
Stacking Up - Horizontal or
Vertical with PROC SQL or
DATA Step

MWSUG
October 2024

Charu Shankar
SAS Education

Charu Shankar, SAS Institute

With a background in computer systems
management. SAS Instructor Charu Shankar
engages with logic, visuals, and analogies to
spark critical thinking since 2007.

Charu curates and delivers unique content on
SAS, SQL, Viya, etc. to support users in the
adoption of SAS software.

When not coding, Charu teaches yoga and
loves to explore Canadian trails with her husky
Miko.

Agenda

 Introduction

 Vertical Stacking
- Data/Proc Steps
- PROC SQL Set Operation

 Horizontal Stacking
- Data Step Merge
- PROC SQL Joins

 Handy Links

Terminology
Vertical Stacking Horizontal Stacking

Data Step PROC SQL Data Step PROC SQL

terminology Concatenate Set
Operation Merge Join

Proc Append Match Merge  Inner Join
Interleave Non Matches  Outer Join
Proc Datasets • Left Join

• Right Join

• Full Join

visually the difference can be
explained as follows - joins
tend to extend breadthways,
but set operations in depth.

Before we look at the effect of this statement, let’s
look at the syntax and compare it to that of the join.
Notice that “UNION” is inserted between two
SELECTs (each of which has, as it must, a
subordinate FROM clause). A set operator works on
the results of two SELECTs. This is unlike a join,
which is implemented within the FROM clause of a
single SELECT.

Wide or long?
Broad or narrow?
How do you want to go?

Visual Stacking PROC
SQL

Data Step PROC PROC

Horizontal
Stacking
stack columns
and align rows.

Joins Merge

Vertical
stacking rows
and align
columns.

Set
operators

Concatenat
e

Append Dataset
s

Data Step PROC SQL
Vertical
Stacking

Concatenate Set Operations
Data Step Concatenate Union
Proc Append Outer Union

Except
Intersect

Horizontal
Stacking

Merge Joins
Match Merge Inner Join
Non Matches Outer Join

Left Join
Right Join
Full Join

Now some language

Vertical Stacking

Vertical Stacking – Proc Append -
Concepts

Vertical Stacking – Proc Append -
Syntax

Vertical Stacking – Proc Datasets-
Syntax

PROC DATASETS LIBRARY= libref;
APPEND BASE = SAS-data-set DATA =SAS-data-
set;
RUN;

Vertical Stacking – Proc Append -
Output

Vertical Stacking – Proc Append
 unique situations

1. Processing time

p110d01

Vertical Stacking – proc append is the fastest concatenation
technique as it doesn’t read the base dataset

Vertical Stacking – Proc Append - Advantage

proc append
 base=prepsales
 data=sales;
run;

Concatenate like-structured data sets empsdk and
empsfr to create a new data set named empsall1.

Both data sets contain the same variables.

empsfr

First Gender Country
Pierre M France
Sophie F France

empsdk

First Gender Country
Lars M Denmark
Kari F Denmark
Jonas M Denmark

empsall1
First Gender Country

Lars M Denmark
Kari F Denmark
Jonas M Denmark
Pierre M France
Sophie F France

Vertical Stacking – Data Step - Concepts

Compilation
empsfr

First Gender Country
Pierre M France
Sophie F France

...

empsdk
First Gender Country

Lars M Denmark
Kari F Denmark
Jonas M Denmark

PDV
First Gender Country

empsall1
First Gender Country

p110d01

Vertical Stacking – Data Step - Concepts

data empsall1;
 set empsdk empsfr;
run;

empsfr
First Gender Country

Pierre M France
Sophie F France

16

PDV
First Gender Country

Sophie F France

EOF

empsdk
First Gender Country

Lars M Denmark
Kari F Denmark
Jonas M Denmark

empsall1
First Gender Country

Lars M Denmark
Kari F Denmark
Jonas M Denmark
Pierre M France
Sophie F France

Vertical Stacking – Data Step - Concepts
Execution

data empsall1;
 set empsdk empsfr;
run;

Viewing the Log
Partial SAS Log
145 data empsall1;
146 set empsdk empsfr;
147 run;

NOTE: There were 3 observations read from the data set WORK.EMPSDK.
NOTE: There were 2 observations read from the data set WORK.EMPSFR.
NOTE: The data set WORK.EMPSALL1 has 5 observations and 3
variables.

Vertical Stacking – Data Step - Concepts

• The SET statement reads observations from each
data set in the order in which they are listed.

• Any number of data sets can be included in the SET statement

p110d01

SET SAS-data-set1 SAS-data-set2 . . .;

Scenario 1 – Standard Data Step Concatenate

Create new table by reading every row in every table listed on the set
statement

Vertical Stacking –Data Step - Scenarios

data dataconc;
set mwsug.prepsales
 mwsug.nonsales
;
run;

Scenario 2. Build new variables

p110d01

Vertical Stacking – Data Step - Advantage

data dataconc;
 set mwsug.prepsales
 mwsug.nonsales;
 sales=‘YS’;
 nonsales=‘YN’;
run;

The data step can keep all uncommon columns, plus
determine which table contributed to final results.

p110d01

Scenario 3. Determine which table contributed to final
results

Vertical Stacking – Data Step - Advantage

data dataconc;
 set
mwsug.prepsales(in=ins)
 mwsug.nonsales(in=inn
);
 sales=ins;
 nonsales=inn;
run;

Data step concatenate

DATA STEP concatenation with the SET statement will
almost always be the best method for creating a table
from several input datasets in the following cases
• read in all input datasets with a SET statement without

any prior data manipulation and
• perform any subsequent necessary data manipulation

within the same DATA STEP

Vertical Stacking – Data Step Tips

Comparing PROC Append - Data Step
Concatenate
Criterion PROC APPEND Data Step

Concatenate
Handing of different
variables in datasets

cannot include variables found
only in the DATA= dataset

Uses all variables
and assigns missing
values as necessary

Number of data sets 2 Any number
Speed PROC Append concatenates much

faster since it doesn’t process
observations from BASE= data set

Build new variables Cannot build new variables as
descriptor portion information in
base SAS dataset cannot change

The data step can
build new variables.

Space Proc Append only reads in
observations from dataset being
appended. Use Proc Append over
the SET statement to save work
space.

SET statement reads
in all observations
from the datasets
being concatenated.

Using Set Operators

The modifiers ALL and CORR change the default behavior of
the set operators.

• ALL modifies the default behavior for rows.
• CORR modifies the default behavior for columns.

Vertical Stacking – PROC SQL Set Operation

SELECT …
UNION | OUTER UNION | EXCEPT |
INTERSECT <ALL><CORR>
SELECT …;

Objectives

Which employees
have completed
training A or B?

Vertical Stacking – PROC SQL Set operations

Business Data

The data required to answer the questions is stored in two
tables.
Partial train_a

ID Name Date
11 Bob 15JUN2012
16 Sam 5JUN2012
14 Pete 21JUN2012

Partial train_b
Name ID SDate EDate
Bob 11 9JUL2012 13JUL2012
Pam 15 25JUL2012 27JUL2012
Kyle 19 12JUL2012 20JUL2012
Chris 21 29JUL2012 .

Training class A is completed in a
single session. Date represents
the date of training.

Training class B is a
multi-session class.
SDate is recorded on the
first training day. EDate is
recorded when the course
is complete.

Vertical Stacking – PROC SQL Set Operation

Using Set Operators

Set operators use the intermediate result sets from two
queries to create a final result set.

•

?

Intermediate
result set 1

Set
Operator

Query 2:

Query 1:

Intermediate
result set 2

Final Result
Set

RS1

RS2

Vertical Stacking – PROC SQL Set Operation

UNION Set Operator - Concept

UNION

Which
employees
have completed
training A or B?

Query 2:
List employees
that have completed
train_b.

Query 1:
List employees
that have completed
train_a.

Final Result
Set

RS1

RS2

Vertical Stacking – PROC SQL Set Operation

UNION Set Operator - Syntax
The manager requested a report that shows employees
from both result sets; the UNION operator is appropriate.

s106d01

proc sql;
 select ID, Name
 from work.train_a

union
 select ID, Name
 from work.train_b
 where EDate is not missing;
quit;

UNION Set Operator - Output

Which Employees Have Completed
 Training A or B?

 ID Name
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 11 Bob
 12 Sue
 14 Pete
 15 Pam
 16 Sam
 17 Pat
 18 Kim
 19 Kyle
 20 Mary
 21 Chris
 87 Ted
 91 Rand

OUTER UNION Set Operator - concept

Which employees
have completed
training A and/or B
and on what dates?

Query 2:
List employees
that have completed
train_b and the
completion date.

Query 1:
List employees
that have completed
train_a and the
completion date.

OUTER
UNION

Final Result
Set

RS1

RS2

Vertical Stacking – PROC SQL Set Operation

OUTER UNION - Syntax
keep all rows and all columns from the two intermediate
result sets with The OUTER UNION operator

s106d04

SELECT …
OUTER UNION <CORR>
SELECT …

RS1

RS2

proc sql;
select * from train_a
outer union
select * from train_b
 where EDate is not missing;
quit;

OUTER UNION Set Operator - Output
Who completed Training A and /or B and on what dates?

Completion Start
 ID Name Date Name ID Date End Date
ƒƒƒ
 11 Bob 15JUN2012 . . .
 16 Sam 05JUN2012 . . .
 14 Pete 21JUN2012 . . .
 21 Chris 07JUN2012 . . .
 18 Kim 04JUN2012 . . .
 17 Pat 22JUN2012 . . .
 20 Mary 11JUN2012 . . .
 12 Sue 06JUN2012 . . .
 87 Ted 05JUN2012 . . .
 91 Rand 07JUN2012 . . .
 . . Bob 11 09JUL2012 13JUL2012
 . . Pam 15 25JUL2012 27JUL2012
 . . Kyle 19 12JUL2012 20JUL2012
 . . Ted 87 09JUL2012 13JUL2012

EXCEPT Set Operator - Concept

Which employees
have completed
training A, but not
training B?

Query 2:
List employees
that have completed
train_b.

Query 1:
List employees
that have completed
train_a.

EXCEPT

Final Result
Set

RS1

RS2

Vertical Stacking – PROC SQL Set Operation

EXCEPT Set Operator - Syntax

Lists employees who have completed training A, but
not training B with the EXCEPT operator.

s106d07

SELECT …
EXCEPT <ALL><CORR>
SELECT …

proc sql;
 select ID, Name from train_a
except
 select ID, Name from train_b
 where Edate is not missing;
quit;

Except Set Operator - Output

Which Employees Have Completed
 Training A, But Not Training B

 ID Name
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 12 Sue
 14 Pete
 16 Sam
 17 Pat
 18 Kim
 20 Mary
 21 Chris
 91 Rand

INTERSECT Set Operator

Which employees
have completed both
training A
and B?

Query 2:
List employees
that have completed
train_b.

Query 1:
List employees
that have completed
train_a.

INTERSECT

Final Result
Set

RS1

RS2

Vertical Stacking – PROC SQL Set Operation

INTERSECT Set Operator - Syntax
This report requires rows that exist in both train_a and
train_b. The INTERSECT operator will accomplish this.

s106d09

SELECT …
INTERSECT <ALL><CORR>
SELECT …

RS1

RS2

proc sql;
select ID, Name from train_a
intersect
select ID, Name from train_b
 where EDate is not missing;
quit;

INTERSECT Set Operator - Output

Employees Who Have Completed
 Both Training Classes

 ID Name
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 11 Bob
 87 Ted

Default Behavior of Set Operators

Set Operator Rows Columns

UNION Unique rows from both
result sets

Aligned by column
position in both result sets

OUTER UNION All rows from both result
sets

All columns from both
result sets

EXCEPT Unique rows from the
first result set, that are
not in the second result
set

Aligned by column
position in both result sets

INTERSECT Unique rows from the
first result set that are in
the second result set

Aligned by column
position in both result sets

Vertical Stacking – PROC SQL Set Operation

Match-Merging
A B C

1
2
3

C D E
1
2
3

C D E
1
1
2

A B C
1
2

One-to-One
A single observation in one data set is
related to exactly one observation in another
data set based on the values of one or more
selected variables.

One-to-Many
A single observation in one data set is
related to more than one observation in
another data set based on the values
of one or more selected variables.

Nonmatches
At least one observation in one data
set is unrelated to any observation in
another data set based on the values
of one or more selected variables.

C D E
2
3
4

A B C
1
2
4

Horizontal stacking – data step Merge

Match-Merging: Sorting the Data Sets
The data sets in a match-merge must be sorted by the
common variable or variables that are being matched.

PROC SORT DATA=input-SAS-data-set
 <OUT=output-SAS-data-set>;
 BY <DESCENDING> by-variable(s);
RUN;

Horizontal stacking – data step Merge

The MERGE statement in a DATA step joins observations
from two or more SAS data sets into single observations.

A BY statement indicates a match-merge and lists the
variable or variables to match.

MERGE SAS-data-set1 SAS-data-set2 . . .;
BY <DESCENDING> BY-variable(s);

p110d04

Horizontal Stacking – Data Step Merge

data empsauh;
 merge empsau phoneh;

by EmpID;
run;

Non matches IN= Data Set Option
The IN= data set option creates a variable that indicates
whether the data set contributed to building the current
observation.

variable is a temporary numeric variable that has
two possible values:

MERGE SAS-data-set (IN=variable) …

0 Indicates that the data set did not contribute
to the current observation.

1 Indicates that the data set did contribute
to the current observation.

Horizontal Stacking – Data Step Merge

Combining Data from Multiple Tables

SQL uses joins to combine tables horizontally. Requesting a join
involves matching data from one row in one table with a
corresponding row in a second table. Matching is typically
performed on one or more columns in the two tables.

customers transactions

Horizontal Stacking – PROC SQL Join

Types of Joins

PROC SQL supports two types of joins:
• Inner joins return only matching rows.

• Outer joins return all matching rows, plus nonmatching
rows from one or both tables.

RightLeft Full

Horizontal Stacking – PROC SQL Join

Cartesian Product
A query that lists multiple tables in the FROM clause without a
WHERE clause produces all possible combinations of rows from all
tables. This result is called a Cartesian product.

To understand how SQL processes a join, it is helpful to understand
the concept of the Cartesian product.

s104d01

SELECT …
 FROM table-name, table-name
 <, …,table-name >;

Horizontal Stacking – PROC SQL Join

proc sql;
select *
 from customers, transactions;
quit;

customers
ID Name

101 Smith
104 Jones
102 Blank

Non-Matching Data in the Cartesian Product

ID Name ID Action Amount
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
 101 Smith 102 Purchase $100
 101 Smith 103 Return $52
 101 Smith 105 Return $212
 104 Jones 102 Purchase $100
 104 Jones 103 Return $52
 104 Jones 105 Return $212
102 Blank 102 Purchase $100

 102 Blank 103 Return $52
 102 Blank 105 Return $212

Result Set

transactions
ID Action Amount

102 Purchase $100
103 Return $52
105 Return $212

Non-
matching
IDs

9 rows

Horizontal Stacking – PROC SQL Join

Inner Join
Specify the matching criteria in the WHERE clause.

PROC SQL Output

s104d02

SELECT object-item<, …object-item>
 FROM table-name, … table-name
 WHERE join condition
 <AND sql-expression>
 <other clauses>;

ID Name ID Action Amount
ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Blank 102 Purchase $100

Horizontal Stacking – PROC SQL Join

proc sql;
select *
 from customers, transactions

where customers.ID=
 transactions.ID;
quit;

SQL Inner Join versus DATA Step Merge

A PROC SQL inner join and
the DATA step match merge
will not always return the
same results.

s104d05

ID Name ID Action Amount
 ƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒƒ
102 Kent 102 Purchase $376
102 Kent 102 Purchase $376

 102 Kent 102 Return $119
 102 Kent 102 Return $119

customer2
ID Name

101 Jones
101 Jones
102 Kent
102 Kent
104 Avery

transaction2
ID Action Amount

102 Purchase $376
102 Return $119
103 Purchase $57
105 Purchase $98

Horizontal Stacking – PROC SQL Join

select *
 from customer2 as c2,
transaction2 as t2
 where c2.ID=t2.ID;

Compare SQL Join and DATA Step Merge

Key Points SQL Join DATA Step
Merge

Explicit sorting of data
before join/merge

Not
required

Required

Same-name columns in
join/merge expressions

Not
required

Required

Equality in join or merge
expressions

Not
required

Required

Horizontal Stacking – PROC SQL Join

Outer Joins
• You can retrieve both non-matching and matching rows using an

outer join.

• Outer joins include left, full, and right outer joins. Many tables can
be referenced in outer joins. The tables are processed two tables at
a time.

Left Full Right

Horizontal Stacking – PROC SQL Join

Outer join syntax is similar to the alternate inner join syntax.

The ON clause specifies the join
criteria in outer joins.

SELECT object-item <, …object-item>
 FROM table-name <<AS> alias>
 LEFT|RIGHT|FULL JOIN
 table-name <<AS> alias>
 ON join-condition(s)
 <other clauses>;

s104d07

Outer Joins
Horizontal Stacking – PROC SQL Join

proc sql;
title 'All Customers';
select *
 from customers as c
 left join
 transactions as t
 on c.ID=t.ID;
quit

Comparing Inner Joins and Outer Joins
Key Points Inner Join Outer Join

Table Limit 256 256

Join Behavior Returns matching rows
only

Returns matching and
nonmatching rows

Join Options Matching rows only LEFT, FULL, RIGHT

Syntax changes  Multiple tables,
separated by
commas, in the
FROM clause

 WHERE clause that
specifies join criteria

ON clause that
specifies join criteria

Horizontal Stacking – PROC SQL Join

Comparing Data Step Merge with PROC
SQL Join

Data Step Merge PROC SQL Join
Pros • Allows use of data step syntax,

e.g. arrays, first. / last. processing
• Easier understanding and

comprehension for novice users
• Data step hash objects and arrays

are available
• Multiple output tables can be

created with a single read of the
input dataset.

• Sorts need not be explicitly sorted as
SQL will sort behind the scenes

• Multiple tables can be joined on multiple
keys (even if variable types differ) in
one query - Easier to deal with ranges
on join, e.g. date between X and Y

• Join query can also summarize
• Pass-thru queries to RDBMS
• Use of efficient hash joins

Cons • Data steps must be sorted or
indexed before merging

• Multi-table joins on different keys
requires multiple sorts/merges

• BY variables must be same type
 (char or num)

• Limitations of SQL apply, e.g. flexibility
of data step syntax is lost

• SQL cannot read raw data files and an
extra data step is required first.

• Multiple output tables need multiple
SQL steps in order to create them

Wash • Use of data set options allows variables to be dropped, renamed, kept etc….
• the vast majority of SAS functions are available in both data step and SQL

Dataset A & Dataset B

Data tableA;
Input id $ Name $;
Datalines;
E01 John
E02 David
E03 Alice
E04 Betty
;

Run;

Data tableB;
Input id $ age;
Datalines;
E01 25
E03 30
E05 23
E06 34
;

Run;

Dataset A & Dataset B

Data tableA;
Input id $ Name $;
Datalines;
E01 John
E02 David
E03 Alice
E04 Betty
;

Run;

Data tableB;
Input id $ age;
Datalines;
E01 25
E03 30
E05 23
E06 34
;

Run;

Choosing a Technique
There are many ways to perform a task using PROC SQL and non-SQL base SAS
for data management techniques. While elegance vs. functionality is always a
consideration, the choice of one technique over another should be made based on
the following criteria:

Familiarity In today's fast pace, demanding faster and more accurate results, the programmer
would employ techniques that are familiar and comfortable.

Goal What is the ultimate goal of the effort? Where will the code reside? Pertinent
design questions to be considered. Data management and extraction with PROC
SQL can become as powerful (and convoluted) as non-SQL base SAS programming.
Complex grouping, and complicated summarizations can be accomplished with
either facility

Correctness Care in the choice of tools must be taken. While all techniques will provide results,
not all results are correct relative to the process design.

Maintenance While succinct code is often desirable, emphasis should be placed on clear, concise
(but not necessarily terse), and maintainable code which is An often-overlooked
feature of program development

Human
Efficiency

From a programmer perspective efficiency relates to the comfort level and skill sets
of the individual programmer.

Machine
processing
efficiency

Users need to consider these gains or losses within their own environment based
on platform, file size, use of indices (or not), and use of RDBMSs.

Handy Links

• http://blogs.sas.com/content/sastraining/2012/03/23/whats-in-a-
name-sql-join-or-set/

• http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/def
ault/viewer.htm#n1tgk0uanvisvon1r26lc036k0w7.htm

• http://www2.sas.com/proceedings/forum2008/085-2008.pdf

• http://www2.sas.com/proceedings/sugi29/269-29.pdf

• Ask the Expert – How many ways can you join SAS Tables, Charu
Shankar, https://lnkd.in/gq-8k57i

http://blogs.sas.com/content/sastraining/2012/03/23/whats-in-a-name-sql-join-or-set/
http://blogs.sas.com/content/sastraining/2012/03/23/whats-in-a-name-sql-join-or-set/
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#n1tgk0uanvisvon1r26lc036k0w7.htm
http://support.sas.com/documentation/cdl/en/lrcon/65287/HTML/default/viewer.htm#n1tgk0uanvisvon1r26lc036k0w7.htm
http://www2.sas.com/proceedings/forum2008/085-2008.pdf
http://www2.sas.com/proceedings/sugi29/269-29.pdf
https://lnkd.in/gq-8k57i

Copyright © SAS Inst i tute Inc. Al l r ights reserved.

Thank You

Charu Shankar
SAS Institute Toronto

EMAIL Charu.shankar@sas.com
BLOG https://blogs.sas.com/content/author/charushankar/
TWITTER CharuYogaCan
LINKEDIN https://www.linkedin.com/in/charushankar/
LinkedIn Group https://www.linkedin.com/groups/5095978

 Did you
enjoy this
session, Let us
know in the
evaluation

https://www.linkedin.com/in/charushankar/
https://www.linkedin.com/groups/5095978
https://sas.qualtrics.com/jfe/form/SV_4MHib349NATgww6

	Stacking Up - Horizontal or Vertical with PROC SQL or DATA Step
	Slide Number 2
	Agenda
	Terminology
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	1. Processing time
	Slide Number 14
	Compilation
	Execution
	Viewing the Log
	Slide Number 18
	Scenario 2. Build new variables
	Slide Number 20
	Slide Number 21
	Comparing PROC Append - Data Step Concatenate
	Using Set Operators
	Objectives
	Business Data
	Using Set Operators
	UNION Set Operator - Concept
	UNION Set Operator - Syntax
	UNION Set Operator - Output
	OUTER UNION Set Operator - concept
	OUTER UNION - Syntax
	OUTER UNION Set Operator - Output
	EXCEPT Set Operator - Concept
	EXCEPT Set Operator - Syntax�
	Except Set Operator - Output
	INTERSECT Set Operator
	INTERSECT Set Operator - Syntax
	INTERSECT Set Operator - Output
	Default Behavior of Set Operators
	Match-Merging
	Match-Merging: Sorting the Data Sets
	Slide Number 42
	Non matches IN= Data Set Option
	Combining Data from Multiple Tables
	Types of Joins
	Cartesian Product
	Non-Matching Data in the Cartesian Product
	Inner Join
	SQL Inner Join versus DATA Step Merge
	Compare SQL Join and DATA Step Merge
	Outer Joins
	Slide Number 52
	Comparing Inner Joins and Outer Joins
	Comparing Data Step Merge with PROC SQL Join
	Dataset A & Dataset B
	Dataset A & Dataset B
	Choosing a Technique
	Handy Links
	Thank You

