Teaching Your Computer to See: Using Computer Vision to Detect Defects Presentation # AL-046

Scott Koval is a Sr. Data Scientist with Pinnacle Solutions, Inc. He has a Bachelor of Science in Psychology from Virginia Tech, a Master of Arts in Experimental Psychology from Radford University, and a Master of Science in Applied Statistics from Kennesaw State University. In addition to academic degrees, he also possesses five SAS certifications.

Scott takes pleasure in working on all parts of the data life cycle and is most interested in Big Data, IoT, Statistics/Analytics, and Natural Language Processing.

Teaching Your Computer to See: Using Computer Vision to Detect Defects Presentation # AL-046 Scott Koval Pinnacle Solutions, Inc Indianapolis, IN

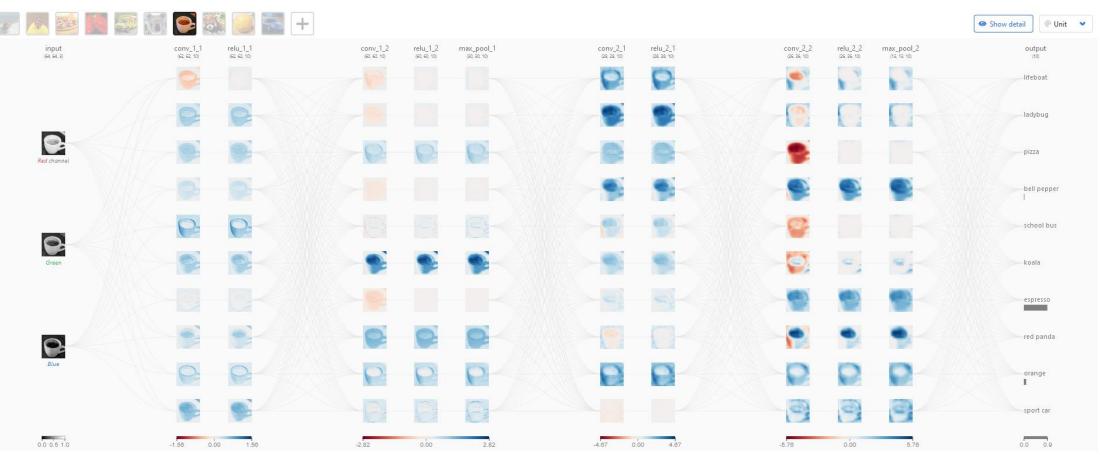
Outline

- Computer Vision (CV) Review
- Use Cases of CV
- Kaggle
 - Casting Product Image Data for Quality Inspection
 - Examples of Casting Non-defects and Defects
- SAS Viya and Deep Learning
 - Overview of Code and Results
- Wrap-up

Computer Vision

- What is Computer Vision?
 - Earliest experiments were in 1950s, while commercial use started in 1970s.
 - Type of Artificial Intelligence that is trained off digital images.
 - Deep Learning models that are created by allowing the computer to recognize patterns and adjust weights and biases in a neural network.
 - Examples of different methods: Convolutional Neural Network (CNN), You Only Look Once (YOLO), Generative Adversarial Network (GAN)
 - Uses include, but are not limited to:
 - Classification / Image Recognition
 - Recognition / Object Detection
 - Segmentation / Edge Detection
 - Estimation of Keypoints

Classification


- Task is to classify or recognize what the image is.
- Popular method is using a CNN
 - Input -> Layers -> Output
 - Training adjusts weights and biases between neuron of each layer.
 - Image is classified by which output class has the highest score.
- This is the type of CV used in this presentation.

https://raw.githubusercontent.com/dusty-nv/jetson-inference/master/docs/images/imagenet-orange.jpg

CNN Example Diagram

https://poloclub.github.io/cnn-explainer/

Object Detection

- Model trained to identify specific objects within an image.
- You Only Look Once (YOLO)
 - Breaks image up into grid and applies a classification probability.
 - Bounding boxes are formed around areas of high confidence of each class detected.

https://raw.githubusercontent.com/dusty-nv/jetson-inference/master/docs/images/detectnet.jpg

Segmentation

- Type of Classification, but at the pixel level.
- Fully Convolutional Network (FCN)
- Useful for understanding surrounding environment.
 - Road, cars, people, signs, etc...
 - Autonomous vehicles/drones

https://raw.githubusercontent.com/dusty-nv/jetson-inference/master/docs/images/segmentation.jpg

Estimation of Keypoints

- Attempts to locate various keypoints within an image.
- poseNet based off a CNN model.
- Not limited to just humans.

Building BETSY, World's First AI Ranch Hand

- Website focused on data science and machine learning.
 - Hosts datasets and allows users of all skill levels to learn, collaborate, and compete.
 - Wide variety of data across many industries.
- This presentation used manufacturing images
 - Casting Product Image Data for Quality Inspection
 - Collection of 7,348 gray-scaled images of both non-defective and defective castings.
 - Task was to build a model that would classify images.

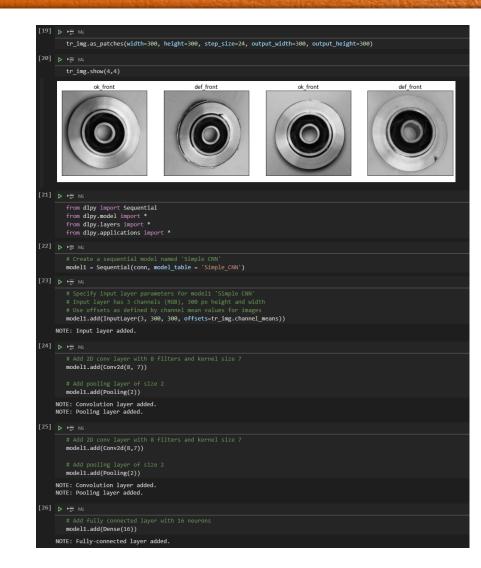
Casting Product Image Data

Non-Defective

Defective

- Modeling was performed using SAS Viya 3.5 environment.
- DLPy Python library for SAS Viya Deep Learning API
 - <u>https://github.com/sassoftware/python-dlpy</u>
 - Trained a CNN model for classification
- Other Python packages included
 - OS
 - SWAT
 - Matplotlib

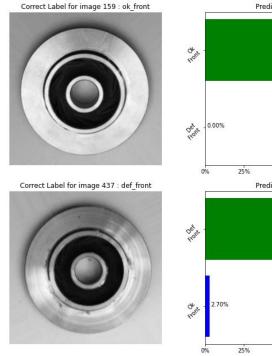
[1]	MT ∰ MT
	<pre>import os os.environ['CAS_CLIENT_SSL_CA_LIST'] = r"/data/vault-ca.crt"</pre>
2]	Mi → mi
	import swat conn = swat.CAS(hostname='/ ', port=5570, username=' , password=)
3]	Mi → → Mi
	display(conn)
	CAS(') ;, 5570, ', protocol='cas', name='py-session-1', session='f725c275-d079-e64a-8843-5b2e283a5b26';
4]	▷ Y III Mi
	type(conn)
	swat.cas.connection.CAS
5]	
	<pre>import dlpy from dlpy.splitting import two_way_split from dlpy.applications import * import matplotlib.pyplot as plt %matplotlib inline</pre>
6]	Mi
	print(dlpyversion_)
	1.2.0
	≥ v≣ wi
	<pre>'''import zipfile as zf files = zf.ZipFile("/data/images/castings.zip", 'r') files.extractall('/data/images/') files.close()'''</pre>
7]	► H ML
	from dlpy.images import ImageTable
8]	▶ ¥ mi
	<pre>img_path = '/data/casting_data/train/' mv_images = ImageTable load files(conn_nath_img_nath)</pre>

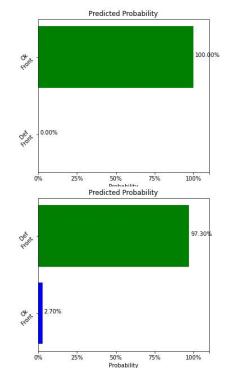


[9] ▶ →₩ M4
my_images.head()
Selected Rows from Table IMAGEDATA_SXJRKB
Selected Kows From Table InvocuentA_SAJAKD _imagelabelfilename_0 _id_
0 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00\x def_front cast_def_0_8801.jpeg 5722
1 b'\xff\xd8\xff\xe8\x00\x10JFF\x80\x00\x01\x01\x01\x00\x.ok_front cast_ok_0_1690.jpg 2747
2 b*\xff\xd8\xff\xe0\x80\x10JFIF\x80\x81\x81\x80 def_font cast_def_0.8172.jpeg 3712
3 b'\xff\xd8\xff\xe0\x00\x10JFF\x00\x00\x01\x01\x00\ def_front cast_def_0_5004.jpg 6354
4 b'\xff\xd8\xff\xe0\x00\x10}FF\x00\x00\x01\x01\x01\x00 def_front cast_def_0_4932.jpg 5724
[10] ▶ +∰ Mi
my_images.show(nimages=4, ncol=4, randomize=⊺rue)
def_front def_front ok_front ok_front
[11] ▶ ₩
my_images.label_freq
ml_mmlcp.tmcrtl.cd
Frequency for IMAGEDATA_SXJRKB
Level Frequency
def_front 1 3758
ok_front 2 2875
[12] ▶ ₩ M4
my_images.image_summary
jpg 6633
minWidth 300 maxWidth 300
minHeight 300
maxHeight 300 meanWidth 300
meanHeight 300
mean1stChannel 143.878 min1stChannel 0
max1stChannel 255 mean2ndChannel 143.878
mean/nGuannel 143.87/8 min2ndChannel 0
max2ndChannel 255 mean3rdChannel 143.878
min3rdChannel 0
max3rdChannel 255 dtype: object

[13]	ν ∰ Μ
	from dlpy.splitting import two_way_split
	<pre>tr_img, te_img = two_way_split(my_images, test_rate=20, seed=123)</pre>
[14]	▶ *# Mi
	<pre>tr_img.head()</pre>
	Selected Rows from Table TRAIN 3YASPO
	0 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 ok_front cast_ok_0_9438.jpeg 1232
	1 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_6700.jpeg 3058
	<pre>2 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_4744.jpeg 3430</pre>
	3 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_6174.jpeg 4181
	4 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_9175.jpeg 3168
	> •≡ wi
	te_img.head()
	Selected Rows from Table TEST_WE20C7
	_imagelabelfilename_0 _id_
	0 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x81\x00 def_front cast_def_0_7693.jpeg 3695
	1 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x00 def_front cast_def_0_9670.jpeg 6453
	<pre>2 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_6914.jpeg 3966</pre>
	3 b'\xff\xd8\xff\xe0\x00\x10JFIF\x00\x01\x01\x00 def_front cast_def_0_2648.jpeg 6492
	4 b'\xff\xd8\xff\xe0\x00\x10JFF\x00\x01\x01\x00 ok_front cast_ok_0_3168.jpeg 1534
16]	> v⊞ wi
	<pre>train_path = '/data/casting_data/train/'</pre>
	test_path = '/data/casting_data/test/' tr img = ImageTable.load files(conn, path=train path)
	te_img = ImageTable.load_files(conn, path=test_path)
[17]	*# wi
	tr_img.label_freq
	Frequency for
	IMAGEDATA_JYDCTW
	Level Frequency def front 1 3758
	def_front 1 3758 ok_front 2 2875
18]	▶ +₩ Mi
	te_img.label_freq
	Frequency for
	IMAGEDATA_X7POH3 Level Frequency
	def front 1 453
	ok front 2 262

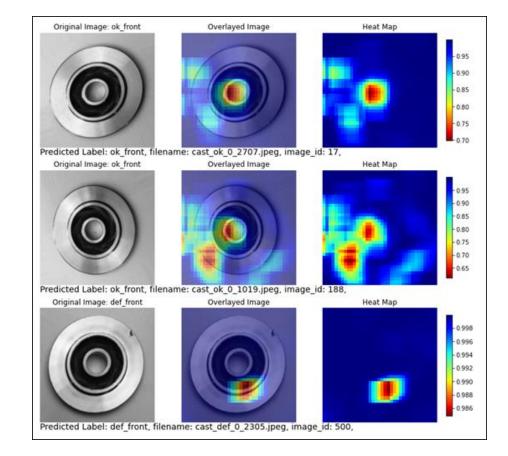
	model1	.print_su	mmary()						
	Layer I	d Layer	Туре	Kernel Size	Stride	Activation	Output Size	Number of Parameters	FLOPS(forward pa
0		0 Input1	input			None	(300, 300, 3)	(0, 0)	
1		1 Convo.1	convo	(7,7)	(1, 1)	Relu	(300, 300, 8)	(1176, 8)	105840
2		2 Pool1	pool	(2, 2)	(2, 2)	Мах	(150, 150, 8)	(0, 0)	
3		3 Convo.2	convo	(7,7)	(1, 1)	Relu	(150, 150, 8)	(3136, 8)	70560
4		4 Pool2	pool		(2, 2)	Мах	(75, 75, 8)	(0, 0)	
					(2, 2)				
		5 F.C.1	fc	(45000, 16)		Relu	16	(720000, 0)	720
6		6 Output1	output			Softmax		(32, 2)	
7								Total number of parameters	Total FL
8	Summar	У						724,362	177,120,
⊳	•≣ M∔								
NO WA	RNING: NRNING: N	Worker wi	m scrat th rank th rank	ch. 0 has no Gi 1 has no Gi					
NO NO NO NO	TE: The TE: The TE: Lo	e total n e approxi ading wei	umber o mate me ghts co	s enabled. f parameter: mory cost i: st 0.0 layer cost	s 476.0 00 (s).				
NO NO NO NO NO	OTE: The OTE: The OTE: Los OTE: In: OTE: The	e total n e approxi ading wei itializin e total n	umber o mate me ghts co g each umber o	f parameter: mory cost i: st 0.0 layer cost f workers i:	s 476.0 00 (s). 0 s 2.	0 MB. .23 (s).			
NO NO NO NO NO	OTE: The OTE: The OTE: Los OTE: In: OTE: The OTE: The	e total n e approxi ading wei itializin e total n e total n	umber o mate me ghts co g each umber o umber o	f parameter: mory cost i: st 0.0 layer cost f workers i: f threads ou	s 476.0 00 (s). 0 s 2. n each 1	0 MB. .23 (s). worker is 4			
NO NO NO NO NO NO	0TE: The 0TE: The 0TE: Los 0TE: In: 0TE: The 0TE: The 0TE: The 0TE: The	e total n e approxi ading wei itializin e total n e total n e total m	umber o mate men ghts co g each umber o umber o ini-bat	f parameter: mory cost i: st 0.0 layer cost f workers i: f threads ou ch size per	s 476.0 00 (s). 0 s 2. n each n thread	0 MB. .23 (s). worker is 4 on each wo	orker is 2.	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0	NTE: THU NTE: THU NTE: LOU NTE: IN: NTE: THU NTE: THU NTE: THU NTE: THU NTE: THU	e total n e approxi ading wei itializin e total n e total m e total m e maximum rget vari	umber o mate men ghts co g each umber o umber o ini-bat mini-b able: _	f parameter: mory cost i: st 0.0 layer cost f workers i: f threads on ch size per atch size an label_	s 476.0 00 (s). 0 s 2. n each thread cross a	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0	TE: Th TE: Th TE: Lo TE: In TE: Th TE: Th TE: Th TE: Th TE: Th TE: Th TE: Ta TE: Nu	e total n e approxi ading wei itializin e total n e total n e total m e maximum rget vari mber of l	umber o mate mem ghts co g each umber o umber o ini-bat mini-b able: _ evels f	f parameters mory cost is st 0.0 layer cost f workers is f threads on ch size per atch size ad label_ or the targe	s 476.0 00 (s). 0 s 2. n each thread cross a et vari	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2.	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0	YTE: TH YTE: TH YTE: LOA YTE: IN YTE: THA YTE: THA YTE: THA YTE: TA YTE: NU YTE: Le	e total n e approxi ading wei itializin e total n e total n e total m e maximum rget vari mber of l vels for	umber o mate men ghts co g each umber o umber o ini-bat mini-b able: evels f the tar	f parameters mory cost is st 0.1 layer cost f workers is f threads or ch size per atch size a label_ or the targg get variable	s 476.0 00 (s). 0 s 2. n each thread cross a et vari	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0	TE: TH TE: TH TE: LO TE: In TE: TH TE: TH TE: TH TE: TH TE: TA TE: Nu TE: Le TE: Le	e total n e approxi ading wei itializin e total n e total n e total m e maximum rget vari mber of l vels for vel	umber o mate me ghts co g each umber o ini-bat mini-b able: _ evels f the tar 0: def_	f parameter: mory cost i: st 0.1 layer cost f workers i: f threads of ch size per atch size and label_ or the targe get variable front	s 476.0 00 (s). 0 s 2. n each thread cross a et vari	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	TE: Th TE: Th TE: LO TE: In TE: Th TE: Th TE: Th TE: Th TE: Th TE: Th TE: Le TE: Le TE: Le TE: Le	e total n e approxi ading wei itializin e total n e total n e total m e total m e maximum rget vari mber of l vels for vel vel	umber o mate me ghts co g each umber o ini-bat mini-b able: _ evels fi the tan 0: def_ 1: ok_fi	f parameters mory cost is st 0.1 layer cost f workers is f threads on ch size per atch size an label_ or the targg get variable front	5 476.0 00 (s). 05 2. n each n thread cross a et varia	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	TE: Th TE: Th TE: Lo TE: In TE: Th TE: Th TE: Th TE: Th TE: Th TE: Th TE: Le TE: Le TE: Le TE: Le	e total n e approxi ading wei itializin e total n e total n e total m rget vari mber of l vels for vel vel mber of i	umber o mate mem ghts co g each umber o umber o ini-bat mini-b able: _ evels fi the tar 0: def_ 1: ok_f nput va	f parameters mory cost is st 0.1 layer cost f workers is f threads on ch size per atch size an label_ or the targg get variable front	5 476.0 00 (s). 0 5 2. n each n thread cross a et vari e: 1	0 MB. .23 (s). worker is 4 on each wo 11 workers	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	NTE: Th TTE: Th TTE: Lo. TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Le TTE: TTE: TTE: TTE: TTE: TTE: TTE: TTE:	e total n e approxi ading wei itializin e total n e total n e total m rget vari mber of l vels for vel vel mber of i	umber o mate men ghts co g each umber o umber o ini-bat mini-b able: _ evels f the tar_ 1: ok_f 1: ok_f nput va umeric	f parameter: mory cost i: st 0.4 f workers i: f threads ou ch size per atch size ar label_ or the targe get variable front ront riables: input varial	5 476.0 00 (s). 0 5 2. n each n thread cross a et vari e: 1	0 MB. .23 (5). worker is 4 on each wo ll workers able: 1	orker is 2. for the sync	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	NTE: Th TTE: Th TTE: Lo. TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Le TTE: TTE: TTE: TTE: TTE: TTE: TTE: TTE:	e total n e approxi ading wei itializin e total n e total n e total m e maximum rget vari mber of l wels for vel wel mber of i mber of i noch Learn	umber o mate men ghts co g each umber o umber o ini-bat mini-b able: _ evels f the tar_ 1: ok_f 1: ok_f nput va umeric	f parameter: mory cost i: st 0.4 f workers i: f threads ou ch size per atch size ar label_ or the targe get variable front ront riables: input varial	s 476.0 90 (s). 9 s 2. n each r thread cross a et vari e: 1 bles: ss Fit	0 MB. .23 (s). worker is 4 on each wo ll workers able: 1 Error Ti	orker is 2. for the sync 2	hronous mode is 16.	
N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N0 N	NTE: Th TTE: Th TTE: Lo. TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Th TTE: Le TTE: TTE: TTE: TTE: TTE: TTE: TTE: TTE:	e total n e approxi ading wei itializin e total n e total n e total n e total m e total m mor of l wels vel wel wel wel och Learn 6.	umber o mate mem ghts co g each umber o umber o ini-bat mini-b able: _ evels f the tar 0: def_ 1: ok_f 1: ok_f nput va umeric ing Rat	f parameter: mory cost i: st 0.4 I ayer cost f workers i: f threads oi ch size per atch size ar label_ or the targe get variable front ront riables: input varial e Los	s 476.0 00 (s). 0 s 2. 1 thread cross a et vari 2: 1 01es: ss Fit 77	0 MB. .23 (5). worker is 4 on each we ll workers able: 1 Error Ti 0.198 S	orker is 2. for the sync 2 ime(s)	hronous mode is 16.	


- Table of the training history of the model.
- After 30 epochs, the loss is reduced to approximately 0.007441.

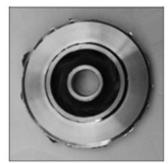

1] ⊳	>₩ Mi	
	<pre># Plot data in training history table model1.plot_training_history(fig_size=(15,6))</pre>	
<ma< td=""><td>tplotlib.axessubplots.AxesSubplot at 0x7f4a8a044390></td><td></td></ma<>	tplotlib.axessubplots.AxesSubplot at 0x7f4a8a044390>	
0.5	5	Loss FitError
0.4	•	THEFTOT
0.3	3.	
0.2		
0.1		
0.0		
	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 Epoch	29 30

[30]	⊳	⊧≣ Mi			
			rate model t		nistory tabl
		model1	.training_hi	story	
		Epoch	LearningRate	Loss	FitError
	0		0.0001	0.477026	0.198042
			0.0001	0.241765	0.102259
			0.0001	0.184523	0.079066
			0.0001	0.134593	0.053916
	4		0.0001	0.104062	0.041114
			0.0001	0.084345	0.029970
			0.0001	0.056675	0.017018
			0.0001	0.045594	0.012801
	8		0.0001	0.039505	0.010843
		10	0.0001	0.032812	0.007078
	10		0.0001	0.024144	0.004367
	11	12	0.0001	0.022686	0.004819
	12		0.0001	0.019003	0.003464
	13	14	0.0001	0.023528	0.005572
	14	15	0.0001	0.017939	0.003464
	15	16	0.0001	0.013471	0.002259
	16	17	0.0001	0.016377	0.004217
	17	18	0.0001	0.010086	0.001958
	18	19	0.0001	0.010665	0.002560
	19	20	0.0001	0.014836	0.004367
	20	21	0.0001	0.011714	0.003163
	21	22	0.0001	0.008587	0.001807
	22		0.0001	0.009359	0.002259
	23	24	0.0001	0.006621	0.001958
	24	25	0.0001	0.008144	0.002410
	25	26	0.0001	0.008193	0.002108
	26		0.0001	0.009051	0.002711
	27	28	0.0001	0.007832	0.002259
	28	29	0.0001	0.007025	0.002108
	29	30	0.0001	0.007441	0.002560

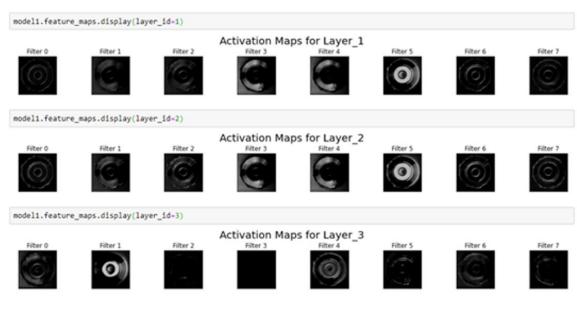
- Model is saved and used to score the test data.
- 1.26% Misclassification Error



	core model p el1.evaluate			data					
§ Score	Info								
		Descr	Value						
Ø Numb	er of Observa	tions Read	715						
1 Numb	er of Observa	tions Used	715						
2 Misc	lassification	Error (%)	1.258741						
3		Loss Error	0.036705						
Ø CASI	ISERHDFS(scott	casLib .koval) Va		ame Rows /1Q 715		CASTable('	Valid_Res_StjV	lQ', caslib='	
	ISERHDFS(scott 4.54s · user ∃	.koval) Va	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	lQ', caslib='	
	4.54s · user ∃	.koval) Va	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	1Q', caslib='	
elapsed ▷ ►₩	4.54s · user ∃	31.7s · sys	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	1Q', caslib='	casTable
elapsed ▷ ►₩	4.54s · user ∃ M↓ ≥l1.valid_co	31.7s · sys	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	lQ', caslib='	
elapsed ▷ ▶≣ mod § Cross	4.54s · user ∃ M↓ ≥l1.valid_co	koval) Va 31.7s · sys pnf_mat	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	lQ', caslib='	
elapsed ▷ ▶≣ mod § Cross	4.54s · user 3 M4 211.valid_co ;tab	koval) Va 31.7s · sys pnf_mat	lid_Res_Stj	/10 715	9	CASTable(''	Valid_Res_StjV	1Q', caslib='	



• We can try to interpret the final model using heatmaps.



 Can also investigate what is being activated for individual layers of the CNN.

 The final model can be saved as an astore file and l used to score new images.

Overview

- The SAS Viya platform allows for powerful analytics.
 - Access to many methods to develop ML and AI models.
 - SAS maintains a useful GitHub repository with example code.
- · Can be scalable and deployed at the edge.

Thank You!

Scott Koval Pinnacle Solutions, Inc scott.koval@thepinnaclesolutions.com

#MWSUG2024 #AL46