the total number of predictors to be 100 or 
more. Run time for PROC LOGISTIC begins to increase exponentially as the number of predictors for 
SELECTION= SCORE becomes 75 and greater. This makes large scale dummy variable conversion not 
practical when using SELECTON=SCORE.33  

One way to reduce the predictor count is to run a preliminary PROC LOGISTIC with 
SELECTION=BACKWARD FAST to reduce the count of predictors to the point where 
SELECTION=SCORE can be run. But BACKWARD FAST is not likely to select all the dummies 
associated with a classification variable. This distorts the results of final binning of NOD predictors. It 
amounts to unintended binning. 

SUMMARY COMMENTS ON PREDICTOR SELECTION FOR LARGE SAMPLES 

If sample size is sufficient for division of the data set in training, validation, and test, then PROC 
HPLOGISTIC provides the following attractive features: 

 Multicollinearity in the model is avoided by CHOOSE=SBC.34 

 CHOOSE=VALIDATE chooses the model by finding minimum ASE on the validation data set. 

 SELECT=SBC and SELECT=AIC both avoid the problems of selection of predictors using p-values. 

 Model fit statistics are computed on the training data set, the validation data set, and, as well, on the 
test data set. The test data set supports model fit analysis when CHOOSE=VALIDATE. 

MWSUG 2019, Chicago, v07 
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APPENDIX 

TOPIC 1: Mathematical description of convergence of an MLE βĵ to a normal distribution with mean βj and 

variance, obtained from the inverse of the information matrix associated with the logistic model. 

Suppose there are K predictors Xj where j = 1 to K in a logistic model so that there are K+1 parameters βj 

where j = 0 to K and with a design matrix [X] with n observations. The observed information matrix, I(β) 
has the j,l entry (j = 0 to K and l = 0 to K) given by: 

j,l entry = Ij,l(β) = ∑ xi,j
n
i=1 xi,l pi (1 − pi) 

where xi,0 = 1 and pi = exp(xbetai) / (1 + exp(xbetai)) for i = 1 to n … no Y’s required 

The formula for variance 𝜎�̂�𝑗

2  of MLE βĵ is given by jth entry in the diagonal of the inverse of I(β). ALR p. 38. 

Now the goal is to show that 𝜎�̂�𝑗

2  is O[1/n]) as n → ∞. The number of predictors K is set to 1 to simplify the 

discussion. Then I(β) is a 2 x 2 matrix. The 1,1 entry of the inverse of I(β) is: 

∑ 1n
i=1 ∗ 1 ∗  pi ∗  (1 − pi) / determinant.  

The determinant is given by: 

∑ x1
2n

i=1 ∗  pi ∗  (1 − pi) * ∑ 1n
i=1 ∗  1 ∗  pi ∗  (1 − pi)  -  ( ∑ 1n

i=1 ∗ x1 pi (1 − pi) )2 

The argument will now become motivational. If the design [X] for this sample is now repeated N-1 times 
(N-1 replications of the sample), then for this new large sample the numerator has a factor of N and the 
denominator has factor of N2 and, otherwise, all terms remains the same. This shows that under this 

replication the variance of β1̂ tends to zero as 1/N. 

To approximate I(β) from a sample, the β̂ replace the β  

TOPIC 2: Simulations of conceptual logistic model populations, the mathematical justification. 

Let  be a random variable following a logistic distribution. The probability density for  is given by 

f() = exp() / (1 + exp())2. Cumulative distribution function is F() = exp() / (1 + exp()).  

The SAS code included: 

c = ranuni(s); 

e = log(c / (1-c)); 

Then: P(e < e0) = P(log(c / (1-c)) < e0) = P( c / (1-c) < exp(e0) ) = P(c < exp(e0) / (1 + exp(e0))) 

Because “c” is distributed as uniform [0,1], the cumulative distribution function for c is F(c) = c for c in [0,1]. 

Therefore, P(e < e0) = P(c < exp(e0) / (1 + exp(e0))) = exp(e0) / (1 + exp(e0)) and “e” has the cumulative 
distribution of a logistic random variable. 

Suppose there is a “latent” variable “Z” such as Z = α0 + αXX +  … where  is logistic 

Set Y = 1 if Z ≥  and Y = 0 if Z <  for a number . 

The probability that Y = 1 is given by P(Y = 1) = P(α0 + αXX +  ≥ ). This leads to: 

= P( ≥  -( α0 + αXX)) = ∫ f(ε)dε 
∞

 − α0 − α1X
= 1 - exp( - ( α0 + αXX )) / (1 + exp( - ( α0 + αXX ))) 

= 1 / (1 + exp( - ( α0 + αXX)))  =  exp(- + α0 + αXX) / (1 + exp(- + α0 + αXX )) … (*) 

The final expression, denoted (*), is the logistic model probability for Y=1 with parameters αX for X and 

intercept of (- + α0). Using β’s, these parameters are β0 = (- + α0) and βX = αX. 

The pairs (X, Y) that are created from the SAS code can be regarded as having been observed from a 
conceptual logistic model population with design [X] and parameters β0 and βX 

Although only one predictor was in this example, the result extends to multiple predictors. 
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TOPIC 3: Theoretical standard deviation 𝝈�̂�𝒋
 from population with [XS], β0=1, β1=5, and N=5000 

See Topic 1 for formula for variance 𝜎�̂�1

2  Here is the SAS code which does the computation of the standard 

deviation. The variables I00, I01, I10, I11 are the elements of the observed information matrix. 

Data StdErr;   

   retain I00 I01 I11 0;   

   do ID = 1 to 5000;   

      X = (mod(ID,5) - 2)/10;   

      P = 1 / (1 + exp(-(1 + 5*X)));   

      I00 = I00 + 1*1*P*(1-P);   

      I01 = I01 + 1*X*P*(1-P);   

      I11 = I11 + X*X*P*(1-P);   

      end;   

      Det = I00*I11 - I01*I01;   

      StdErr_beta1 = sqrt(I00 / Det);   

      output;   

run;   

PROC PRINT DATA= StdErr;   

VAR StdErr_beta1;   

run; 

Obs StdErr_beta1 

1 0.24595 

TOPIC 4: Theoretical standard deviation 𝝈�̂�𝒋
 from population with [XS], β0=1, β1=5, and N=100 

In the code for Topic 3, replace 5000 with 100. 

TOPIC 5: Firth Estimation 

To find the minimum over b of FLog(L(b)) = Log(L(b)) + Log(A(b)), the derivatives of FLog(L) with respect 
to bj are set to zero. The derivatives of Log(L(b)) are given by the likelihood equations (see ALR, p 37).  

The derivatives of Log(A(b)) are another matter. The formula for A(b) equals {det I(b) }0.5 where I(b) is the 
observed information matrix evaluated at b, as given in Topic 1. The formula for these derivatives is stated 
in ALR on p. 392. In ALR the formula is attributed to Heinze and Schemper (2002 p. 2412) who give the 
formula without supporting calculations. The derivatives of FLog(L) (being set to zero for maximization) are 
shown below: 

∑ {(yi −  pi
n
i=1 ) ∗ xi, j + hi ∗ (0.5 −  pi) ∗  xi,j} = 0 for j = 0 to K 

 where pi = P(Yi=1 | xi bj) and where hi is the ith diagonal element of the hat matrix (see ALR, p. 187) 

The diagonals of the hat matrix also depend on b. 

With some additional algebraic manipulation the equations above become: 

∑ (yi − pi
n
i=1 ) ∗ xi, j + ∑ 0.5 ∗ hi

n
i=1 ∗ (yi − pi) ∗ xi,j + ∑ 0.5 ∗ hi

n
i=1 ∗ (1 − yi − pi) ∗ xi,j = 0 for j = 0 to K 

For every xi = (𝑥𝑖,1, … ,  𝑥𝑖,𝑘) there are 2 observations in each term of the sum, each with a weight. The 

observation with 𝑦𝑖 has weight 1 + 0.5*hi and the observation with 1 − 𝑦𝑖 has weight 0.5*hi. These hi are 
positive (ALR pp. 187-188). Without going into further detail, it is this property of the Firth estimation 
method that insures that there are always Firth parameter estimates, even in the event of complete 
separation. 

The correction term hi ∗ (0.5 −  pi) ∗  xi,j in the derivative of FLog(L) tends to zero if the sample is 

replicated many times. This is because hi tends to zero. See ALR p. 188 “any diagonal element in the hat 
matrix has an upper bound of 1/k” where k = number of cases with same predictor values. 
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TOPIC 6: The relationship between x-statistic and c-statistic 

Suppose X has k = 1, …, J levels. Let Gk = count of Y=1 when X= xk, and let Bk = count of Y=0 when 

X= xk. Let G = ∑ Gk
J
k=1  and B = ∑ Bk

J
k=1  and gk = Gk / G, bk = Bk / B. Let M = G * B. 

A refinement of the formula for the c-statistic is given below where the concordance pairs and ties are 
computed explicitly in terms of Gk and Bk. 

Refined formula for c-statistic: 

C = ∑ ∑ .
J
j=i+1

J−1
i=1 Bi ∗ Gj and T = ∑ Bk ∗ Gk

J
k=1  and c-statistic = max((C + 0.5*T) / M, 1 - (C + 0.5*T) / M)  

A new formula for the x-statistic will be derived:  

To begin, consider the k’s of Xk’s to be re-labelled so that Gk / (Gk + Bk) is non-decreasing vs. k. The 
x-statistic is the c-statistic where the Y’s are compared to the newly re-labelled Xk’s, re-labelled so that 
Gk / (Gk + Bk) is non-decreasing. 

Because Gk / (Gk + Bk) is non-decreasing, it follows by a short calculation that  

(C + 0.5*T) / M ≥ 1 - (C + 0.5*T) / M  

so that the formulation of the x-statistic is  

x-statistic = (C + 0.5*T) / M = { ∑ ∑ .
J
j=i+1

J−1
i=1 Bi ∗ Gj  + 0.5 *  ∑ Bk ∗ Gk

J
k=1  } / M 

To simply the notation, without loss of generality, let J=3. 

(*) The formula for x-statistic = {B1*G2 + B1*G3 + B2*G3} / M  + 0.5 * {B1*G1 + B2*G2 + B3*G3} / M 

M can be written as: M = {B1*G2 + B1*G3 + B2*G3}  + {B1*G1 + B2*G2 + B3*G3} + {B2*G1 + B3*G1 + B3*G2}  

x-statistic = 0.5 * { B1*G2 + B1*G3 + B2*G3 } / M  + 0.5 * { -B2*G1 - B3*G1 - B3*G2 + M } / M 

x-statistic = 0.5 * { ∑ ∑ .3
j=i+1

2
i=1  [ Bi*Gj  -  Bj*Gi ] / M + 1 }  

Because Gk / (Gk + Bk) is non-decreasing, then Bi * Gj  ≥  Bj * Gi when i < j. This allows absolute signs to be 

inserted without affecting the sum and this leads to (**).  

(**) x-statistic = 0.5 * {  ∑ ∑ .3
𝑗=𝑖+1

2
𝑖=1  | Bi*Gj  -  Bj*Gi | / M  + 1 } 

This gives to a new formula for the x-statistic: 

x-statistic = 0.5 * {  ∑ ∑ .
J
j=i+1

J−1
i=1 | Bi*Gj  -  Bj*Gi | / M  + 1 } 

With this formulation, the x-statistic is invariant (has unchanging value) under any re-labelling of the X 
values. Specifically, every pair i,j (where i < j) appears exactly once in an expression | Bi*Gj  -  Bj*Gi |. So 
any re-labelling will produce the same terms. 

Under any re-labelling of xk’s: 

x-statistic = 0.5 * {  ∑ ∑ .
J
j=i+1

J−1
i=1 | Bi*Gj  -  Bj*Gi | / M  + 1 } 

The x-statistic equals the model c for PROC LOGISTIC desc; CLASS X; MODEL Y=X;  

For this logistic model, P(Y=1 | X=xk) = Gk / (Gk + Bk). The original definition of x-statistic equals this 

model c. 

Theorem: Gk / (Gk + Bk) is monotonic in the ordering of xk’s if and only if x-statistic = c-statistic 

Outline of proof: 

Left to Right: Assume monotonic non-decreasing and follow the steps from equation (*) to (**). A similar 
proof applies under the assumption that monotonic non-increasing  
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Right to Left: 

Assume { ∑ ∑ .
J
j=i+1

J−1
i=1 Bi ∗ Gj  + 0.5 *  ∑ Bk ∗ Gk

J
k=1  } / M ≥ 0.5. 

Then c-statistic = { ∑ ∑ .
J
j=i+1

J−1
i=1 Bi ∗ Gj  + 0.5 * ∑ Bk ∗ Gk

J
k=1  } / M.  

Since x-statistic = c-statistic, this assumed equality gives this equation: 

0.5 * {  ∑ ∑ .
J
j=i+1

J−1
i=1 | Bi*Gj  -  Bj*Gi | / M  + 1 } = { ∑ ∑ .

J
j=i+1

J−1
i=1 Bi ∗ Gj  +  0.5 * ∑ Bk ∗ Gk

J
k=1  } / M 

The right hand expression can be recast as 0.5 * { ∑ ∑ .
J
j=i+1

J−1
i=1  [ Bi*Gj  -  Bj*Gi ] / M + 1 } … (see expression 

(*) and the steps which follow. 

But then 0.5 * {  ∑ ∑ .
J
j=i+1

J−1
i=1 | Bi*Gj  -  Bj*Gi | / M  + 1 } = 0.5 * { ∑ ∑ .

J
j=i+1

J−1
i=1  [ Bi*Gj  -  Bj*Gi ] / M + 1 }. 

This implies: Bi*Gj  -  Bj*Gi ≥ 0 for all (i, j) with i < j. Therefore, Gk / (Gk + Bk) is monotonic non-decreasing. 

Otherwise, assume { ∑ ∑ .
J
j=i+1

J−1
i=1 Bi ∗ Gj  + 0.5 *  ∑ Bk ∗ Gk

J
k=1  } / M < 0.5. 

Then c-statistic = { ∑ ∑ .
J
j=i+1

J−1
i=1 Bj ∗ Gi  + 0.5 * ∑ Bk ∗ Gk

J
k=1  } / M  (… indices in double sum are reversed) 

An argument similar to that given above shows that Gk / (Gk + Bk) is monotonic non-increasing. 

What remains to be proved is that c-statistic < x-statistic if Gk / (Gk + Bk) is not monotonic. 

Again, assume J=3. This outline below motivates the proof.  

Assume G1 / (G1 + B1) > G2 / (G2 + B2), and G1 / (G1 + B1) < G3 / (G3 + B3). 

This implies: G2 / (G2 + B2) < G3 / (G3 + B3). 

By assumption, | B1*G2  - B2*G1 | =  - B1*G2  + B2*G1 > 0 

x-statistic = .5 * { B1*G2 + B1*G3 + B2*G3 } / M  + .5 * {-B2*G1) - B3*G1) - B3*G2  +  M} / M  +  Q 

where Q = .5 * {-2* B1*G2 + 2* B2*G1 } / M. Note that Q > 0 

The terms to the left of Q can be arranged to give the c-statistic, therefore, x-statistic = c-statistic + Q 

TOPIC 7: Collinear Predictors, Sample Size, and Standard Errors for Estimated Coefficients 

The first DATA Step creates bivariate normal variables X1 and X2, standardized, and with correlation of 
0.995. The data set has 500 observations. In the second DATA Step the correlated normals, X1 and X2, 
are used to generate a logistic model population with target Y, parameters β1 = β2 = 1 for X1 and X2, and 
intercept 0.  

DATA A;   

  mu1=0; mu2=0; var1=1; var2=1; rho=.995;   

  do i = 1 to 500;   

   X1 = mu1+sqrt(var1)*rannor(123);   

   X2 = (mu2+rho*(sqrt(var2)/sqrt(var1))*(x1-mu1)) +   

        sqrt(var2*(1-rho**2))*rannor(123);   

   output;   

   end;   

run;   

PROC CORR DATA= A noprob; Var X1 X2;   

run; 
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Pearson Correlation Coefficients, N = 500 

  x1 x2 

x1 1.00000 0.99466 

x2 0.99466 1.00000 

Table 1, Topic 7 

  

DATA B; SET A;   

   c = rand("Uniform");    

   e = 1*log(c / (1-c));    

   Z = 0 + 1*X1 + 1*X2 + e;    

   Y = (Z > 0);  

run; 

Then PROC LOGISTIC is run. The model is significant, with right tail probability < .0001 for the likelihood 
ratio test.   

PROC LOGISTIC DATA= B desc;   

model y= X1 X2;   

run; 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 203.8015 2 <.0001 

Table 2, Topic 7 

But neither X1 nor X2 is significant as seen in Table 3, Topic 7. 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square 
Pr > ChiSq 

Intercept 1 0.0287 0.1115 0.0662 0.7970 

x1 1 0.7129 1.1342 0.3950 0.5297 

x2 1 1.1499 1.1303 1.0350 0.3090 

Table 3, Topic 7 

Now the sample size is changed from 500 to 5000. Both predictors X1 and X2 are significant. This shows 
the effect of sample size on the calculation of standard errors. 

Testing Global Null Hypothesis: BETA=0 

Test Chi-Square DF Pr > ChiSq 

Likelihood Ratio 2394.0288 2 <.0001 

Analysis of Maximum Likelihood Estimates 

Parameter DF Estimate 
Standard 

Error 
Wald 

Chi-Square Pr > ChiSq 

Intercept 1 0.00867 0.0368 0.0556 0.8136 

x1 1 0.8109 0.3654 4.9251 0.0265 

x2 1 1.2505 0.3652 11.7259 0.0006 

Table 4, Topic 7 
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TOPIC 8: Code to Rank Predictors by X-statistic and Remove Collinearity Based on Ranking 

DATA Correlation_Data;  

do i = 1 to 1000;  

   random1 = ranuni(1);  

   random2 = ranuni(1);  

   random3 = ranuni(1);  

   random4 = ranuni(1);  

   random5 = ranuni(1);   

   random6 = ranuni(1);   

   X1 = floor(10*random1);  

   X2 = floor(13*(random1*(3/5) + random2*(2/5)));  

   X3 = floor(13*(1.8*random1 + random3 + 0.2*random5)/3);  

   X4 = floor(20*(0.1*random1 + 1.9*random4 + 2.0*random5)/4);  

   X5 = (X1 - 4.5)**2;  

   xbeta = -.20 + 1.5*X1 + .1*X2 + .15*X3 + .10*X4 + 0.1*X5 + 12*rannor(1);  

   Y = ( xbeta > 0);  

   output;  

   end;  

run;  

%CUM_LOGIT_SCREEN_2(Correlation_Data, Y, X1 X2 X3 X4 X5,  ,   ,  );  

  

* SET CORR_LIMIT;  

%let CORR_LIMIT = .80; 

* __IV_FINAL is the report data set from %CUM_LOGIT_SCREEN_2; 

PROC SORT DATA = __IV_FINAL; BY descending X_STAT; 

where CHARACTER = "NO";   

run;  

DATA Var_Name_Ordered; SET __IV_FINAL end = eof;  

length Var_Name_Ordered $5000;  

retain Var_Name_Ordered;  

retain count 0;  

count + 1;  

Var_Name_Ordered = trim(COMPBL(Var_Name_Ordered || " " || Var_Name));  

if eof then do;  

count_c = trim(left(put(count,4.)));  

call symput('V_N_O', Var_Name_Ordered);  

call symput('count_inputx', count_c);  

call symput('Dataset', Dataset);    

output;  

end;  

run;  

PROC CORR DATA = &Dataset pearson outp = Pearson;  

var &V_N_O;  

run; 

DATA Removed_Inputs(keep=step removed correlation);   

   SET Pearson end = eof;  

length removed $32;  

retain i 0;  

retain ___1 - ___&count_inputx 1;  

array ___x {*} ___1 - ___&count_inputx;  

array inputx {*} &V_N_O; 

  

if _type_ = "CORR" then i = i+1;  

else delete;  

  

do j = i+1 to &count_inputx;  
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   if abs(inputx{j})*___x{i} >= &CORR_LIMIT   

   then   

   do;  

      ___x{j} = .;  

      removed = vname(inputx{j});  

      correlation = inputx{j};  

      step = i;  

      output;  

      end;  

   end;  

if eof   

then do; 

removed = "End_File";  

output;  

end;       

run;  

PROC PRINT DATA = Removed_Inputs; var Removed step correlation;  

title1 "Variables to be removed due to correlation";  

title2 "Absolute Correlation Max = &Corr_Limit";  

run; 


