
#MWSUG2024 #BB106

%RepeatMaskoverFile (RMOF)

• This Utility Macro (RMOF) will repeatedly create and execute SAS 
Code by unquoting the mask (a SAS Macro Expression containing 
Macro variable references) after setting macro variables to values 
for each row in a SAS data file.

• Paul Silver, System Architect, University of Chicago

• SAS and all other SAS Institute Inc. product or service names are registered trademarks or 
trademarks of SAS Institute Inc. in the USA and other countries. ® indicates USA registration. 
Other brand and product names are trademarks of their respective companies.



2

• %RepeatMaskoverFile (referred to as %RMOF below) will 
generate SAS code from a SAS Data file, by repeatedly resolving a 
macro expression composed of macro variable references, and 
virtually any other text (except Macro statements) after setting 
macro variables to the variable values in the SAS Data file (and 
any other desired Macro references).

• The RMOF _mask parameter will define a quoted expression 
which outlines the format of the code to be generated. 

• SAS macro variables will be set from each row in the SAS data file 
and _mask will be resolved using the %unquote function and 
executed automatically.

#MWSUG2024 #BB106

%RepeatMaskoverFile: Abstract



3

• (_dset,..): name of SAS file containing variables to resolved into 
macro variables of the same name in the _mask macro expression.  
It is the only positional parameter in the RMOF macro call.

• _dset can reference a physical SAS data set or a virtual view. It 
can have 0 or any number of rows or variables. It can be modified 
by an optional where clause to limit the number of rows used. 

• _mask= a macro expression which contains code to be generated 
after resolving all macro expressions, for each row in _dset. It 
must usually by quoted by %nrstr(), %nrbquote, or other macro 
quoting function that prevents macro variable resolution until 
%unquote() within RMOF execution. 

#MWSUG2024 #BB106

%RMOF Macro Parameters – mandatory



4

• _where  and _keep control which rows and columns are used from 
the _dset file.

• _where: optionally limit the incoming rows from _dset by defining a  
where expression to be applied while reading _dset.

• _keep: limit list of variables from _dset if desired.  If left blank, all 
variables in _dset will be transferred to macro variables before 
_mask resolution. Variables used in _where must also be specified 
here if _keep is non-blank. This might be necessary if the data set  
names collide with other local macro variables or macro 
parameters. For example, if there is a variable named _dset in 
_dset, it must be excluded using the _keep parameter, in order for 
RMOF to work properly. 

#MWSUG2024 #BB106

%RMOF Macro Parameters – optional



5

• This optional parameters control the layout of the code being 
generated, in addition to _mask. 

• _begin_text:  Generate code from this expression before the first 
_mask generation, but ONLY if there are rows in _dset.

• _sep_text: Generate code from this expression between the 
_mask code generation instances, but not after the last one.

• _end_text: Generate code from this expression after the last 
_mask generation, but ONLY if there are rows in _dset.

#MWSUG2024 #BB106

%RMOF Macro Parameters – optional 2



6

• Example 1: Generate variable list from _dset work.varlist containing a list of 
sas variable names to keep in output data set B from input dataset a.

• Data b; set a; 
• %RepeatMaskoverFile(
• work.varlist /* input data set*/
• ,_beg_text=Keep
• ,_keep=varname
• ,_mask=%nrstr(&varname     /*expression to resolve*/)
• ,_end_text=%str(;)
• );
• run;

• Results in >
• Data b; set a; 
• keep var1 var2 var3; * assuming varlist contains three rows with 

varname = var1, var2, var3;
• run;

#MWSUG2024 #BB106

%RMOF Example 1 : Generate Variable list



7

• Example 2: Generate SAS statement to recode variable (variable) from missing to a skip code) 
if a logical expression (expression) is true. Note: This will fail if skipcode is given but 
expression is missing. 

• Data b; set a; 

• %RepeatMaskoverFile(work.varlist
• ,_keep=varname expression vartype skipcode
• ,_where=vartype=’C’ and skipcode>’ ‘ /* include only character variables with defined skip 

codes*/
• ,_beg_text=*set skipcodes as needed for character variables%str(;) /* add a comment at the 

beginning of the statement list, but only if some rows met the _where condition*/
• ,_mask=%nrstr(if &varname=’ ‘  then if &expression then &varname=”&skipcode”;)
• ,_end_text=* end of character variable skipcodes %str(;));

• %RepeatMaskoverFile(work.varlist,
• ,_keep=varname expression vartype skipcode
• ,_where=vartype=’N’ and skipcode>’ ‘
• ,_mask=%nrstr(if &varname>. then if &expression then &varname=&skipcode;));

• run;

#MWSUG2024 #BB106

%RMOF Example 2 : Recode variables from missing to skip



8

• Example 3: Combine processing of numerical and character variables 
by adding a macro to properly type the skipcode expression, execute 
data set update only if some variables in varlist have skipcode 
conditions.

• %* Predefine %skipcode for use in %RMOF: 
• %macro skipcode(skipcode,type); %if &type=C %then 

“&skipcode”;%else &skipcode;%mend;

• %RepeatMaskoverFile(work.varlist,
• ,_keep=varname expression vartype skipcode
• ,_where=skipcode>’ ’
• ,_beg_text=%str(data a; set a;)
• ,_mask=%nrstr(if missing(&varname) then if &expression then   

  &varname=%skipcode(&skipcode,&type)%str(;)),
• _end_text=%str(run;)
• );

#MWSUG2024 #BB106

%RMOF Example 3: Generate if/then statements for all types



9

• Example 4: Generate Proc freq after applying code above to 
variables with skipcodes. No code will be generated if all rows in 
varlist have skipcode missing. Note: _keep is dropped, without 
impact. 

• %RepeatMaskoverFile(work.varlist
• ,_where=skipcode>’ ‘ /* include only character variables with 

defined skip codes*/
• ,_beg_text=%str(proc freq data=a;)
• ,_mask=%nrstr(table &varname/missing list;)
• ,_end_text=run%str(;)
• ); 

#MWSUG2024 #BB106

%RMOF Example 4: Generate Proc freq for selected variables



10

• Execution Context: It can be used virtually anywhere in a SAS program, including open code, 
data steps, or proc steps.

• Advantages: RMOF generates SAS code, not macro variables, and so is NOT subject to the 
very annoying macro variable size limitation of 65,524 bytes. If the input file is empty it will do 
nothing. 

• Code Generation can be easier than other methods like proc sql select :into separated by) 
because it typically requires few or no text functions  and asks you to type SAS code as you 
would type in plain code, just replacing specific values with macro variables. 

• %RMOF call can contain all or most of the specifications directly in the place it is used.  

• It can mix global and local macro variables or macro calls or other text seamlessly. 

• It can replace many, many custom macros or data step or proc sql code macro variable 
generation programs. 

• &_n_ can be used in the _mask or _sep_text or _end_text parameters to allow a sequential 
number to be included in the generated code.

#MWSUG2024 #BB106

%RMOF Usability Notes



11

• The macro expressions must not contain macro statements (like %if 
%then %do%end). 

• However, that functionality can often be added by using wrapper macros 
defined before the %RMOF call (see %skipcode example above).  

• Local macro variables that should NOT be used in the macro 
expressions include _dsetopt _dsid _rc as well as any of the macro 
parameters, since they might collide with the file generated macro 
variables and break the macro execution.  

• Quoting functions like %nrstr, %nrbquote, or %superq must typically 
used around the input expressions to prevent resolution till macro 
execution time. In most cases %nrstr will suffice, though. 

#MWSUG2024 #BB106

%RMOF Usability Notes: Limitations and Cautions



#MWSUG2024 #BB106

Thank You for Listening!

• Paul Silver

• System Architect, NORC at University of Chicago

• Silver-paul@norc.org


	Slide 1: %RepeatMaskoverFile (RMOF)
	Slide 2: %RepeatMaskoverFile: Abstract
	Slide 3: %RMOF Macro Parameters – mandatory
	Slide 4: %RMOF Macro Parameters – optional
	Slide 5: %RMOF Macro Parameters – optional 2
	Slide 6: %RMOF Example 1 : Generate Variable list
	Slide 7: %RMOF Example 2 : Recode variables from missing to skip 
	Slide 8: %RMOF Example 3: Generate if/then statements for all types  
	Slide 9: %RMOF Example 4: Generate Proc freq for selected variables 
	Slide 10: %RMOF Usability Notes 
	Slide 11: %RMOF Usability Notes: Limitations and Cautions 
	Slide 12: Thank You for Listening!

