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ABSTRACT 

Capable of accepting and mapping complex relationships hidden within structured and unstructured data, neural networks are 

built from layers of neurons and activation functions that interact, preserve, and exchange information between layers to develop 

highly flexible and robust predictive models. Neural networks are versatile in their applications to real-world problems; capable 

of regression, classification, and generating entirely new data from existing data sources, neural networks are accelerating recent 

breakthroughs in Deep Learning methodologies. Given the recent advancements in graphical processing unit (GPU) cards, cloud 

computing, and the availability of interpretable APIs like the Keras interface for TensorFlow, neural networks are rapidly moving 

from development to deployment in industries ranging from finance, healthcare, climatology, video streaming, business analytics, 

and marketing given their versatility in modeling complex problems using structured, semi-structured, and unstructured data. 

This paper explores fundamental concepts associated with neural networks including their inner workings, their differences from 

traditional machine learning algorithms, and their capabilities in supervised, unsupervised, and generative AI workflows. It also 

serves as an intuitive, example-oriented guide for developing Artificial Neural Network (ANN) and Convolutional Neural Network 

(CNN) architectures using Python's Keras and TensorFlow libraries for regression and image classification tasks.  

INTRODUCTION 

Neural networks are a non-parametric modeling method that permits the mapping of complex relationships hidden in structured, 

semi-structured, and unstructured data. The two major types of network architectures, Artificial Neural Networks (ANNs) and 

Convolutional Neural Networks (CNNs), represent different methods for uncovering relationships in small-sized, moderate-sized, 

and big data. Artificial Neural Networks are composed of several layers of weights and functions that transform inputs to outputs 

based on iterations of learning for structured and semi-structured tabular data. Convolutional Neural Networks are adept at 

learning to recognize patterns in unstructured datasets including images, videos, text, and audio sources for regression, 

classification, and generative tasks. 

This paper introduces important concepts discussing the inner workings of neural networks; neural network architectures for 

typical AI workflows; and how to program, train, and evaluate Artificial Neural Networks and Convolutional Neural Networks for 

non-parametric regression and binary image classification using TensorFlow’s Keras API in Python. 

 

1. NEURAL NETWORK FUNDAMENTALS 

1.1) ADOPTION OF DEEP LEARNING AND NEURAL NETWORKS IN RESEARCH AND INDUSTRY 

Neural networks form a subset of deep learning that can process, learn, and map hierarchical representations within data. This 

hierarchical, feed-forward flow allows networks to learn intricate patterns and features within datasets and map complex 

relationships between them. Neural networks, like their machine learning counterparts, encourage the automation of complex, 

redundant tasks, and as such, has fundamentally changed the way businesses and organizations understand and interact with all 

types of data in the world. In TensorFlow, neural networks are optimized for training on graphical processing units, commonly 

abbreviated as GPU cards. The development and release of new GPU cards from NVIDIA, AMD, and Intel has powered modeling 

breakthroughs in fields containing significant quantities of unstructured data including image recognition, natural language 

processing, video streaming, video upscaling, time series forecasting, and text analysis. 

1.2) CONVOLUTIONAL NEURAL NETWORKS (CNNS) FOR COMPUTER VISION TASKS 
Convolutional Neural Networks (CNNs) are commonly used for pattern recognition in unstructured data. CNNs prove exceptionally 

useful in automating supervised, semi-supervised, and unsupervised tasks like image recognition, image classification, image 

generation, object detection, and image segmentation.  
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Densely connected neural networks, typically called Artificial Neural Networks (ANNs), exhibit reduced performance and efficiency 

when applied to computer vision tasks. ANNs require that images be first flattened to vectors and then passed through layers of 

neurons, eliminating any information present in the spatial relationships between pixels. CNNs, on the other hand, take advantage 

of this spatial information by preserving the original dimensions of an image array and passing it through layers that transform 

and extract relevant features (patterns) without needing to be flattened as a vector. The output from each layer is then passed 

downstream to subsequent layers for additional feature extraction. 

Much like ANNs, the architectures of Convolutional Neural Networks (CNNs) are similarly inspired by nature, borrowing high-level 

processing mechanisms attributed to human visual and cognitive systems. While a person’s visual recognition is generated by light 

and stimuli passing biochemical signals to the brain, CNNs deploy kernels in convolutional layers that scan input datasets to 

identify and learn patterns, signals, objects, edges, and other relevant features across sections of the inputted data. These 

convolutional layers reshape and transform the data as it travels further down the layers of the network, learning new features 

by decomposing the original array into finer-detailed representations of the data. 

1.3) SIMPLIFYING THE INNER WORKINGS OF NEURAL NETWORKS 

Neural networks are best viewed as composite functions. In a simple hierarchical network, output from one layer is passed as the 

input to the next immediate layer. Each layer performs some non-linear transformation on the data, and the multiple layers 

connecting the network’s input to its output are referred to as its hidden layers. 

Layers consist of neurons that form edges with neurons in the next immediate layer—edges between neurons are called 

connections and contain the Network’s trainable weight parameters. These weights are iteratively updated in batches, permitting 

the network to select optimal combinations of weights that minimize some target loss (cost) function. 

Since there is almost always more than one weight per layer, each weight has its own partial derivative with respect to the loss 

function. A first-order derivative measures the rate of change of the loss function when adjusting that weight parameter by a 

small amount. Collectively, these first-order partial derivatives are stored in a vector called the gradient, containing derivatives for 

all weights inside of the neural network. The gradient measures the loss function’s steepest rate of change with respect to all 

trainable weights inside of the network. 

A network’s number of weight parameters can grow to include thousands, hundreds of thousands, millions, tens of millions, and 

even hundreds of millions of trainable parameters, necessitating an efficient approach for computing weights from the gradient 

that best minimize the loss function.  

The first-order partial derivatives for connections between the second-to-last layer and the last layer (the Network’s output layer) 

are the first to be calculated—subsequent partial derivatives are then calculated by moving backwards through connections 

between the remaining layers. But why move backwards from the output layer instead of forwards from the input layer? 

Networks are composite functions, best exemplified as a Russian doll set, where inner functions are stored inside of their outer 

functions. Furthermore, according to the chain rule for differentiation (first-order derivatives of functions), the last layer’s weights 

serve as an input to all other layers, meaning it should be differentiated first. 

This process is called backpropagation: where differentiation begins at the output layer (inner function), moving backward 

through the hidden layers until reaching the network’s input layer (outer function). This allows the algorithm to determine how 

much each weight contributes to the network’s overall loss—and which weights need to be adjusted to best reduce the overall 

loss. 

1.4) LOSS FUNCTIONS AND GRADIENT DESCENT 

Feedback is essential for neural networks to improve their performance. Loss functions provide a way to quantify this feedback, 

usually taking the difference between the observed value and its predicted counterpart. This difference is referred to as the 

pseudo-residual, borrowing from the residual calculated from the difference between observed and predicted values during 

ordinary least squares (OLS) regression. Common loss functions for regression prediction include mean squared error (MSE), mean 

absolute error (MAE), and the Huber loss function. 

Once the gradient is calculated from backpropagation, networks need a process for estimating their weight values that best 

minimize the loss function during each batch of training. Closed-form solutions for calculating optimal weight parameters (i.e., 

linear regression using the MSE loss function) do not exist for the complex, non-linear relationships modeled by networks. Instead, 

networks require a process that approximates locally optimized weight parameters after training on each batch of data over time. 
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Called gradient descent, this method of weight estimation iteratively adjusts the Network to minimize some loss function over 

several training cycles, referred to as epochs. The goal, over enough training epochs, is for gradient descent to estimate optimal 

combinations of weights within all layers of the network. There are three forms of gradient descent contingent on the size of the 

training batches, with each variant determined by the number of training instances comprising each batch.  

• Stochastic gradient descent (SGD) calculates optimal weight parameters after a single instance is passed through the 

network. Each batch consists of 1 training instance. 

• Mini batch gradient descent calculates optimal weight parameters after some subset of training instances (i.e., 32 

instances, 64 instances, 128 instances) smaller than the original dataset is passed through the Network. A subset of 

training instances is referred to as a mini batch. 

• Batch (full batch) gradient descent passes the entire set of training instances through the network and then updates 

weight parameters that best minimize the loss function. There is only one batch, and it contains all the training instances. 

Determining the optimal gradient descent method to choose depends on the size of the data, complexity of the loss function, and 

overall architecture of the neural network. Choosing one method over another will lead to differences in how the network trains—

for instance, evaluating the network after one training instance (the SGD approach) will lead to significantly more variability in 

training metrics than those produced from batch gradient descent. 

1.5) NEURAL NETWORKS FOR STRUCTURED, SEMI-STRUCTURED, AND UNSTRUCTURED DATA 

Given their versatility in accepting inputs from vectors (columns) to multi-dimensional arrays, neural networks have opened new 

approaches to mapping complex relationships within (and between) tabular, image, video, audio, and text-based datasets. 

Traditional machine learning (ML) algorithms such as decision trees and support vector machines require intensive preprocessing 

and domain expertise for retaining important features within unstructured data. Using these ML algorithms, engineers were 

unable to pass entire arrays as inputs, and instead, were forced to first vectorize (flatten) and extract relevant features from 

images, videos, and text for classification and regression purposes.  

Neural networks, on the other hand, can accept a multitude of different data structures as inputs to a network in addition to 

outputting classification scores and regression predictions for two different tasks at the same time. These networks, termed multi-

input and multi-output networks, respectively, greatly enhance the preservation of information and tolerance towards different 

data structures without needing to entirely re-engineer the data’s original forms. For instance, tabular datasets (structured data) 

and image arrays (unstructured data) can both be simultaneously passed through layers of the same neural network as separate 

inputs, permitting the modeling of complex relationships between structured, semi-structured, and unstructured data. Mixed 

data in the form of image arrays and CSV files can enter the network as separate inputs, pass through separate layers for feature 

extraction during training, and eventually merge into one combined vector to output some type(s) of result(s). 

1.6) GPUS AND CLOUD COMPUTING IN ACCELERATING NEURAL NETWORK ADOPTION 

Neural networks often operate over multidimensional arrays, commonly referred to as tensors, for processing large amounts of 

data. Common array structures include, 

• Grayscale images: 2D-matrices denoted by their width and height as a single-color channel,  

• RGB images: 3D-arrays that incorporate 3-color matrices for representing the color spectrum,  

• Videos: 4D-arrays that stack images (frames) from a video in sequential order (with the 4th-dimension indexed by time). 

How are networks optimized for training millions of weight parameters on these massive array-based structures?  

The answer lies in GPUs. Today’s GPUs, an abbreviation for Graphical Processing Units, are widespread in most computer systems, 

laptops, and smartphone devices. Fast and performant, these processors can calculate, solve, and address complex mathematical 

tasks in parallel. Neural networks take sequences of matrix multiplications, transformations, additions, and other algebraic 

manipulations and compute them as graphs to take advantage of parallel computations on GPUs. 

Graphs are a series instructions describing the order of algebraic operations on tensors. Neural networks are graph-based, 

meaning that their layers, computations, and outputs can be visualized using a simple flow chart. Regardless of the size of the 

data and whether it fits into memory, graphs ensure consistent, fast, parallel, and reliable execution of data passing through the 

Network. 
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1.7) TENSORFLOW V2.0 AND THE KERAS API 

TensorFlow is a massive machine learning and deep learning library developed by Google and released as open-source software 

that can be integrated with Python, R, JavaScript, Java, C, and similar languages to develop, train, evaluate, and deploy state-of-

the-art deep learning algorithms. 

Following the release of TensorFlow v2.0, all updated versions of TensorFlow come packaged with the Keras API, giving 

programmers an intuitive, high-level interface for developing simple and complex neural networks. In TensorFlow, programming 

neural networks required extensive knowledge of its native Python classes, objects, and methods for customizing and developing 

layers. Following its integration with the Keras API, however, developing neural network layers were simplified to method calls 

complete with customizable hyperparameters. These hyperparameters include adjustments to the number of nodes (neurons), 

pre-built and custom-made activation functions, and weight initialization options for any given layer in the network.   

The Keras library features two main APIs, described below: 

• Sequential API: Simplest Keras API and easy-to-implement; good for simple networks architectures 

• Functional API: Supports development of more advanced multi-input and/or multi-output network architectures 

The functional API for the Keras library permits the development of multi-input, multi-output, and more advanced neural network 

architectures. It also enables programmers to develop multiple models simultaneously, which, for example, could be a generative 

encoder-decoder network that encodes data sources into a latent (fundamental) feature space to generate (decode) new 

observations from. 

2. INTRODUCING AND PREPROCESSING THE SASHELP.CARS DATASET 

2.1) PYTHON LIBRARIES, MODULES, AND PACKAGES 

Before proceeding further, (2.1.1) provides a listing of all dependencies required to import, analyze, and process tabular 

datasets and image arrays when developing neural networks. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (2.1.1) | Importing Required Python Libraries, Packages, and Modules 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# TensorFlow Library and its Modules 

import tensorflow as tf 

from tensorflow.keras.layers import Input, Dense, Flatten, Conv2D, MaxPooling2D 

from tensorflow.keras.models import Model 

from tensorflow.keras.callbacks import EarlyStopping 

from tensorflow.keras.optimizers import Adam 

 

# DataFrame manipulation library 
import pandas as pd 
 
# Scikit-Learn Data preprocessing library 
from sklearn.preprocessing import MinMaxScaler 
from sklearn.model_selection import train_test_split 
 
# Array processing library 
import numpy as np 
 
# Visualization library 
import matplotlib.pyplot as plt 
import matplotlib.gridspec as gridspec 

 
Importing the modules from TensorFlow as listed in (2.1.1) significantly reduces the amount of redundant function calls stemming 

from each module’s full access path. When constructing a Dense layer, for instance, the programmer doesn’t need to type the 

complete tf.keras.layers.Dense() to access this specific network layer, and can instead use Dense(). 

Pandas is a popular data science library used for efficiently processing and analyzing moderate-sized data. It is used for importing 

and preparing the CSV dataset to build the ANN. Scikit-Learn is a machine learning library that integrates well with Pandas, making 

common tasks like partitioning, shuffling, splitting, imputing, and building pipelines to process data intuitive and convenient. 
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2.2) SASHELP.CARS Tabular Data 

The SASHELP.CARS dataset is a popular data set bundled with and provided by SAS software. It contains information about 

hundreds of different car models, describing attributes including the vehicle’s make, model, type, origin, invoice price, MSRP, 

horsepower, number of cylinders, engine size, miles per gallon, and additional specifications. This diversity in vehicle attributes 

makes it a perfect candidate for regression modeling and classification using certain vehicle features. 

The code in (2.2.1) imports the comma-separated value file, inferring the header titles, and printing out the first-5 observations 

from the dataset. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (2.2.1) | Importing the SASHELP.CARS Dataset 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Import the CSV file from local pathway and print its first-5 observations: 

file_path = str(r"C:\Users\rpala\Downloads\cars.csv").replace("\\", "/") 
cars_df = pd.read_csv(file_path, sep=",", header="infer") 
cars_df.head(5) 

 

 
Output Code (2.2.1) 

The dataset contains 428-observations and 15-features of mixed data types. Some features are continuous numeric such as a 

vehicle’s miles per gallon, MSRP, and invoice price, while other features are discrete numeric like the vehicle’s number of cylinders. 

Categorical attributes exist in the form of a vehicle’s type, make, model, origin, and drive train. 

Only the dataset’s numeric attributes are used for the neural networks developed in this paper. However, it is possible to work 

with the categorical features (in addition to the numeric attributes) through further processing using ordinal encoding and one-

hot encoding. 

It’s often helpful to examine the meta-data for any given dataset, yielding insights into the number of features, their names, 

variable types, and the number of missing values per column. The meta-data for the SASHELP.CARS dataset is provided in the 

output of (2.2.2). 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (2.2.2) | Meta-Data for the SASHELP.CARS Dataset 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Extract column names, variable types, and missing values from dataset: 
col_names = cars_df.columns 
dtypes = cars_df.dtypes 
missing_vals = cars_df.isnull().sum() 
 
# Create a Dictionary object containing information about each column: 
meta_data_dict = {"feature_name": col_names,  
                  "dtypes": dtypes,  
                  "missing_vals": missing_vals} 
 
# Create a Pandas DataFrame from the Dictionary object, sorted in descending order: 
meta_data_df = pd.DataFrame(meta_data_dict).sort_values("missing_vals", ascending=False) 
meta_data_df 
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Output Code (2.2.2) 

In Pandas, variables that contain strings or mixed data are given the object type. Integers are specified as numeric values without 

decimals, while floats accommodate any numeric value, including integers. There are only 2 missing values in the dataset, all 

localized to the Cylinders attribute. Before proceeding, it is necessary to deal with any missing values before passing it through a 

Neural Network. Either removing the observations or conducting imputation using the feature’s average, median, or through 

decision tree methods all correct for missing values. Failure to address this results in gradient descent producing NaN values with 

respect to the loss function and learning nothing over its training epochs. 

The code in (2.2.3) drops all missing observations and then finds, extracts, and subsets all columns that match as numeric (float 

or integer) types. Notice, however, that MSRP and invoice price are wrongly encoded as string objects, rather than float types. To 

correct for these recording issues, regular expressions (regex) are employed for removing “$” and “,” in price strings so that 

vehicles’ MSRPs and invoice prices are successfully coerced from string objects to float types for modeling. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (2.2.3) | NA-Removal, String Coercion, and Numeric Sub-setting 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Drop missing values from the entire DataFrame: 
cars_df = cars_df.dropna() 
 
# Remove string formatting and characters, then coerce MSRP & Invoice to Float Types: 
cars_df["MSRP_num"] = cars_df["MSRP"].str.replace(r"[$,]", "", regex=True) 
cars_df["MSRP_num"] = cars_df["MSRP_num"].astype(float) 
 
cars_df["Invoice_num"] = cars_df["Invoice"].str.replace(r"[$,]", "", regex=True) 
cars_df["Invoice_num"] = cars_df["Invoice_num"].astype(float) 
 
# Find all relevant Numeric Attributes and extract their column names: 
numeric_features = cars_df.select_dtypes(include=['int', 'float']).columns.tolist() 
 
# Subset existing DataFrame to only include Numeric Attributes: 
cars_numeric = cars_df[numeric_features] 
 
 
# Print the first 5-observations from the numeric features DataFrame: 
cars_numeric.head(5) 
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Output Code (2.2.3) 

3. ARTIFICIAL NEURAL NETWORK (ANN) FOR NONLINEAR REGRESSION 

3.1) NEURAL NETWORK REGRESSION DESIGN, APPLICATIONS, AND TASKS 

Artificial Neural Networks (ANNs) for regression can accept large quantities of input features (including mixed data types), pass 

them through several densely connected hidden layers, and use those connections to predict some numeric estimate for the 

response variable.  

Densely connected layers are exhaustive connections between layers. For example, suppose that one layer contains 3 neurons, 

and the following layer contains 4 neurons, then the total number of edges formed is 12, since each neuron in the preceding layer 

connects to every neuron in the following layer. The equation shown below derives the total number of trainable weights between 

the two proposed layers: 

(3)(4) = 12 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 (𝑤𝑒𝑖𝑔ℎ𝑡𝑠) 

The total number of trainable parameters shared between the two layers, which includes their weights and associated biases, is 

calculated as, 

(3 + 1)(4) = 16 𝑡𝑟𝑎𝑖𝑛𝑎𝑏𝑙𝑒 𝑝𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟𝑠 

Bias, like the weights, are parameters that self-adjust as the network trains. A biased estimator is defined as one that favors some 

incorrect value as opposed to an unbiased estimator which, on average, generally favors the correct result. Every weight has a 

bias term that is associated with it, and the weight’s bias is a value that prevents the training data from exerting too much influence 

on the network’s layered activations and counteracting the potential for severe overfitting. 

Another term for densely connected is fully connected, since neurons are completely connected to each other in the next 

immediate layer of the network. These types of neural networks feature trainable parameters that can increase dramatically, 

resulting in large quantities of weights, and thereby increasing the time it takes to calculate the gradient (using backpropagation) 

and perform gradient descent for weight optimization. 

Using the SASHELP.CARS dataset, an ANN was trained to predict a vehicle’s MSRP (response variable) using several numeric 

features including its engine size, number of cylinders, total horsepower, city MPG, highway MPG, invoice price, total weight, 

wheelbase, and length (encompassing the set of predictors). 

3.2) SHUFFLING, PARTITIONING, & PREPARING DATA FOR NEURAL NETWORKS 

Evaluating network training should always be done using a validation set—a subset of the testing data that is passed through the 

Network only at the end of each epoch.  

As mentioned earlier, gradient descent works through batches of training data. Batch sizes are pre-determined by the programmer, 

with mini batch gradient descent mitigating the variability of constant weight updates (unlike stochastic gradient descent that 

updates weights after 1-training instance passes through the network). An epoch is completed once all the batches pass through 

the network and update its weights. After this, the validation dataset is then evaluated against the loss function using the updated 

weights from the last batch of data that completed the epoch. 

The code in (3.2.1) splits the existing dataset into a training set, validation set, and testing set.  The entire dataset of numeric 

attributes is randomly shuffled, and the target variable (response variable) for MSRP is then removed from the dataset as its own 

vector. The training-testing split is 65%: where 35% of the shuffled data is reserved for the testing set. Furthermore, the testing 

set is then split so that 80% of the testing observations comprise the validation set and the remaining 20% is kept entirely isolated 

from the network training process. 
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Therefore, the randomly shuffled data maintains the following partition proportions: 65% reserved for network training, 28% for 

network validation, and 7% saved for testing after training.  

The numeric attributes are then standardized using a Scikit-Learn method referred to as minimum-maximum standardization. 

Standardizing features that are measured on different scales can significantly optimize gradient descent performance during 

training. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (3.2.1) | Shuffling, Partitioning, and Standardizing the Data 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Keep set of predictors together; remove response and store in its own vector: 
X = cars_numeric.loc[:, cars_numeric.columns != "MSRP_num"] 
y = cars_numeric["MSRP_num"] 
 
# Partition into Training Set and Testing Set using Scikit-Learn: 
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.35,  

random_state=777) 
 
# Partition into Validation Set and Testing Set using Scikit-Learn: 
X_val, X_test, y_val, y_test = train_test_split(X_test, y_test, test_size=0.2, 

random_state=77) 
 
# Define a Method for Min-Max Standardization on all sets of data: 
def standardize(X_train, X_val, X_test): 
    standardized = MinMaxScaler() 
    X_train = np.array(standardized.fit_transform(X_train)) 
    X_val = np.array(standardized.transform(X_val)) 
    X_test = np.array(standardized.transform(X_test)) 
    return X_train, X_val, X_test 
 
# Standardize the sets of arrays: 
X_train, X_val, X_test = standardize(X_train, X_val, X_test) 
print(f"Overall Data Size: {cars_numeric.shape[0]} observations,\n") 
print(f"Training Set Size: {X_train.shape[0]} observations,\n") 
print(f"Validation Set Size: {X_val.shape[0]} observations,\n") 
print(f"Testing Set Size: {X_test.shape[0]} observations\n") 

 

 
Output Code (3.2.1) 

3.3) DEVELOPING THE ANN’S ARCHITECTURE 

The Artificial Neural Network developed for predicting some vehicle’s MSRP contains: 

• One input layer accepting observations described by 9-features (the number of features in the predictor set),  

• 6-densely connected hidden layers with arbitrary numbers of neurons, 

• One output layer containing a single neuron for regression predictions. 

Generally, the deeper a network is, the better it is at recognizing finer-detailed trends, patterns, and details mapping the set of 

predictors to the response variable. The more neurons a layer contains, the greater its number of trainable parameters are—

higher quantities of weight parameters build a more complex, flexible model. Like a linear regression, introducing more 

information (i.e., additional features and combinations of features) into the network increases its fit to the response variable 

during training.  
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The code in (3.3.1) generates an Artificial Neural Network (ANN) architecture using the Keras Functional API. This API gives the 

programmer control as to which layers accept what as inputs. Following a call to each layer, the programmer can then specify 

which layer(s) feed into the current layer. For this example, the network developed in (3.3.1) is a 1-directional graph (feed-forward 

network) where the preceding layer’s output is the current layer’s input. 

Using the SASHELP.CARS dataset, an ANN was trained to predict a vehicle’s MSRP (response variable) using several numeric 

features including its engine size, number of cylinders, total horsepower, city MPG, highway MPG, invoice price, total weight, 

wheelbase, and length (encompassing its set of predictors). 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (3.3.1) | Designing the ANN Architecture 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Specify Input Layer Shape: 
input_layer = Input(shape=(X_train.shape[1],), name="Input") 
 
# Pass the Input Layer into the First Dense Layer: 
dense_1 = Dense(9, activation="relu", name="Dense_1") (input_layer) 
 
# Pass the First Dense Layer into the Next Dense Layer: 
dense_2 = Dense(20, activation="relu", name="Dense_2") (dense_1) 
 
dense_3 = Dense(32, activation="relu", name="Dense_3") (dense_2) 
 
dense_4 = Dense(20, activation="relu", name="Dense_4") (dense_3) 
 
dense_5 = Dense(7, activation="relu", name="Dense_5") (dense_4) 
 
dense_6 = Dense(3, activation="relu", name="Dense_6") (dense_5) 
 
# Output Layer contains only 1-neuron for linear regression prediction: 
output_layer = Dense(1, activation="linear", name="Output") (dense_6) 
 
# Create the ANN by linking the Network’s Input Layer to its Output Layer: 
network_1 = Model(inputs=[input_layer], outputs=[output_layer]) 
 
# Print out the ANN layer-flow summary: 
network_1.summary() 
 

 
Output Code (3.3.1) 

The code in (3.3.1) generates the architecture for a 6-layer deep network—a simple ANN capable of accepting tabular data 

containing 9-features and outputting a single prediction for a vehicle’s MSRP value. The Network contains a total 1,797 trainable 

weights and biases that determine whether a neuron is activated or not.  

Each layer also possesses an activation function. These functions transform neural networks from sequences of linear matrix 

operations into non-linear, complex relationship mappers. One function, the non-linear Rectified Linear Unit (ReLU) function, uses 
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the weighted sum of weights multiplied by their inputs as its input. Depending 

on the weighted sum, the ReLU function either outputs 0 for a negative weighted 

sum or the summation itself if the weighted sum is greater than 0. Choosing the 

right activation function is critical for gradient descent to work properly. ReLU is 

a popular choice when constructing hidden layers.  

 

Figure 1 visualizes the forward-passing architecture of the ANN constructed in 

(3.3.1). The input layer accepts observations containing data about 9-features, 

which is then passed to the first dense layer containing 9-neurons used for 

calculating the output from the layer’s ReLU non-linear activation function. The 

original data continues to be transformed and passed through additional hidden 

layers until a single linear prediction is made in the output layer. 

3.4) COMPILING AND TRAINING THE ANN 

With the architecture fully developed and the layers linked together, 

programmers can then compile their network by specifying the loss functions, 

optimizers, and metrics that monitor its training and evaluation. 

The loss function specifies how the network improves and learns. For this 

regression task, the mean absolute error (MAE) is a good function for performing 

backpropagation and mini batch gradient descent. 

The optimizer represents the rate at which the network learns over training 

epochs. While gradient descent focuses on calculating the loss function’s partial 

first derivative, the optimizer controls the rate at which gradient descent 

optimizes trainable parameters (similar concept to a function’s second 

derivatives). A key hyperparameter to any optimizer is the network’s adjustable 

learning rate, with small rates leading to longer, more stable training epochs and 

larger rates leading to shorter but more volatile training epochs. 

Metrics are used to evaluate the network’s performance on the training and 

validation datasets without explicitly training the model on them. Like loss 

functions and optimizers, programmers can implement pre-made metrics 

developed by TensorFlow and even make their own metrics using TensorFlow 

functions, where Python methods can be optimized for lazy computation using 

the @tf.function decorator. 

The code in (3.4.2) compiles the network using the mean absolute error (MAE) 

as its loss function, the Adam optimizer with a learning rate set to 0.001 (its 

default value), and the root mean squared error (RMSE) acting as the network’s 

metric to measure its performance across epochs. The network’s fitting component passes the prepared training and validation 

datasets to the network in batches containing 64-instances over a total of 2,000 epochs. An early stopping callback reduces the 

risk of overfitting by halting training once the validation loss doesn’t significantly reduce over a consecutive span of 30 epochs. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (3.4.2) | Compiling and Training the ANN 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Network compilation with loss function, optimizer, and metrics: 
network_1.compile(optimizer=Adam(learning_rate=0.001),  
                  loss=tf.keras.losses.MeanAbsoluteError(), 
                  metrics=[tf.keras.metrics.RootMeanSquaredError()]) 
 
# Early Stopping Callback: 
es = EarlyStopping(monitor='val_loss', 
                   mode='min', 
                   patience=30, 
                   restore_best_weights=True) 
 
 

Figure 1. Feed-forward neural network (Credit: 
Ryan Paul Lafler, Premier Analytics Consulting) 



11 

 

# Train the Network and store information on loss and metrics over each epoch:  
history = network_1.fit(X_train, y_train, 
                        validation_data = (X_test, y_test), 
                        callbacks=[es], 
                        epochs=2000, 
                        batch_size=64, 
                        verbose=1) 

 

3.5) EVALUATING THE ANN’S TRAINING PERFORMANCE 

One method for evaluating a network’s performance is plotting its training loss against its validation loss. These are called the 

network’s learning curves that track the Network’s performance over all training epochs. The plot for this network is shown in 

Figure 2. 

 
Figure 2. Learning curves (training and validation) for the mean absolute error (MAE) loss function (Credit: Ryan Paul Lafler, Premier 
Analytics Consulting) 

In Figure 2, the training curve is shaded green, and the validation curve is shaded purple. As the number of training epochs 

increases, both curves decrease with respect to the mean absolute error (MAE) loss function, suggesting that the ANN’s predictive 

power improves over training. 

Also notice how the difference between the validation and training curves is at first large. The training curve, representative of 

the average absolute loss (MAE) in the training data, is consistently lower than its validation counterpart. This is typical for neural 

networks! Since the network repeatedly learns from the same training data, its loss function will usually be lower than the data 

held out to evaluate the network at the end of each epoch.  

If the validation curve steadily converges towards the training curve over epochs, then it suggests the network is training properly 

and generalizing well to unseen data. Suggested from the loss curves in Figure 2, the network’s complexity, defined by its number 

of neurons, layers, and trainable parameters, is appropriate given the data and its architecture to model the regression task. 

If the validation curve fails to converge to the training curve, then the network is at-risk of overfitting the training data and failing 

to generalize. While it performs spectacularly well on the training set, its predictive power on unseen data will fail miserably—

instead of learning the mappings between its set of predictors and target feature(s), the network could instead be learning noise 

inherent to the training data, and only the training data. 

Another scenario is if the training curve fails to significantly decrease over epochs. This might suggest that the network is 

underfitting the data and is failing to capture complex relationships between the set of predictors and response variable. 

Increasing the number of layers and neurons, changing the activation functions, and augmenting the data to create additional 

training instances may remedy this issue. 
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The code for generating the set of learning curves shown in Figure 2 is provided in (3.5.1). 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (3.5.1) | Generating Learning Curves from the Network’s Training History 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Store the Network’s training history in a Python Dictionary: 
history_dict = history.history 
 
# Extract training loss and validation loss, calculate number of epochs: 
train_loss = history_dict["loss"] 
val_loss = history_dict["val_loss"] 
epochs = range(0, len(train_loss), 1) 
 
# Plot the learning curves using MatPlotLib: 
fig, ax = plt.subplots(figsize=(12, 5)) 
ax.plot(epochs, train_loss, c="#009E60", lw=2.3, zorder=0, label="Training") 
ax.plot(epochs, val_loss, c="#702963", lw=2.3, zorder=1, label="Validation") 
ax.set_title("Training vs. Validation Loss: Mean Absolute Error (MAE)", fontsize=16) 
ax.set_ylabel("MAE Loss", fontsize=12) 
ax.set_xlabel("Epochs", fontsize=12) 
ax.legend(fontsize=13.5) 
ax.yaxis.grid(True, linewidth=0.77, alpha=0.42) 
fig.savefig("reg_learning_curves.png", dpi=1000) 
plt.show() 

 

4. CONVOLUTIONAL NEURAL NETWORK (CNN) FOR IMAGE CLASSIFICATION 

4.1) OVERVIEW OF IMAGE CLASSIFICATION 

Convolutional Neural Networks (CNNs) perform classification and regression tasks in similar fashion to densely connected Artificial 

Neural Networks with one major exception: inputs do not need to be flattened to vectors prior to passing through hidden layers. 

Instead, 2D-matrices, 3D-arrays, and multidimensional arrays (i.e., sequences of images from videos, arrays of spatiotemporal 

data, multi-dimensional climate arrays) can pass through the first input layer with their original dimensions kept intact. 

This unique property is quite different from traditional ML algorithms like random forests (RFs), gradient boosted ensembles 

(GBMs), and support vector machines (SVMs), all of which require data flattening prior to model training. This property also allows 

networks to learn and recognize spatially dependent patterns, fine-detailed features, and object detection within images over 

epochs of training. Classification, regression, object detection, object segmentation, dimensionality reduction, forecasting, and 

generative applications are all possible with convolutional layers, making them powerful components to neural network 

architectures. 

The Keras API supports 1D, 2D, and 3D convolutional layers for learning patterns and relationships in vectors, matrices, and 3D-

arrays.  

4.2) KERNELS, CONVOLUTIONS, AND LAYERS: DETECTING PATTERNS IN IMAGES 

The main component to any convolutional layer is its kernel. The kernel is a small vector, matrix, or array that moves across 

elements inside the input array, capturing a subset of elements within the kernel’s window, and calculating a weighted sum that 

reduces the overall size of input array while increasing its depth. 

An array’s depth is how deep its dimensions are. For any typical color image, the depth of its array is 3-channels deep, representing 

the 3-matrices mixing red, green, and blue to produce any color on the visible color spectrum. A grayscale image, on the other 

hand, is a 2D-matrix that only possesses a depth of 1-channel. 

The output of any convolutional layer is an array whose shape possesses a greater depth from the kernel scanning its pixels, 

extracting important features, and resizing it.  

For example, suppose that a high definition RGB-image of size (1920x1080x3) is passed through a convolutional layer containing 

a kernel of size (2x2) that results in 10-new features (called filters in TensorFlow) being created. Following this convolution, the 

resulting array is resized to dimensions (1919x1079x10), where the original 3-color channels are mixed to create 10-distinct 

features (patterns, objects, etc.) from all areas of the image. The convolution resulted in the array’s depth increasing from 3-

channels to 10-channels, yielding new information about the image’s features mapped by this layer. 
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Deep CNNs contain stacks of convolutional layers where the original input is passed through a series of layers, transformed during 

feature extraction, and are outputted as some transformed array. 

4.3) IMAGE PRE-PROCESSING: HANDLING BIG IMAGE DATASETS WITH PYTHON 

The images used in developing the binary image classification CNN for this paper contained scenes of natural weather phenomena 

from around the world. These images consisted of labeled scenes showing either snow, rain, frost, lightning, sandstorms, and 

fog/smog events. For simplicity, the images were filtered to only those showing sandstorm and fog/smog events for the purposes 

of binary classification—although it’s entirely possible to develop a neural network that predicts the probabilities of an image 

belonging to more than two distinct classes. These types of networks can solve multi-classification problems. 

The images themselves were of different sizes and resolutions—necessitating pre-processing to ensure all images were resized 

(scaled) to the same dimensions and converted from 3D-arrays to 2D-grayscale scenes.  

One method of facilitating large images in Python for training, without occupying unnecessary space residing in memory, is to 

construct a TensorFlow pipeline that extracts images from their labeled file locations, lazily-load small subsets of the data as 

chunks stored into memory, and perform pre-processing in parallel on the images inside of these chunks (where each CPU is 

designated as a worker completing tasks in parallel with other workers). 

Lazy evaluation permits larger-than-memory datasets to be loaded into Python in chunks without the session crashing from a lack 

of RAM (Random Access Memory). Instead of loading all the image arrays into Python at once, lazy loading facilitates small subsets 

of images (chunks) into memory at-any-time. Image chunks are then efficiently processed as TensorFlow Datasets when needed. 

 
Figure 3. Random sample of processed sandstorm and fog/smog scenes with their grayscale counterparts (Credit: Ryan Paul 
Lafler, Premier Analytics Consulting) 
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This preprocessing pipeline involved first resizing images from their original dimensions to a common size of (50x150) pixels. They 

were then normalized to contain pixel values between [0, 1] and converted from RGB-arrays to grayscale matrices to speed-up 

Network training. Figure 3 shows the original images compared to their grayscale counterparts, labeled according to their scene, 

and then randomly shuffled before being split into their training, validation, and testing datasets. 

4.4) DEVELOPING A TYPICAL CNN ARCHITECTURE 

Processing these grayscale images for binary classification as sandstorm or fog/smog events requires several hidden layers that 

convolve, pool, flatten, and eventually pass those flattened inputs through dense layers to obtain classification probabilities.  

There are several methods for pooling arrays—this involves aggregating nearby pixels to reduce the size of arrays by calculating 

that pixel group’s average, median, minimum, or maximum value and replacing those pixel values with the aggregated value. 

Maximum (max) pooling is particularly effective because it aggregates small groups of pixels by their biggest, and often, most 

interesting, pixel value. When used in combination with convolutional layers, pooling downscales (decreases the image’s 

resolution) the number of pixels in its input to extract additional features and produce arrays containing informative feature 

channels. These feature channels are abstract representations of the original image, often examining distinct sections of the image 

to find patterns, prominent features, and additional information to assist with the classification task. 

Convolutional and pooling layers are sequentially added to the CNN until the data array is small enough to be vectorized 

(flattened), then passed through layers of densely connected neurons, and eventually connected to a single neuron layer that 

outputs a single class probability. By continuously downscaling the image array, and detecting patterns at each lower resolution, 

the CNN learns distinct feature representations before being deconstructed to a single column (vector) of flattened data. 

A CNN architecture that accepts images of dimensions (50x150) contains 9-hidden layers that convolve, pool, flatten, and densely 

connect the original input to its desired output—a binary probability score that classifies an image as a “sandstorm” or “fog/smog” 

scene. The code for developing this CNN with the Keras Functional API is provided in (4.4.1). 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (4.4.1) | Developing the CNN Architecture using the Keras Functional API 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Specify length, width, and number of channels for image input: 
im_length = 50 
im_width = 150 
channels = 1 
 
# Specify expected input shape of grayscale images: 
inputs = Input(shape = (im_length, im_width, channels),  
               name = "image") 
 
# Convolutional layer with (2 x 2) kernel → produces 3-features from its input: 
conv_1 = Conv2D(filters=3,  
                kernel_size=(2, 2),  
                padding="valid", 
                activation="relu",  
                name="conv_1") (inputs) 
 
# Max-Pooling layer that reduces input size by a factor of 2: 
pooling_1 = MaxPooling2D(pool_size=(2, 2),  
                         padding="valid",  
                         name="pooling_1") (conv_1) 
 
# Convolutional layer with (3 x 3) kernel → produces 10-features from its input: 
conv_2 = Conv2D(filters=10,  
                kernel_size=(3, 3),  
                padding="valid", 
                activation="relu",  
                name="conv_2") (pooling_1) 
 
# Max-Pooling layer that reduces input size by a factor of 2: 
pooling_2 = MaxPooling2D(pool_size=(2, 2),  
                         padding="valid",  
                         name="pooling_2") (conv_2) 
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# Convolutional layer with (2 x 2) kernel → produces 15-features from its input: 
conv_3 = Conv2D(filters=15,  
                kernel_size=(2, 2),  
                padding="valid", 
                activation="relu",  
                name="conv_3") (pooling_2) 
 
# Max-Pooling layer that reduces input size by a factor of 2: 
pooling_3 = MaxPooling2D(pool_size=(2, 2),  
                         padding="valid",  
                         name="pooling_3") (conv_3) 
 
 
# Flattens array input to a vector → passed as input to Dense layers: 
flatten = Flatten(name="flatten") (pooling_3) 
 
# Densely connected layer with 80-neurons; ReLU activation: 
dense_1 = Dense(80, activation="relu") (flatten) 
 
# Densely connected layer with 40-neurons; ReLU activation: 
dense_2 = Dense(40, activation="relu") (dense_1) 
 
# Output layer with sigmoid activation → produces a single class “probability”: 
outputs = Dense(1, activation="sigmoid") (dense_2) 
 
# Stitches the CNN together from input to output layers: 
network = Model(inputs=[inputs], outputs=[outputs]) 
network.summary() 

 

 
Output from Code (4.4.1) 

Examining the output from (4.4.1), notice how the pooling layers reduce the input’s original size by (approximately) a factor of 2. 

It works alongside the convolutional layers to assist in feature extraction at different resolutions of the input array. The further 

the grayscale image array travels through the CNN, the smaller its original dimensions become while its number of channels 

quickly increase (originally 1-color channel). 
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The largest number of trainable parameters occurs after flattening from an array to a vector, where the array of size (5x17x15) is 

vectorized and passed through a densely connected layer containing 80-neurons. The final output layer, which contains only 1-

neuron, possesses a different activation function than the previously defined Artificial Neural Network for regression. The 

activation function used for binary classification is called the sigmoid function—the exact same function used in logistic regression 

models. A multi-class classification network (where the target feature contains more than 2-classes) would use a softmax 

activation function for its output layer. 

4.5) COMPILING THE CNN FOR TRAINING 

The code in (4.5.1) compiles the Convolutional Neural Network using the binary cross-entropy loss function, the Adam optimizer, 

and metrics including binary accuracy, precision, and recall. When fitting the network to the training data, mini batches containing 

128 randomly shuffled images are passed through the Network’s layers prior to the weights being updated. 

An early stopping callback was implemented to halt the network’s training if the validation loss failed to significantly decrease 

over 40-consecutive epochs before reaching 500-total training epochs. 

-------------------------------------------------------------------------------------------------------------------------------------------- 

Python Code (4.5.1) | Compiling the CNN and Fitting it to the Training Images 

-------------------------------------------------------------------------------------------------------------------------------------------- 
# Early Stopping Callback that monitors validation loss: 
es = EarlyStopping(monitor='val_loss', 
                   mode='min', 
                   patience=40, 
                   restore_best_weights=True) 
 
# Compile the Network for Binary Classification with metrics: 
network.compile(optimizer=Adam(learning_rate=0.001), 
                loss=tf.keras.losses.BinaryCrossentropy(from_logits=False), 
                metrics=[tf.keras.metrics.BinaryAccuracy(),  
                         tf.keras.metrics.Recall(), 
                         tf.keras.metrics.Precision()]) 
                          
# Record Network training history for 500-epochs, in batches of 128-images, with  
# early stopping 
history = network.fit(train_data,  
                      epochs=500,  
                      batch_size=128,  
                      validation_data=val_data, 
                      callbacks=[es]) 

 

4.6) EVALUATING THE CNN’S TRAINING PERFORMANCE 

The Convolutional Neural Network developed in this paper had the potential to train over a maximum of 500-epochs if not halted 

by the early stopping callback. Early stopping did, however, prevent the CNN from overfitting to the training data, halting training 

following the 376th epoch. 

The set of learning curves measuring the binary cross-entropy losses over epochs for the training data and validation data are 

plotted in Figure 4. Examining Figure 4, the training and validation curves closely track to each other, with both loss curves steadily 

decreasing over initial training epochs. The learning rate was set to its default parameter of 0.001, leading to steady training over 

time. Notice, however, that both the training and validation loss curves abruptly spike in later epochs—this is not an error, but 

rather a feature of mini batch (and its more erratic counterpart, stochastic) gradient descent. Depending on how the training and 

validation instances were randomly shuffled into batches during each training iteration, it is statistically probable for combinations 

of outlying instances to be grouped into one mini batch. These stochastic shocks can temporarily disrupt learning until the network 

corrects itself (by re-optimizing its weights) by training over additional epochs that contain more “normal” training mini batches.  

Overall, the learning curves show the CNN generalizing well to unseen data in the validation sets, while also learning patterns and 

features present in the training data. 
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Figure 4. Binary cross-entropy training and validation loss curves over epochs (Credit: Ryan Paul Lafler, Premier Analytics Consulting) 

CONCLUSION 

This paper provides an in-depth discussion on neural networks, showcasing their architectures, training processes, and 

applications to structured and unstructured data with examples programmed in Python using TensorFlow’s functional Keras API. 

Understanding neural network architectures are crucial for grasping the intricate mechanisms underlying modern deep learning. 

These composite functions, comprised of interconnected layers of neurons with trainable weight parameters, utilize 

backpropagation to optimize weights—an automatic differentiation process that is vital for minimizing loss functions. The ability 

of neural networks in handling various types of data with a single model have revolutionized data modeling, eliminating the need 

for extensive feature engineering and data preparation.  

The use of modern-day GPU and cloud computing technologies accelerate network training, owing to their superiority in parallel 

processing. Furthermore, user-friendly APIs like Keras that interface with TensorFlow democratize neural network development, 

simplifying class-based programming to methods called with only a few lines of code.  

Neural networks exhibit remarkable versatility in their modeling capabilities, with two methods presented in this paper—non-

parametric regression and binary image classification. While this paper primarily focuses on two types of neural network 

architectures, Artificial Neural Networks (ANNs) and Convolutional Neural Networks (CNNs), there are countless varieties of neural 

network architectures for handling different tasks and data structures. Further examples include Recurrent Neural Networks 

(RNNs), Generative Adversarial Networks (GANs), and Variational Autoencoders (VAEs).  

This paper serves as an example-oriented guide for users seeking a comprehensive understanding of fundamental neural network 

architectures and their practical applications. As the fields of artificial intelligence, machine learning, and deep learning continue 

to evolve, the insights presented in this paper give users an understanding of the inner workings developing neural networks. 
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