
1

MWSUG Paper 56-2024

Creating and Customizing High-Impact Excel Workbooks
from SAS with ODS EXCEL

Joshua M. Horstman, Nested Loop Consulting

ABSTRACT

Love it or hate it, Microsoft Excel is used extensively throughout the business world. As a SAS user, you
can enhance the impact of your work by using the ODS EXCEL destination to create high-quality,
customized output in Excel format directly from SAS. This paper walks through a series of examples
demonstrating the flexibility and power of this approach. In addition to complete control over visual
attributes such as fonts, colors, and borders, the ODS EXCEL destination allows the SAS user to take
advantage of Excel features such as multiple tabs, frozen or hidden rows and columns, and even Excel
formulas to deliver the high-impact results you and your customers want!

OVERVIEW OF THE OUTPUT DELIVERY SYSTEM

Before SAS introduced the Output Delivery System, the traditional SAS listing was the primary
mechanism by which the SAS system displayed output to the user. While this arrangement served its
purpose, it had several limitations. Since it was designed at a time when line printers were widely used, it
used a monospace typeface in which characters could be neatly arranged in rows and columns. It did not
allow for the use of colors, fonts, graphics, and other visual elements commonly used today. The listing
output could also be difficult to import into other applications.

To overcome these limitations and facilitate the creation of publication-quality output, SAS developed the
Output Delivery System (ODS). It has been part of the base SAS product since version 7. No separate
license is required to access this functionality.

ODS provides extensive flexibility for customizing SAS output:

• Output can be created in a variety of common file formats (including Microsoft Excel files).

• Colors, fonts, borders, shading, and other visual elements can be incorporated.

• Graphics, images, links, and tables can be embedded.

• Pagination can be precisely controlled.

• Accessible output can be generated that will work with assistive technology.

In order to allow output to be created in many different file formats, ODS introduces the concept of a
“destination.” An ODS destination is simply a representation of a location and format to which output can
be routed. Some commonly used ODS destinations include RTF, HTML, PDF, POWERPOINT, and
EXCEL. Traditional SAS listing output is also still available through the LISTING destination. This paper
will focus exclusively on the use of the ODS EXCEL destination.

USING THE ODS EXCEL DESTINATION

The ODS EXCEL destination creates native XLSX files, just like the files created by modern versions of
Microsoft Excel. To create such a file using SAS, simply include a pair of ODS EXCEL statements
(sometimes referred to as the “ODS sandwich”) around the SAS code which generates the desired
output. The first ODS EXCEL statement opens the EXCEL destination and directs the output to a specific
file location using the FILE= option, while the second statement closes the destination using the CLOSE
option. For example, the following sequence of statements directs the output from the PRINT procedure
to the external Microsoft Excel file shown in Figure 1.

ods excel file="c:\example.xlsx";

proc print data=sashelp.cars; run;

ods excel close;

2

Figure 1. ODS Excel output from the PRINT Procedure

THE ODS EXCEL OPTIONS OPTION

The ODS EXCEL statement has an OPTIONS option that allows the user to specify a variety of Excel-
specific sub-options. One or more pairs of sub-options and values can be enclosed in parentheses after
the OPTIONS keyword as follows:

ods excel file="c:\example.xlsx"

 options(suboption1=value1 suboption2=value2);

The next several examples demonstrate the use of some of the sub-options available using the OPTIONS
option. An exhaustive list of the available sub-options can be found in SAS® 9.4 Output Delivery System:
User’s Guide, Fifth Edition (2016).

SPECIFYING THE WORKSHEET NAME

An Excel workbook consists of one or more worksheets, each of which has a name. By default, the
worksheets in an Excel workbook created using the ODS EXCEL destination will be named automatically
by SAS. However, if a particular worksheet name is desired, it can be specified using the SHEET_NAME
sub-option of the OPTIONS option.

The following code prints the SASHELP.CARS dataset to an Excel worksheet named “My CARS Output”
as displayed in Figure 2.

ods excel file="c:\example.xlsx"

 options(sheet_name="My CARS Output");

proc print data=sashelp.cars; run;

ods excel close;

3

Figure 2. Specifying the Worksheet Name

CREATING MULTIPLE WORKSHEETS WITH BY GROUPS

Many SAS procedures support BY group processing using the BY statement. This is conceptually similar
to running the procedure separately for each BY group. When BY group processing is used in
conjunction with the ODS EXCEL destination, a separate worksheet is created within the Excel workbook
for each unique value of the BY variable (or each unique combination of values when there are multiple
BY variables).

The naming of the individual worksheet tabs generated during BY group processing can be controlled
using the #BYVALn syntax within the SHEET_NAME sub-option described in the previous example. For
example, if #BYVAL1 were used, it would be replaced in each worksheet name with the value of the first
BY variable. Similarly, #BYVAL2 would be replaced with the value of the second BY variable, if any.

Of course, in order to use BY group processing, the input dataset must be sorted (or indexed) by the BY
variable(s). The following example uses the SORT procedure to sort the data before opening the ODS
EXCEL destination and invoking PROC PRINT to create the output seen in Figure 3.

proc sort data=sashelp.cars out=cars;

 by type make model;

run;

ods excel file="c:\example.xlsx"

 options(sheet_name="#byval1");

proc print data=cars;

 by type;

run;

ods excel close;

4

Figure 3. Multiple Worksheets with BY Groups

The value(s) of the BY variable(s) will also appear at the top of each worksheet as a header line in the
first row of the spreadsheet. To suppress this header, invoke the NOBYLINE option on the global
OPTIONS statement (not to be confused with the OPTIONS option on the ODS EXCEL statement).

options nobyline;

SPECIFYING A START LOCATION

By default, any SAS output created using the ODS EXCEL destination will begin in the upper-left corner
of the Excel worksheet, which Excel designates as cell A1. To place the output in a different location in
the worksheet, use the START_AT sub-option in the OPTIONS option to specify a different cell. The
following code would start the output in cell C3 instead. Output is shown in Figure 4.

ods excel file="c:\example.xlsx" options(start_at="C3");

proc print data=sashelp.cars; run;

ods excel close;

Figure 4. Specifying a Start Location

ADJUSTING COLUMN WIDTHS AND ROW HEIGHTS

ODS automatically determines the width for each column in the Excel worksheet based on the lengths of
the values and/or labels being placed in that column. You can manually specify the column widths in a
couple of different ways. If you wish to specify different widths for different columns, this can be
accomplished using in-line styling, which is discussed later in this paper.

However, if you simply wish to specify a common width for all columns in the workbook, this can be done
with the ABSOLUTE_COLUMN_WIDTH sub-option on the OPTIONS option. The width can be specified
using any ODS-supported unit (cm, mm, in, px, etc.). If you omit the units, the width value will translate
directly into Excel’s default width units which represent a specific number of characters in the default font.

The following ODS EXCEL statement sets the column width to 3 inches. Output is shown in Figure 5.

5

ods excel file="c:\example.xlsx"

 options(absolute_column_width="3in");

proc print data=sashelp.cars; run;

ods excel close;

Figure 5. Adjusting Absolute Column Width

Similarly, to change the height of all rows in an Excel worksheet, use the ABSOLUTE_ROW_HEIGHT
sub-option. Output is shown in Figure 6.

ods excel file="c:\example.xlsx"

 options(absolute_row_height="30");

proc print data=sashelp.cars; run;

ods excel close;

Figure 6. Adjusting Absolute Row Height

If you wish to specify a height for the header row that is different from the rest of the rows, use the
ROW_HEIGHTS sub-option and provide the header row height followed by a comma and then the body
row height. Figure 7 displays the result.

ods excel file="c:\example.xlsx"

 options(row_heights="30,15");

proc print data=sashelp.cars; run;

ods excel close;

6

Figure 7. Adjusting Row Heights

HIDING OR FREEZING ROWS AND COLUMNS

The extensive functionality provided by Microsoft Excel includes the ability to hide individual or multiple
rows and/or columns as well as to freeze header rows and/or columns. Hidden rows or columns still exist
in the spreadsheet but simply are not visible until unhidden. Frozen header rows or columns are locked
in place and always remain visible as the rest of the spreadsheet is scrolled in any direction.

Both features can be accessed using the ODS EXCEL statement. To hide specific rows and/or columns,
use the HIDDEN_ROWS and/or HIDDEN_COLUMNS sub-options to specify the row or column number of
the row or column to be hidden. To hide multiple rows or columns, list all the numbers separated by
commas. To freeze header rows or columns, use the FROZEN_ROWHEADERS and/or
FROZEN_HEADERS sub-options to specify the number of rows and/or columns to be frozen. For
example, if the FROZEN_HEADERS sub-option is given a value of “1” then only the top row will be frozen
whereas a value of “3” would result in the first three rows all being frozen.

The following code creates an Excel worksheet having the first two rows and the first column (column A)
frozen. The resulting output in Figure 8 has been scrolled both down and to the right but the first two
rows and the first column always remain visible.

ods excel file="c:\example.xlsx"

 options(

 frozen_headers="1"

 frozen_rowheaders="2");

proc print data=sashelp.cars; run;

ods excel close;

Figure 8. Frozen Headers and Row Headers

7

Similarly, the following code creates the Excel worksheet shown in Figure 9 having the 5th and 7th rows
and 6th and 8th columns (that is, columns F and H) hidden.

ods excel file="c:\example.xlsx"

 options(

 hidden_rows="5,7"

 hidden_columns="6,8");

proc print data=sashelp.cars; run;

ods excel close;

Figure 9. Hidden Row and Columns

REMOVING OR MODIFYING CELL BORDERS

Another feature provided by the ODS EXCEL destination is the ability to remove or modify the Excel
worksheet cell borders. Unfortunately, this is not available as a sub-option on the OPTIONS option.
Rather, we must create a custom style using the TEMPLATE procedure and then apply that style on the
ODS EXCEL statement. Custom styles are discussed in more detail later in this paper.

To remove the cell borders from the worksheet, use the following code to create a custom style which
derives from the built-in style named STYLES.EXCEL but has the BORDERSTYLE attribute set to
HIDDEN. The classes DATA, HEADER, and ROWHEADER are included so that this style modification
will be applied to all areas of the output as shown in Figure 10.

Note the use of the ODS PATH statement to ensure that this custom style can be found when it is applied
using the STYLE= option on the ODS EXCEL statement.

ods path(prepend) work.templat(update);

proc template;

 define style styles.mystyle;

 parent=styles.excel;

 class data, header, rowheader / borderstyle=hidden;

 end;

run;

ods excel file="c:\example.xlsx" style=styles.mystyle;

proc print data=sashelp.cars; run;

ods excel close;

8

Figure 10. Removing the Cell Borders

As an alternative, to modify the appearance of the cell borders, change the values of the
BORDERSTYLE, BORDERWIDTH, and/or BORDERCOLOR attributes as desired. The example below
creates the Excel worksheet displayed in Figure 11 with solid red cell borders that are 3 pixels in
thickness.

ods path(prepend) work.templat(update);

proc template;

 define style styles.mystyle;

 parent=styles.excel;

 class data, header, rowheader /

 borderstyle=solid

 borderwidth=3px

 bordercolor=red;

 end;

run;

ods excel file="c:\example.xlsx" style=styles.mystyle;

proc print data=sashelp.cars; run;

ods excel close;

Figure 11. Modifying the Cell Borders

9

CREATING EXCEL FORMULAS FROM SAS

Formulas are one of the most powerful features of Excel, and the ODS EXCEL destination provides a
way to build Excel formulas directly from SAS. In general, ODS EXCEL will format any character data as
a text string in Excel. However, if the FORMULAS sub-option of the OPTIONS option is set to “YES” then
any string beginning with an equal sign will be interpreted as an Excel formula.

To make use of this functionality, it is incumbent upon the programmer to utilize the tools available within
SAS to construct the desired Excel formula. In the following example, the SASHELP.CARS dataset is
pre-processed in a DATA step to add a new character variable called PRICEDIFF. This variable contains
an Excel formula constructed using the CATS function. The formula computes the difference between
the variables MSRP (found in column C of the Excel output) and INVOICE (found in column D).

data cars;

 set sashelp.cars;

 pricediff = cats("=C",_n_+1,"-D",_n_+1);

run;

Next, we use the PRINT procedure on the resulting WORK.CARS dataset, directing the output to the
ODS EXCEL destination. The FORMULAS sub-option is set to “YES” so that the text found in
PRICEDIFF will be interpreted as Excel formulas. Note that some additional in-line styling is applied to
PRICEDIFF so that it will be right-justified and will have the appropriate Excel formatting applied so that it
will be rendered as a dollar amount.

ods excel file="c:\example.xlsx" options(formulas="YES");

proc print data=cars noobs label;

 label pricediff="Price Difference";

 var make model msrp invoice ;

 var pricediff / style={just=r tagattr='format:$#,##0_)'};

run;

ods excel close;

The output is shown in Figure 12 with cell E2 selected. The formula bar at the top shows that this cell
contains a live Excel formula, not a static value.

Figure 12. Creating Excel Formulas from SAS

OUTPUT FROM MULTIPLE PROCEDURES

Earlier we discussed how to create a separate worksheet (or tab) within an Excel workbook (file) for each
BY group within the output from a single procedure. We can also create multiple worksheets by running
multiple procedures. By default, output from each SAS procedure is written to a separate worksheet. We
can individually customize the attributes of each worksheet using additional ODS EXCEL statements.
The following example creates two separate worksheets, each with a specific color and name as shown
in Figure 13.

10

ods excel file="c:\msug\example.xlsx"

 options(tab_color="red" sheet_name="Cars");

proc print data=sashelp.cars; run;

ods excel options(tab_color="green" sheet_name="Class");

proc print data=sashelp.class; run;

ods excel close;

Figure 13. Output from Multiple Procedures

MULTIPLE PROCEDURES WITH BY GROUPS

Running multiple procedures using BY group processing results by default in a separate worksheet for
each BY group for each procedure. For example, running three procedures using BY group processing
with six BY groups would result in an Excel workbook having 18 worksheets.

If this is not desirable, it is possible to create an Excel workbook in which all the procedure output for a
given BY group is placed together in a single worksheet so that the workbook contains just one worksheet
per BY group. In the following example, we accomplish this by taking manual control of BY group
processing using the SAS Macro Language.

The code is placed within a macro definition so that can make use of a macro %DO loop. The first step is
to use the SQL procedure to create a series of macro variables containing the unique values of the BY
variable. In this example, we use the SASHELP.CARS dataset with TYPE as the BY variable. The
macro variables are named TYPE1, TYPE2, etc. We also create one additional macro variable,
NUMTYPES, containing the number of unique values of TYPE, which happens to be 6.

%macro create_xlsx;

 proc sql noprint;

 select distinct(type) into :type1-

 from sashelp.cars

11

 order by type;

 %let numtypes = &sqlobs;

 quit;

Next, we disable the automatic titles generated by each SAS procedure and open the ODS EXCEL
destination. The SHEET_INTERVAL sub-option on the OPTIONS option is set to “NONE”. This causes
all procedure output to be directed to the same worksheet until we indicate otherwise.

 ods noproctitle;

 ods excel file="c:\example.xlsx"

 options(sheet_interval='none' embedded_titles='on');

We then invoke a macro %DO loop which executes once for each unique value of TYPE. During each
iteration, the Excel worksheet name is set to match the current value of TYPE. Next, a single title is
added to identify the current value of TYPE.

Then, the MEANS, FREQ, and SGPLOT procedures are called. However, no BY statement is used.
Instead, the input dataset is subset using a WHERE statement so that only the records for the current
value of TYPE are processed.

Once all three procedures have been run, the ODS EXCEL statement is invoked with the
SHEET_INTERVAL sub-option set to “NOW” to indicate that the next procedure output should be written
to a new worksheet.

 %do i = 1 %to &numtypes;

 ods excel options(sheet_name="&&type&i");

 title "Vehicle Type = &&type&i";

 proc means data=sashelp.cars;

 where type = "&&type&i";

 var horsepower;

 run;

 title;

 proc freq data=sashelp.cars;

 where type = "&&type&i";

 tables origin;

 run;

 proc sgplot data=sashelp.cars;

 where type = "&&type&i";

 reg x=weight y=enginesize;

 run;

 ods excel options(sheet_interval='now');

 %end;

Finally, once the %DO loop has completed, the Excel file is closed. This ends the macro definition. The
macro must then be executed to produce the output shown in Figure 14.

 ods excel close;

%mend create_xlsx;

%create_xlsx;

Refer to Horstman (2020) for a more detailed explanation of utilizing sets of macro variables in this
manner to create dynamic programs that execute code independently for each unique value (or
combination of values) of a specific variable (or group of variables) without hardcoding those values.

12

Figure 14. Multiple Procedures with BY Groups

WORKING WITH DATES AND TIMES

SAS and Microsoft Excel use different methods to represent date and time values. SAS stores dates as
the number of days since January 1, 1960, while Microsoft Excel instead counts the days since January
1, 1900.

Times in SAS are represented by the number of seconds since midnight, while Excel converts the time of
day into a decimal value representing the fraction of a day that would have passed at that clock time. In
other words, Excel stores noon as 0.5 (halfway through the day) and SAS stores noon as 43,200.

When creating an Excel spreadsheet using the ODS EXCEL destination that includes date and/or time
values, it’s important to make sure that these values are correctly converted. To do this, simply be sure
that an appropriate date or time format is applied in SAS to any variables which are used in your Excel
output. Unformatted values will not convert correctly since ODS EXCEL will be unaware of what they
represent.

CUSTOMIZING ODS EXCEL OUTPUT WITH STYLES

The previous section described how to create an Excel workbook directly from SAS using the ODS
EXCEL destination and how to modify some basic properties and features of the resulting Excel file.
ODS styles take this one step further by providing rich functionality for the complete customization of
nearly every aspect of the appearance of your Excel workbook. This includes colors, fonts, borders,
backgrounds, and much more. We will briefly discuss three ways to access this functionality: built-in
styles, custom styles, and in-line styling.

USING BUILT-IN STYLES

The SAS system includes a library of built-in styles that are ready for use. Each of these styles
represents a complete set of visual attributes that can be applied to any ODS output, whether that’s an
Excel spreadsheet or another ODS destination. Some of the built-in styles that are included with SAS are
listed below:

13

• STYLES.BANKER

• STYLES.BRICK

• STYLES.HARVEST

• STYLES.OCEAN

• And many more…

These built-in styles are stored in the SASHELP.TMPLMST item store. To see a list of available built-in
styles, submit the following PROC TEMPLATE code:

proc template;

 path sashelp.tmplmst;

 list styles;

run;

To apply one of these styles to Excel output generated through the ODS EXCEL destination, utilize the
STYLE= option on the ODS EXCEL statement when opening the destination. The following example
prints the SASHELP.CARS dataset using the STYLES.BROWN style as shown in Figure 15.

ods excel file="c:\example.xlsx" style=styles.brown;

proc print data=sashelp.cars; run;

ods excel close;

Figure 15. Using Built-in Styles

14

CREATING YOUR OWN STYLES

In addition to using the wide variety of built-in styles described above, ODS also allows you to define your
own custom styles using PROC TEMPLATE. This gives you the flexibility to specify the values of each of
the different visual attributes that control every aspect of how your Excel output appears.

You can either create a new style completely from scratch, or you can start with an existing style and
modify it as desired. The following PROC TEMPLATE code creates a new style called
STYLES.MYSTYLE which inherits the properties of the built-in style STYLES.PEARL and changes the
value of a single attribute.

proc template;

 define style styles.mystyle;

 parent = styles.pearl;

 class data / color=red;

 end;

run;

This style can then be applied to ODS EXCEL output as before to produce the result in Figure 16.

ods excel file="c:\example.xlsx" style=styles.mystyle;

proc print data=sashelp.cars; run;

ods excel close;

Figure 16. Creating a User-Defined Style

PROC TEMPLATE is a complex procedure with an extensive array of available classes, elements, and
attributes. Detailed information can be found in the PROC TEMPLATE documentation in SAS 9.4 Output
Delivery System: Procedures Guide, Third Edition (2016), or refer to Smith (2013) for a thorough
treatment of the topic.

15

USING IN-LINE STYLING

The final way to employ ODS styles is using in-line styling. In-line styling provides a convenient way to
override the appearance of individual elements of your output without the need to use PROC TEMPLATE
to create a complete style template. This is done by specifying one or more pairs of attributes and values
using the STYLE= option, which is available on specific statements in various procedures including the
PRINT, REPORT, and TABULATE procedures, among others.

Within PROC REPORT, in-line styling can be applied to several different report locations. These
locations are named COLUMN, HEADER, SUMMARY, REPORT, LINES, and CALLDEF. Selecting one
of these locations allows you to control which portions of the report output will be affected by the in-line
style. If a location is not specified, the in-line style will be applied to a default location. The default
location is different depending on which PROC REPORT statement contains the in-line style.

Statement Default Location

PROC REPORT REPORT

DEFINE COLUMN and HEADER

BREAK / RBREAK SUMMARY and LINES

COMPUTE LINES

The following PROC REPORT code shows how in-line styling can be applied to modify various attributes
in various report locations. The output is directed to an Excel spreadsheet using the ODS EXCEL
destination, but the same PROC REPORT code could have been used with most other ODS destinations
as well. The resulting output is shown in Figure 17.

ods excel file="c:\example.xlsx";

proc report data=sashelp.cars

 style(report)=[cellpadding=3px];

 define make / style(column)=[color=red];

 define model/ style(header)=[color=green font_size=14pt];

 define type / style=[background_color=blue color=white];

run;

ods excel close;

Refer to Eslinger (2018) for a thorough explanation of customizing PROC REPORT output using ODS
styles.

16

Figure 17. Using In-Line Styling with PROC REPORT

CONCLUSION

The ODS EXCEL destination provides a powerful and flexible way to create Microsoft Excel workbooks
directly from SAS. The use of ODS styles and the various ODS EXCEL options provides for extensive
customization of nearly every aspect of the resulting output. This integration between SAS and Microsoft
Excel allows one to have the best of both worlds – the power and functionality of the SAS system along
with the flexibility and ubiquity of Microsoft Excel.

REFERENCES

Eslinger, Jane. 2018. The SAS® Programmer's PROC REPORT Handbook: ODS Companion. Cary, NC:
SAS Institute Inc.

Horstman, Joshua M. 2020. Using SAS® Macro Variable Lists to Create Dynamic Data-Driven Programs.
Proceedings of the SAS Global Forum 2020 Conference. Paper 4679-2020.
https://support.sas.com/resources/papers/proceedings20/4679-2020.pdf

SAS Institute Inc. 2016. SAS® 9.4 Output Delivery System: Procedures Guide, Third Edition. Cary, NC:
SAS Institute Inc.
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsproc/titlepage.htm

SAS Institute Inc. 2016. SAS® 9.4 Output Delivery System: User’s Guide, Fifth Edition. Cary, NC: SAS
Institute Inc. https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsug/titlepage.htm

Smith, Kevin D. 2013. PROC TEMPLATE Made Easy: A Guide for SAS® Users. Cary, NC: SAS Institute
Inc.

CONTACT INFORMATION

Your comments and questions are valued and encouraged. Contact the author at:

Joshua M. Horstman
Nested Loop Consulting
317-721-1009
josh@nestedloopconsulting.com

https://support.sas.com/resources/papers/proceedings20/4679-2020.pdf
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsproc/titlepage.htm
https://documentation.sas.com/doc/en/pgmsascdc/9.4_3.5/odsug/titlepage.htm

